
The vertex separation problem in
bipartite graphs: A cycle-based

algorithm

Bachelorthesis

Author: Ina Hoffmann

Field of study: Mathematics

Matriculation number: 302431

Professor: Prof. Dr. Marco Lübbecke

c© 2013

Contents

1 The problem 3

1.1 Motivation . 3
1.2 The graph separator problem . 5
1.3 Related problems . 8

Edge Separators . 9
More similar problems . 9

1.4 Common results . 10

2 Related work 11

2.1 Use 2-partitioning algorithms to solve the k-separation problem . . 11
2.2 Example 2-partitioning algorithms 12

2.2.1 Spectral method using Laplacian matrices 12
2.2.2 Kerningham Lin . 14
2.2.3 Separating using the pagerank 16
2.2.4 A genetic algorithm . 19

2.3 Using the bipartite structure of the graph 20
2.4 Ways to improve the algorithm . 21

3 Find separators cycle based 22

3.1 Separating a tree . 22
3.2 Separating a cycle . 24
3.3 Cycle based separating of a graph 24
3.4 Implementation . 25

4 Conclusions 27

2

1 The problem

1.1 Motivation

Nowadays parallelization is very important in many applications of mathematics
and information technology. Especially in the field of operations research it is
often not preventable to run complex algorithms with huge matrices as input. If
the complexity of an algorithm is to high to run it at a machine, parallelization of
the algorithm can make it possible to run it anyway.
Many problems in operations research can be modeled as a mixed integer program.

Definition 1.1 (Mixed integer program)
A mixed integer program be expressed as :
maximize cTx
subject to Ax ≤ b
and x ≥ 0
and some entries of x are known to be integers.
A is a matrix, c and b are vertices and x is the vector of variables to be determined.

In this paper, when speaking about a matrix representing a problem, the matrix
A is meant.
The more variables the problem has, the more entries the matrix has. Computing
an algorithm that works on a very huge matrix can be inherently problematic,
because matrix operations run mostly not in linear time. A straightforward im-
plementation of the matrix multiplication for example has a run time of O(n3).
But the main problem is that for a lot of problems not even a polynomial time
algorithm is found. To run an algorithm with exponential complexity with a huge
matrix as input is almost impossible.
There are two common ways to approach this problem. The first is finding better
algorithms to solve the problems. For example the Coppersmith–Winograd algo-
rithm performs a matrix multiplication in O(n2,375) instead of O(n3). [3] Unfortu-
nately a better algorithm cannot be found for every problem. For many problems a
lower boundary for the effectiveness of any algorithm solving the problem is found
and proved. Some problems are even proven to be NP-hard which means there is
no polynomial time algorithm solving the problem unless P=NP. For example the
0-1 integer linear programming problem is known to be NP-complete, but is very
important in many applications. This problem can be described as follows.

Definition 1.2 0-1 integer linear programming problems (0-1ILP)

3

maximize cTx
subject to Ax = b

x ≥ 0
and x ∈ {0, 1}

A ∈ Nn×m is a matrix, b ∈ Nn is a vector, c ∈ Nm is a vector and x ∈ {0, 1}m is
the vector we need to find.

This problems are NP-complete, they belong to ”Karp’s 21 NP-complete prob-
lems” [5]. There are many famous problems that can be described as 0-1ILP. One
of this is the traveling salesman problem. This is formulated in many papers as
follows. ”Given a list of cities and the distances between each pair of cities, what
is the shortest possible route that visits each city exactly once and returns to the
origin city?”

Assuming that P 6= NP , algorithms finding good solutions have a long run
time. Because of this, finding better algorithms alone does not solve the problem
of a high complexity. As mentioned above there is a second way to approach this:
parallelization.
Especially sparse matrices can be split into sub matrices with just a few rows
and/or columns that are omitted. These omitted rows and columns describe the
relation between the sub matrices. When a matrix is split into several parts, the
problem can be solved for each part individually. Such a partition should not alter
the underlying problem that is described by the matrix. Otherwise the solution
found to the problem-parts could not be used to find a solution for the complete
problem.
Partitioning the matrix has the additional advantage of finding out more about
the structure of the underlying problem. It is very useful for solving the problem
to know that it naturally consists of a number of separated sub-problems. One
way to obtain a split matrix is converting the matrix into a form that can be easily
partitioned. One matrix structure which allows easy partitioning is the arrowhead
form.

Definition 1.3 (Matrices in arrowhead form)
Let A be a n×m-matrix. A is in arrowhead form if and only if it has the following
structure:

A =















A1 C1

A2 C2

. . .
...

Ak Ck

R1 R2 · · · Rk L















Thereby each Aj is a matrix and they can differ in size. For each j ∈ {1, . . . , k}

4

Cj is a matrix with c columns and Rj is a matrix with r rows. L is a r× c-matrix.
All other entries of A are zero.

In this paper we call Aj the jth block of A. c is called the column-number and
r is called the row-number.

There are several algorithms that use the arrowhead form of a matrix to solve
a linear programming problem. For this first each block is considered separately.
Then a solution is found by means of the part solutions found before. An example
for an algorithm that works this way is the Dantzig–Wolfe decomposition [4]. This
paper does not deal with algorithms using the arrowhead form. Its subject matter
is how to bring a matrix in arrowhead-form. This will be done by comparing exist-
ing ways of doing so, improving them and developing new ways, which hopefully
work better.
In this paper additional requirements to the arrowhead form are considered. Pos-
sible useful requirements are:

1. The different blocks are as equally sized as possible

2. The column number and the row number are as small as possible

3. The column number and the row number are nearly equally sized

1.2 The graph separator problem

Every matrix can be interpreted as a graph in several ways. One way of represent-
ing matrices with graphs will be described in the following. It will be shown that
the problem of converting a matrix into arrowhead-form is similar to the problem
of finding vertex separators in the representing graph.
In their paper ”Partitioning mathematical programs for parallel solution” Michael
C. Ferris and Jeffrey D. Horn [6] describe the following way of interpreting a matrix
as a bipartite graph:

Definition 1.4 (The bipartite graph representing a matrix)
Let be A a n × m-matrix. The bipartite graph G = (V1, V2, E) representing A,
contains |V1+V2| = n+m vertices. The n vertices V1 = {v1, . . . , vn} represent the
rows of A and the m vertices V2 = {w1, . . . , wm} represent the columns of A.
There is an edge (vi, wj) ∈ E with vi ∈ V1 and wj ∈ V2 if and only if the entry of
A in row i and in column j is not 0.
There is no edge between two vertices that are both in V1 or both in V2.

The graph contains all the relevant information. Each matrix-entry aij 6= 0 is
represented by an edge in the graph. However the graph does not represent is the

5

order of the rows and columns. Because of this several possible matrices exist for
each graph. However all these possible matrices differ only by permutation. So
they all describe the same problem. The so described graph is bipartite because
there are per definition no edges within V1 or within V2. The definition also
describes a unique graph for every matrix-structure except for permutation. This
will be illustrated with an example.

Example 1.1 (A matrix and its representing graph)

A =









1 1 1
1 0 0
0 1 1
0 0 1









The representing graph of A is:

v1 v2 v3

w1 w2 w3 w4

Each row is represented by a wi in the graph and each column is represented by
a vi in the graph. For example there are edges from node v1 to w1 and w2. This
represents that the entries (1, 1) and (2, 1) are different from 0.

Graph separators

In this section the graph separation problem will be explained first and then the
connection between this problem and the arrowhead-form of a matrix will be re-
vealed.
The graph separator problem is - as the name indicates - the problem of finding
good separators in a graph. There are two different types of separators. Sets of
edges that separate the graph into k subsets are called edge separators. Sets of
vertices that separates the graph into k subsets are called vertex separators. In
this paper all separators are vertex separators unless they are explicitly said to be
edge separators.

Definition 1.5 (k-Separators)
Let G = (V,E) be a graph. Let S ⊂ V be a set of vertices. Let B be the graph that
is generated by removing all vertices in S from G. S is a k-separator of G if and
only if B contains at least k different connected components.

Which separators are ”good” separators depends on the context. Mostly a sepa-
rator is defined ”good” if its size is small enough.

Definition 1.6 (Minimal Separators) A minimal separator is one smallest
subset of vertices that is a separator.

6

In this paper there will be more requirements to the separators than only being
small.
Now the connection between vertex separators and the arrowhead-form will be
explained. First the structure of the representing graph of a diagonal-block-matrix
is illustrated.

Observation 1.1 (Representing graph of diagonal-block-matrices)
Let A be a matrix with diagonal-block-structure. When A contains at least k blocks,
then the representing bipartite graph consists of at least k components.

Proof: Let A be a matrix with diagonal-block-structure. Let G = (V,W,E) be the
bipartite representing graph of A. Let At be any block of A and Vt = {v1, ..., vi} ⊆
V the column nodes and Wt = {w1, ..., wj} ⊆ W the row nodes in the representing
graph for the columns and rows of At.
Assuming that a node wl ∈ Wt is adjacent to a node vk /∈ Vt, then alk 6= 0. That
means At is not a block in A.
Assuming that a node vl ∈ V is adjacent to a node wk /∈ Wt, then akl 6= 0. That
also means that At is not a block in A.
Because the graph is bipartite there are no adjacent nodes within V or within W .
So there is no adjacent node in Vt ∪Wt to any node in (V \ Vt) ∪ (W \Wt). That
means that Vt ∪Wt is a component.

Example 1.2 (A matrix with block structure and its representing graph)

A =









1 0 0
0 1 1
0 1 1
0 1 1









The representing graph of A is:

v1v2v3

w1w2w3w4

A contains two blocks and the graph consists of two connected components.

One strategy for converting a matrix in arrowhead-form is to find columns and
rows so that the matrix without these columns and rows would be in diagonal-
block-structure. The removed columns and rows are added as the last columns and
rows. The so formed matrix is in arrowhead-form. This strategy means several
columns and nodes of the matrix are permuted to be the last columns and rows.

Observation 1.2
Let A be a matrix that represents a problem. By permuting rows or columns the
matrix still represents exactly the same problem.

7

Proof: Each row in the matrix stands for a variable. To permute the rows is like
renaming them and this does not change the problem. Each column-entry stands
for an element in a sum. Addition is commutative so this will not change the
problem either.
Removing a column is the same as removing a node of the column-set in the
representing bipartite graph. Removing a row is the same as removing a node of
the row-set of the representing bipartite graph.
In conclusion the problem of transforming a matrix into arrowhead-form can be
solved in the following way:
Let Abe a n×m-matrix.

1. Find the representing bipartite graph G of A

2. Find a k-separator in G that

a) matches all defined requirements

b) is as small as possible

3. Permute rows and columns until the matrix is in arrowhead-form. The rows
and columns represented by the separator will be the last columns and rows
in the matrix.

Some possible requirements for the separator are:

• Each subset should contain at least l column-nodes

• Each subset should contain at least l row-nodes

• Each subset should contain similar numbers of column-nodes and row-nodes

• The separator should contain at most l column-nodes

• The separator should contain at most l row-nodes

• The separator should contain similar numbers of column-nodes and row-
nodes

1.3 Related problems

Finding k-separators is a known and highly researched problem. The vertex sep-
arator number is known to be related to some other quantities.

8

Edge Separators

The edge separation problem is highly related to the vertex separation problem.
As the name indicates an edge separator contains edges instead of vertices.

Definition 1.7 Let G = (V,E) be a graph. A set of edges SE is a k-edge-separator
if and only if G without the edges in SE contains at least k disjoint connected
components.

An edge separator SE can be used to find a vertex separator SV . For each edge in
the edge separator one incident node is put in the node separator.
However this method can not guarantee to find a k-vertex separator.
It can happen that every node in a subset is incident with an edge from SE . While
constructing SV as described it can happen that each node of this subset is put
into SV . When the whole subset is a subset of SV , the separator can only segment
the other k − 1 subsets. Then SV would not be a k-separator but at most a k − 1
separator.
Nevertheless it is common to use edge separators to find vertex separators, because
there are already many good algorithms for solving the edge separation problem.
In most cases it is not that important to find a separator that divides the graph
into exactly k subsets as long as the number of subsets remains close to k. The
method is qualified for this.

More similar problems

Furthermore the vertex separation problem is non constructively related to a couple
of other problems. Although the size of the optimal solutions are related this
information cannot be used to find an actual separator. Therefor these problems
are only non constructively related. Here only the relation between the vertex
separation number and the path width will be represented.

Definition 1.8 (Path width of a graph)
Let G = (V,E) be a graph. A graph-decomposition is a sequence V1, V2, ..., Vt with
Vj ⊆ V ∀j ∈ {1, ..., t} for which applies:

1. For each edge ei ∈ E exists a subset Vi so that the begin node and end node
of ei are both in Vi

2. For each i, j, k with i ≤ j ≤ k applies Vi ∩ Vk ⊆ Vj

The path width of G is one less than the size of the largest set in a graph-decomposition.

Lemma 1.3 For each graph the path width equals the vertex separation number.

9

This information could be used to find a lower or upper boundary for the size of a
minimal separator. Unfortunately research for this paper did not reveal any way
to use this information.
So the proof of this lemma is omitted because it is not used in a any algorithm that
will be described. The proof can be found in the paper ”The vertex separation
number of a graph equals its path-width” by Nancy G. Kinnersley. [10].

1.4 Common results

This section contains some other interesting results about the vertex separation
problem.

Theorem 1.4 (NP-hardness)
To find a good approximate 2-vertex separator in a graph is NP-hard.

The proof is outlined in the paper ”Finding good approximate vertex and edge
partitions is NP-hard” by Jones Bui. [2] However this does not prove that the
problem remains NP-hard if only bipartite graphs are considered.
There are some special graphs for which the complexity of the problem is known

and has been proved:

Definition 1.9 (Biconvex bipartite graphs)
A bipartite graph G = (V1, V2, E) is said to be convex over Vt with t ∈ {1, 2} if an
enumeration of Vt = v1, ..., v|Vt| exists so that for each wj ∈ V2 applies: For any
two adjacent nodes vi and vj of wj there does not exist a nonadjacent node vl, such
that i ≤ l ≤ j.
G is biconvex if and only if it is convex both over V1 and over V2.

Graph structure Complexity
Generic graphs NP [2]
Induced subgraphs of grid graphs with no holes P [11]
Bipartite graphs open
Biconvex bipartite graphs P [13]
Trees linear [15]

Accordingly if the bipartite graph is a tree or biconvex there exists an algorithm
that solves the problem in polynomial time. Unfortunately most bipartite graphs
are neither trees nor biconvex.

10

2 Related work

There are nearly no papers that deal with vertex k-separators. The algorithms that
are described in these papers use an algorithm to find 2-separators repeatedly. In
this chapter will be described in detail how this can be done.

2.1 Use 2-partitioning algorithms to solve the k-separation

problem

In their paper ”Partitioning mathematical programs for parallel solution” Michael
C. Ferris and Jeffrey D. Horn present an algorithm that use the Kerningham
Lin algorithm to find 2-edge separators for finding k-vertex separators [6]. The
algorithm consists of the below-mentioned steps.

1. Construction of a k-edge separator: Find k subsets of vertices so that
the number of edges between these vertices is minimal. To do this they first
suggest to find an initial k-partitioning of the graph either randomly or by
the use of more elaborate methods. Then pairwise for each two subsets a
2-edge separator is found and that separator defines a new 2-partitioning for
the nodes of the two subsets. These two new subsets replace the former ones.
There are

(

k
2

)

subsets to be considered this way. This is done several times
to get a partitioning with a edge separator that is as small as possible.

2. Construction of a k-vertex separator: An algorithm is used to find a
set of vertices SV , so that for each edge in the edge separator at least one
node is in SV , but |SV | is as small as possible.
First for each vertex the number of incident edges that are in the edge sepa-
rator is counted. Then the vertex with the highest number of incident edges
is removed. Then the algorithm is run again on the remaining graph. This
will be done until the graph is separated in ideally k subsets. The removed
nodes form the separator SV .

However in this way only balanced partitions can be found. Ferris and Horn solved
this problem by adding a high number of dummy nodes that have no incident edges
before running the algorithm. This can not influence the quality of the solution
since the dummy nodes do not have incident edges. Yet in this way unbalanced
partitioning is possible.
Naturally this algorithm can not guarantee to find at least k subsets. By removing
the dummy nodes at the end it can happen that a subset only consists of dummy
nodes and so is removed altogether. Ferris and Horn described one way to avoid
this as to not add too many dummy nodes. If a partitioning with between j and
k subsets is desired, the total number of nodes has to be k⌈n/j⌉.

11

2.2 Example 2-partitioning algorithms

2.2.1 Spectral method using Laplacian matrices

The problem to find a separator can be reinterpreted as an eigenvalue problem.
In this section this will be done with a Laplacian matrix like it is described in the
paper ”Partitioning mathematical programs for parallel solution” of Ferris and
Horn [6]. In section 2.2.3 a second method that uses the pagerank is presented.
Let G = (V,E) be a graph and V1, V2 a partition of V . We define xi for each
i ∈ {1, ..., |V1 ∪ V2|} as follows.

xi =

{

1 if vi ∈ V1

−1 if vi ∈ V2

With this definition the number of edges between V1 and V2 is described by

|EV1V2
| = 1

4

∑

(vi,vj)∈E

(xi − xj)
2.

If there is no edge between vi and vj then (xi − xj)
2 = 02 = 0 and if there is an

edge (xi − xj) is 2 or −2 which results in (xi − xj)
2 = 4.

Now this term is rearranged in the following way:

∑

(vi,vj)∈E

(xi − xj)
2 =

∑

(vi,vj)∈E

(x2
i + x2

j)−
∑

(vi,vj)∈E

2xixj

=
∑

(vi,vj)∈E

2−
∑

vi∈V

∑

vj∈V

xiAijxj

= 2|E| −
∑

vi∈V

xi

∑

vj∈V

Aijxj

=
∑

vi∈V

x2
i di − xTAx

= xTDx− xTAx

= xT (D − A)x

Here A is the adjacency matrix of G and D is the diagonal matrix with the number
of edges incident to vi as entry di for each i ∈ {1, ..., |V1 ∪ V2|}.
L = D − A is the Laplacian matrix of G. In conclusion |EV1V2

| = 1
4
xTLx. To

find a minimal edge separator is the same as minimizing |EV1V2
|. When a bal-

anced partition is desired there is the requirement
∑n

i=1 xi = 0. This is a discrete
optimization problem because xi = ±1. Discrete optimization problems are very

12

hard to solve, so the problem is changed to be continuous. Instead of xi = ±1 the
expression xTx = n is used. Of course it cannot be expected to obtain an exact
solution if the problem is modified. But the basic concept of both problems is the
same. The difference is that an entry of the solution vector now is not clearly in
V1 or V2 but the smaller it is the more likely it is to be in V1 and the bigger it is
the more likely it is to be in V2.
So there is the following continuous optimization problem to be solved:

min
1

4
xTLx

subject to
n

∑

i=1

xi = 0, and xTx = n

A problem of this form can be solved by using eigenvalues. Let ω1, ..., ωn be an
orthonormal basis of the eigenvectors of L with the eigenvalues λ1, ..., λn and sorted
as |λ1| ≤ |λ2| ≤ ... ≤ |λn|. Because ω1, ...ωn is an orthonormal basis each x can
be formulated as x =

∑n
i=1 aiωi for some ai ∈ Q with

∑n
i a

2
i = n. It is a common

result that for the Laplacian matrix of each graph λ1 = 0 and the associated
eigenvector is (1/

√
n)e.

With λ1 = 0 and substitution of x for |EV1V2
| applies:

|EV1V2
| = 1

4
xTLx

=
1

4
(

n
∑

i=1

aiωi)
TL(

n
∑

i=1

aiωi)

=
1

4
(

n
∑

i=2

a2iλi)

Furthermore because |λ2| is greater than or is equal to |λi| with i ∈ {2, ..., n} it
for |EV1V2

| applies:

|EV1V2
| ≥ 1

4
(a22 + a23 + ...+ a2n)λ2 ≥

nλ2

4

With this formulation it can be seen that x∗ =
√
nω2 is a lower bound for |EV1V2

|.
This solution also meets the requirement

∑n
i=1 xi = 0, since

n
∑

i=1

x∗
i = eTx∗ = (

√
nω1)

T (
√
nω2) = ωT

1 ω2 = 0

13

In conclusion x∗ is a solution to the continuous minimization problem. If the
entries of x∗ would be ±1 we would have found an optimal partition. Because this
is not the case one additional step has to be made.
Like described above the higher a entry of the solution is the more likely it is in
subset V1 to get a good partition.
To get a at least good partition we simply allocate the n/2 vetrices with the great-
est entry in x∗ to V1 and the rest to V2.

Summarized a 2-edge separator can be found the following way:

1. Construct the Laplacian matrix L = D − A of the graph.

2. Determine the second biggest eigenvalue λ2 and its eigenvector ω2.

3. Set x∗ =
√
nω2.

4. Allocate the n/2 vertices with the highest entry in x∗ to one subset and the
rest to the other subset.

The edges between this subsets are the edge separator.

2.2.2 Kerningham Lin

As early as 1969 B. W. Kerningham and S. Lin developed a very effective algorithm
to find a balanced partition minimizing the edges between these subsets [7]. In
fact this algorithm is very popular to this date because it is not only effective but
also very simple.
The algorithm is based on a partition with subsets V1 and V2 and improves this
partition gradually. The main idea of the algorithm is to find a value for each pair
(vi, vj) with vi ∈ V1 and vj ∈ V2 that describes the gain of exchanging v1 and v2.
For this purpose for each node vi an external cost Evi and an internal cost Ivi is
defined.

Definition 2.1 (External cost)
For each node vi ∈ V1 the external cost Evi is defined as the number of nodes
vj ∈ V2 adjacent to vi. For each node vj ∈ V2 the external cost Evj is defined as
the number of nodes vi ∈ V1 adjacent to vj.

Definition 2.2 (Internal cost)
For each node vi ∈ V1 the internal cost Ivi is defined as the number of nodes vj ∈ V1

adjacent to vi. For each node vj ∈ V2 the internal cost Ivj is defined as the number
of nodes vi ∈ V2 adjacent to vj.

14

Definition 2.3 (Difference between external and internal cost)
For each node vi we define Dvi = Evi − Ivi

So the external cost is the number of adjacent nodes in the other subset and
the internal cost is the number of adjacent nodes in the same subset. With this
definition the gain of a swap of two nodes can be described. First two helping
constants are defined then the gain of a swap is stated and proven.

Definition 2.4 (Number of Edges E)
EAB is defined as the edge-set containing all edges between the vertex sets A and
B. So |EAB| is the number of edges between A and B. This is also named the cost
of the partition.

Definition 2.5 (Edge indicator function)
For each two vertices the edge indicator function is defined as

evw =

{

1, (v, w) ∈ E

0, (v, w) /∈ E

Definition 2.6 (Gain of swapping)
The gain of swapping the nodes vi ∈ V1 and vj ∈ V2 is defined as the old cost minus
the new cost.
Let V ′

1 = V1 \ {vi} ∪ {vj} and V ′
2 = V2 \ {vj} ∪ {vi} be the subsets after the swap.

The gain is defined by g(vi, vj) = |EV1V2
| − |EV ′

1
V ′

2
|

Lemma 2.1 Let G = (V,E) be a graph. Let V1 ⊂ V and V2 ⊂ V be a partition of
G. Let vi ∈ V1 and vj ∈ V2. The gain swapping vi and vj is g(vi, vj) = dvi + dvj −
2evivj .

Proof: First it is argued how the number of edges can be described in relation
to the internal and external cost. The edges that are neither incident to vi nor to
vj can not be changed with a swap, so they can be safely ignored. Let z be the
number of edges between V1 and V2 that are neither incident to vi nor to vj. The
number of edges between V1 and V2 that are incident to vi is defined as Evi . The
same applies for vj . If vi and vj are adjacent to each other then Evi + Evj would
count their mutual edge twice. So the number of edges in the old partition can be
described as |EV1V2

| = z + Evi + Evj − evivj .
Now is the question what changes in this formula if vi and vj are exchanged. Of
course instead of the external costs, the internal costs have to be used. In Ivi + Ivj
the edge (vi, vj) is not counted even if it exists. So the complete new number of
edges between the changed sets is |EV ′

1
V ′

2
| = z + Ivi + Ivj + evivj .

15

The gain of the exchange is the old cost minus the new cost.

g(vi, vj) = |Evivj | − |EV ′

1
V ′

2
|

= z + Evi + Evj − evivj − (z + Ivi + Ivj + evivj)

= Evi − Ivi + Evj − Ivj − evivj − evivj
= Dvi +Dvj − 2evivj

Each step of the algorithm consists of the following steps: Let C be a set of
vertices. This set contains the nodes that already have been considered by the
algorithm.

1. Determine g(vi, vj) for each pair of nodes with vi ∈ (V1\C) and vj ∈ (V2\C).

2. Store the vi and vj for which g(vi, vj) is maximal as as and bs. Each cycle
the variable s is increased by one. as and bs are added to C.

3. For each vi ∈ V \ {as, bs} change Dvi as if as and bs would have been ex-
changed.

This steps are repeated as long as there are still nodes that have not been exam-
ined. After the completion of this algorithm the accumulated gain of exchanging
a1, a2, .., ak with b1, b2, ..., bk is g(a1, b1) + g(a2, b2) + ... + g(ak, bk). To determine
how many nodes should be exchanged to maximize the gain the k which maximizes
∑k

i g(ai, bi) is determined. Obviously the sum is 0 if k is the number of nodes in
each subset. Since this would mean to exchange the nodes of V1 with the nodes of
V2 which would essentially be the same as renaming them.
If this maximized gain is bigger than 0 a1, ..., ak are exchanged with b1, ..., bk.
Then the algorithm starts again until the gain is 0 or lower.

2.2.3 Separating using the pagerank

The pagerank is a measurement for the quality of nodes in a network. It was de-
veloped for the google search to rate search results. In their paper ”Local Graph
Partitioning using pagerank Vectors” Reid Andersen, Fan Chung and Kevin Lang
[1] developed an algorithm that uses the pagerank for partitioning a graph. The
way of using the pagerank to find partitions they developed is described in this
section. Though the method to find the pagerank presented here is not the one
Andersen and company developed, but a spectral method. This method is of-
ten described and used, for example in ”Authoritative Sources in a Hyperlinked
Environment” of Jon M. Kleinberg [8].

16

The pagerank is defined only for directed graphs. Of course every undirected
graph can be interpreted as a directed graph with the requirement ∀(v, w) ∈ E :
(w, v) ∈ E. Due to the fact that in this paper the main subject are bipartite
graphs, there is a second, better way to interpret the graph as a directed graph.

Observation 2.2 (Interpreting a bipartite graph as a directed graph)
Each bipartite graph G = (V1, V2, E) with |V1| = |V2| can be interpreted as directed
graph in the following manner:
Let v1, ..., vn be an enumeration of the nodes in V1 and w1, ..., wn an enumeration
of the nodes in V2. G2 = (V,Ed) with |V | = |V1| = |V2| and for each ai, aj ∈ V
applies: (ai, aj) ∈ Ed if and only if (vi, wj) ∈ E. Notice that this graph could
contain loops if an edge (vi, wj) with j = i exists in the bipartite graph.

Example 2.1 (Interpreting a bipartite graph as a directed graph)

Bipartite graph:

v1v2v3v4

w1w2w3w4

Directed graph:

d1d2

d3d4

Proof: The adjacent matrix will help to show this lemma. The difference between
adjacent matrices of directed and undirected graphs is that adjacent matrices of
undirected graphs are symmetric. That means in fact not n2, but only n2/2 entries
are needed to characterize an undirected graph. If the graph is even bipartite there
are no edges within the subsets, so half of the n2/2 entries are known to be 0. That
means that if an undirected graph is bipartite only n2/4 = (n/2)2 matrix entries
are needed to fully characterize the graph.
Now a matrix A ∈ Q

n
2
×n

2 will be created with exactly the needed information.
Let v1, ..., vn/2 be an enumeration of the nodes in V1 and w1, ..., wn/2 an enumeration
of the nodes of V2.

aij =

{

1 (vi, wj) ∈ E

0 (vi, wj) /∈ E

In this matrix every edge between a node in V1 and a node in V2 is represented by
an entry that does not equal zero. So with the matrix and the information that
the graph is bipartite the complete graph is characterized. The so defined matrix
is the adjacency matrix of the directed graph described above.

This definition covers only bipartite graphs with |V1| = |V2|. However a bipar-
tite graph with |V1| 6= |V2| can be easily transformed into a bipartite graph with

17

|V1| = |V2|. One simply has to add dummy nodes without any incident edges.

As said before the pagerank of a node is supposed to describe the quality of this
node. The quality in this definition is the higher the more high rated pages link
to the page.

Definition 2.7 (Link)
In a directed graph an edge between two nodes n1 and n2 can be interpreted as link
from n1 to n2.

A second requirement is, that the pagerank for a node is lower if the node possesses
many outgoing links. In conclusion the pagerank of each node can be defined as a
fixed point problem as follows:

Definition 2.8 (Pagerank)
Let G = (V,E) be a directed graph. For every vi ∈ V let Nvi be the number of
outgoing links and Ivi the set that contains the start point of each incoming link.
A vector r that contains a pagerank for each node in G is a vector for which applies:

ri =
∑

vj∈Ivi

rj/Nj

This fixed point problem can be reinterpreted as an eigenvalue problem.

Definition 2.9 (Matrix Q)

qij =

{

1
Nj

if a link from vj to vi exists

0, else

With this definition
∑

vj∈Ivi
rj/Nj is the ith entry of Qr. Hence the problem to

find a pagerank vector could be reformulated as follows:
A vector r is to be determined that solves Qr = r. This is an eigenvalue problem.
Note that r is the eigenvector to the eigenvalue 1.
There are two problems that should be considered before the implementation.
The first problem are 0-rows and 0-columns. If Q has 0-rows or 0-columns it may
do not have an eigenvalue 1. This problem can be solved by filling each 0-row-
entry and each 0-column-entry with 1/|V |. This will not change the pagerank
vector except for scaling, because these new links are evenly distributed.
The second problem is Q could be reducible. In this case there could be more
than one eigenvector to the eigenvalue 1. This fortunately is no problem in this
context, because it does not matter if more than one possible partitioning is found.

18

How can the pagerank be used to partition the graph? Pages with a high pagerank
are highly networked within the graph and nodes with a high pagerank are likely
to be connected to multiple nodes. In this way a good 2-partitioning can be found
by taking the k nodes with the highest pagerank in one subset and the rest in
the other subset. k has to be determined as the value for which the subsets are
optimal in terms of the requirements. Because each node represents two nodes
of the bipartite graph, this way of partitioning can only find partitions with the
represented nodes vi and wi in the same subset. If other partitions are required,
the trivial directed graph instead of the here described can be used to avoid this.
This method of partitioning finds one very good subset and simply puts the rest in
the other subset. Unfortunately this does not help with the k-partitioning prob-
lem. When determining the pagerank of the subsets the result will be very similar
to the origin pagerank because the network-structure was not changed and former
highly connected nodes remain so. Therefore the continued partitioning of these
subsets will generate bad results.
In conclusion this is a very promising way to solve the 2-partitioning problem, but
it can not be used for the k-partitioning problem.

2.2.4 A genetic algorithm

Another intriguing idea to solve the problem is to use a genetic algorithm as the one
developed by Hasan Prikull and Erik Rolland and published 1994 in paper named
”New heuristic solution procedures for the uniform graph partitioning problem:
Extensions and evaluation”. [12]
A genetic algorithm is an algorithm that uses the concepts of mutation and sur-
vival of the fittest to solve a problem. First an initial generation P0 is defined.
This is a set of sub optimal solutions. In the context of partitioning a graph it
would contain several partitions. How many individuals the initial generation has
is very important for the quality of the solution the algorithm will find. The more
individuals the initial population contains the better results will be found, but the
more complex the algorithm is as well.
Then this initial population is evaluated. That means it must be defined which
individuals have the best chance to survive, or in the context of graph partitioning:
Which partitions are better than others. In the following this property is called
”fitness” of an individual. The evaluation function describes the number of edges
between the subsets of a partitioning. The higher this value, the worse the parti-
tioning. As discussed in the first chapter, we have additional requirements for the
subsets. For each partitioning that does not meet the requirements the evaluation
function is set very high no matter how many edges are between the subsets.
Now a new generation is created. Therefore individuals with a high fitness are
more likely to create offspring. If two individuals are chosen to produce the off-

19

spring an evaluation operator is used to create two individuals that have some
features of both parents. In this context that means that in the new partitionings
some nodes are in the same subset as they were in the father-partition and some
nodes are in the same subset as they were in the mother-partitioning.
Additional mutation is important for each genetic algorithm. So every new parti-
tioning is slightly and randomly altered. Now the evaluation function of this new
population P1 is determined.
In this way new generations are created as many times as predefined.

Prikull and Rolland advise in their paper to use a so called ”queen bee”-evaluation.
That means not both parents are chosen more or less random, but there is only
one ”mother” for each population. Before creating a new population the best par-
titioning is determined and this will be the new ”queen bee”. This is the mother
of the whole population. Additionally they advise to make a cross over only on
one point. Crossing over is the procedure described above for each child to show
some qualities of both parents. First one child is a copy of the father and one child
is a copy of the mother. Then random features are chosen to resemble this feature
of the other parent. In this context that means a single random node is put in the
subset in which the other parent had this node.
An interesting point to this algorithm is, that it can be easily transformed into an
algorithm to solve the k-partitioning problem. The only difference is there are k
states for each node instead of two.

2.3 Using the bipartite structure of the graph

The only algorithm that uses the bipartite structure of the graph is the pagerank
algorithm and it provides only the advantage to have a smaller directed graph.
Unfortunately there is no known way to benefit from the bipartite structure for
partitioning. No researched algorithm could be improved with this fact. Of course
a bipartite graph has always a trivial partition. If one subset of the bipartitition is
declared as separator, there will be as many subsets as the number of nodes in the
other subset. Perhaps an algorithm could be defined which begins with this trivial
partition and adds nodes as long as the graph is comprised of more than k nodes.
But this algorithm would only find separators that contain only row-nodes or only
column-nodes. This solution does not meet the requirement that a minimum of
row nodes and a minimum of column nodes should be included in the separator.
Every other algorithm find unavoidable subsets and separators that contain col-
umn nodes as well as row nodes. Of course this is exactly what was required, but
it also makes it nearly impossible to use the bipartite structure.
The only difference between a bipartite graph and a non-bipartite graph is the

20

bipartite graph has some nodes that are known to be nonadjacent to certain other
nodes. Depending on the used data structure this might result in greater memory
efficiency.
Also the graph is known to be not complete. A complete graph cannot be par-
titioned in any useful manner. Unfortunately a complete bipartite graph is still
possible, but cannot be partitioned apart from the trivial partitioning either.
Each above considered algorithm runs faster if less edges are in the graph. But
this only means that the algorithms will improve with less non zero entries the
matrix has. The matrix being interpreted as a bipartite graph has nothing to do
with it.
In conclusion it is unlikely that the problem is any different when the graph is
bipartite.

2.4 Ways to improve the algorithm

Each of these algorithms can be improved on general graphs by finding cliques
before implementing it.

Definition 2.10 (Clique)
A clique of a graph G is a subset of vertices, where every two different vertices are
adjacent to each other.
In this section with clique only cliques with at least 3 nodes are meant.

There is no partition with a vertex separator that has parts of a clique in one
subset and parts of the same clique in another subset. Otherwise the subsets
would not be separated because nodes from the first subset would be adjacent to
nodes from the second s. That means a clique is either completely in one subset,
it is completely in the separator or it is in the separator besides for 1 node.
So before implementing the cliques are defined as one supernode instead of several
nodes. The supernode is adjacent to all nodes nodes of the clique were adjacent
to but that were not in the clique themselves.
Unfortunately a bipartite graph has no cliques with at least 3 nodes. Also an
attempt to define a similar concept for bipartite graphs and use it did not bring
results. Of course a bipartite clique can be defined as follows.

Definition 2.11 (Bipartite clique)
A bipartite clique of a bipartite graph G = (V1, V2, E) is a subset of vertices, where
every two different vertices v1 ∈ V1 and v2 ∈ V2 are adjacent to each other. Let C1

be the set of all vertices in the clique with v1 ∈ V1 and C2 be the set of all vertices
with v2 ∈ V2.

With this definition there is no partition where in one subset are nodes of C1 and
in another partition are nodes of C2. Nevertheless there could be a partitioning

21

with either C1 or C2 completely contained in the separator and the other one split
up in many subsets.
So this improvement cannot be used for bipartite graphs.

3 Find separators cycle based

In this section a new algorithm to find vertex separators is developed. The algo-
rithm is mainly based on two thoughts.

1. Trees are easily separated.

2. Cycles are easily separated.

3.1 Separating a tree

In this section a method to separate a tree is developed. With tree in this section
always a ordered tree with a fixed root is meant. So every node besides one has a
defined father.
In a tree almost every node is a separator. Except the leaves each node separates
the tree into d subsets where d is the degree of the node. When a k-separator is
searched and there is no node with degree k or higher, the following formula can
be used.

Theorem 3.1 Let T be a tree. Let S = {s0, ..., sn} be a set of nodes. Let t be the
number of nodes in S whose fathers are in S, too. Let d(v) be the degree of the
node v. S is a k-separator of T if and only if

|S|
∑

i=0

d(si)− |S|+ 1− t = k

22

Example 3.1 (Separators of trees)

t1

t2 t3 t4

t5 t6 t7 t8

t1 separates the tree in d(t1) = 3 subsets.
{t2, t4} separates the tree into d(t2) + d(t4)− 2 + 1 = 3 + 3− 2 + 1 = 5 subsets.
{t2, t1} separates the tree into d(t2) + d(t1)− 2 + 1− 1 = 3 + 3− 2 + 1− 1 = 4 subsets.

Proof: A single node n0 in a tree separates exactly d(n0) subsets. When a node
ni is added to a non empty separator there are two possibilities:

1. The node is not adjacent to a node in the separator. In this case the separator
partitions the tree into d(ni)− 1 more subsets.

2. The father of the node is in the separator. In this case one already counted
subset is removed, because when the father was added to the separator the
subset of each child was counted. So the new node brings one new subset less
than if its father had not been in the partition and the separator partitions
the tree into d(ni)− 2 more partitions than before.

3. The node is a father of a node in the separator. The same as number 2 but
the other way around.

In conclusion this gives exactly the above formula.
With this formula it can be determined if a subset is a separator. However it

does not help to find a partition that meets the requirements that are defined in
chapter 1. While the separator is build node by node it can be ensured that the
separator contains a predefined number of row- or columnodes. But there is no
way to affect the size of the subsets. This problem can be solved in the following
way.
Before searching for a separator at least k subsets that meet the requirements are
found the following way:

1. Each leaf is declared as a subset.

23

2. As long as the subsets do not meet the requirements the father of the last
added node is added to the subset. In this way in each step subsets are
merged together.

Now a k-separator is searched for in the rest of the graph. But a requirement to
this separator is that it segments at least k of the found subsets.

3.2 Separating a cycle

A k-separator of a cycle is each set of nodes that contains k − 1 pairwise not
adjacent nodes.

3.3 Cycle based separating of a graph

When in a graph each cycle is eliminated, it is a tree. In this algorithm the graph
is gradually converted to a tree. One node is defined as father. This can be done
randomly but the result can be improved if a highly connected node is chosen.
Then each adjacent node is defined as child of this father. For each adjacent node
of this children do one of the following:

1. If the adjacent node is the father do nothing.

2. If the adjacent node is one node that is not already in the tree define this
node as a child

3. If the adjacent node is one node that is already in the tree but is not the
father: create a supernode with the cycle that contains the node and the
adjacent node. This cycle can be found if the shared forefather is found
by going up the tree one by one after going up with the lower node until
it has the same deep. When the supernode is created each child of a node
contained in the supernode that is not contained in the supernode itself is
a child of the supernode. The father of the found forefather is the father of
the supernode.

This will be done until there are no nodes left that are not in the tree.

Example 3.2 Cycle stacking
Graph G:

v1v2v3

w1w2w3w4

24

1. step: v1 is declared as father.

2. step: The only adjacent node of v1 is w1. w1 is declared as a child of v1.

3. step: The adjacent nodes of w1 are v1, v2 and v3. v1 is the father of w1, the
other two are declared as children of w1.

4. step:

a) The adjacent nodes of v2 besides its father are w2 and w3. They are
declared as children of v2.

b) The adjacent nodes of v3 besides its father are w4 and w2. w4 is declared
as child of v3. w2 is already in the tree, so a supernode will be created.
The shared forefather of w2 and v3 is w1. Therefore the new supernode
consists of w2, w1, v3, andv2.

The tree is:

v1

S

w3 w4

The separator S is:

w2

v2

w1

v3

Now this tree must be separated. For each supernode in the generated separa-
tor the cycle in the supernode must be separated gradually until we arrive at a
separator that contains no supernodes.

3.4 Implementation

The algorithm to stack cycles described above is implemented in C++. Therefore
the following data structure is developed.

25

Treenode

+ node: Node*
+ father: Treenode*
+ children: list <Treenode*>

+ deep: Integer

+ Treenode(Node* node)
+ Treenode(Node* node, Treenode* father)
+ createSupernode(Treenode* newTreenode)
+ removeChild(Treenode* t)
+ newChild(Treenode* t)
+ hasChild(Treenode* t): boolean
+ hasGrandchild(Treenode* t): boolean

Node

+ columnNodes: Integer
+ rowNodes: Integer
+ index: Integer
+ containedNodes: list <Node*>

+ name: String

+ Node(int c, int r, String n)
+ Node(int c, int r, int i, String n)
+ Node(const Node& other)
+ addNode(Node* n)
+ contains(Node* n): boolean

Additional there is a map with the nodes as keys and a list with all adjacent nodes
as value. With the method createSupernode(Treenode* t) a treenode determines
the shared forefather of itself and the commit treenode. Then a supernode is cre-
ated as described above. Note that in this implementation a supernode is a node
that contains at least one node.
A problem of this implemenetation is to contain every adjacency information four
times. Both the child has a link to its father and the father has a link to its chil-
dren. Plus the adjacency lists of two adjacent nodes both contain this information.
This structure allows fast running through the tree in both directions. Though in
the algorithm every time an adjacency relationship is changed it has to be changed
in all four places.

The algorithm to stack cycles was implemented exactly as described above.
Unfortunately this implementation revealed the that every researched matrix con-
tains too many very small cycles that are connected with each other, to be parti-
tioned in this way. Because of this the resulting structure is a tree that contains
a very big supernode and very few other nodes. Thereby the supernodes are in-
terleaved so that nearly every supernode contains just two or three nodes plus
another supernode.
If this structure would be separated as described above the whole supernode

would be declared as separator because in no level there are enough nodes to
declare a k-separator that does not contain a supernode. Because the supernode
contains more nodes than the rest of the graph together, this were a much to big
separator to be useful. There is no possible way to separate this structure properly.

26

4 Conclusions

The k-vertex separator problem for bipartite graphs is little explored. Ferris and
Horn developed an algorithm which solves this problem using 2-edge separators.
In this paper another algorithm was developed. The approach of this algorithm
was to unit nodes, then separate the graph and finally dissolve the units again. If
all cycles of a graph were united to supernodes the remaining graph is a tree and
because of this it easily separated. The implementation showed, that most graphs
contains to many interleaved cycles to be separated this way. However there could
be other methods to unit nodes so that the remaining graph is easier separated.
In any case the necessity exists to investigate this topic further.

27

References

[1] Andersen R., Chung F., Lang K. ”Local Graph Partitioning using PageRank
Vectors”

[2] Bui, T.N. and C. Jones (1992). Finding good approximate vertex and edge
partitions is NP-hard, Information Processing Letters 42 (1992): 153-15

[3] Coppersmith, Don; Winograd, Shmuel (1990). ”Matrix multiplication via
arithmetic progressions”. Journal of Symbolic Computation 9 (3): 251,
doi:10.1016/S0747-7171(08)80013-2.

[4] Dantzig G. B., Wolfe P.(1960). ”Decomposition Principle for Linear Pro-
grams”. Operations Research 8: 101–111.

[5] Richard M. Karp (1972). ”Reducibility Among Combinatorial Problems”. In
R. E. Miller and J. W. Thatcher (editors). Complexity of Computer Compu-
tations. New York: Plenum. pp. 85–103.

[6] Ferris M. C., Horn J. D. (1994). ”Partitioning mathematical programs for
parallel solutions”. Mathematical Programming 80 (1998): 35-61.

[7] Kernighan B. W., Lin S. (1969). ”An Efficient Heuristic Procedure for Parti-
tioning Graphs”. The Bell System Technical Journal (February 1970): 291-
307.

[8] Kleinberg J. M. (1997). ”Authoritative Sources in a Hyperlinked Environ-
ment”. 1997, Dept. of Computer Science, Cornell University, Ithaca.

[9] T. Kloks, D. Kratsch, H. Mfiller. ”Dominoes”.

[10] Kinnersley G. Nancy (1992). ”The vertex separation number of a graph equals
its path-width”. Information Processing Letters 42 (1992): 345-350.

[11] Papadimitriou C.H., Sideri M. (1996). ”The Bisection Width of Grid Graphs”.
Math. Systems Theory 29, (1996): 97-110

[12] Pirkul H., Rolland E. (1994), ”New heuristic solution procedures for the uni-
form graph partitioning problem: Extensions and evaluation”. Computers
Ops RPS. Vol. 21, No. 8: 895-907

[13] Sheng-Lung Peng, Yi-Chuan Yang. ”On the Treewidth and Pathwidth of Bi-
convex Bipartite Graphs”.

28

[14] Rosenberg A., Heath L. S. (2001). ”Graph separators, with applications”.
Kluwer Academic/Plenum Publishers. New York.

[15] Skodinis, K. (2002). ”Construction of linear tree-layouts which are optimal
with respect to vertex separation in linear time”. Journal of Algorithms 47
(2003) 40–59.

29

	The problem
	Motivation
	The graph separator problem
	Related problems
	Edge Separators
	More similar problems

	Common results

	Related work
	Use 2-partitioning algorithms to solve the k-separation problem
	Example 2-partitioning algorithms
	Spectral method using Laplacian matrices
	Kerningham Lin
	Separating using the pagerank
	A genetic algorithm

	Using the bipartite structure of the graph
	Ways to improve the algorithm

	Find separators cycle based
	Separating a tree
	Separating a cycle
	Cycle based separating of a graph
	Implementation

	Conclusions

