
Computers and Operations Research 84 (2017) 16–32

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A strongly polynomial Contraction-Expansion algorithm for network

flow problems

Jean Bertrand Gauthier a , ∗, Jacques Desrosiers a , Marco E. Lübbecke

b

a GERAD & HEC Montréal, 30 0 0, chemin de la Côte-Sainte-Catherine, Montréal (Québec) Canada, H3T 2A7, Canada
b RWTH Aachen University, Chair of Operations Research, Kackertstraße 7, D-52072 Aachen, Germany

a r t i c l e i n f o

Article history:

Received 23 March 2016

Revised 25 February 2017

Accepted 27 February 2017

Available online 1 March 2017

Keywords:

Network flow problem

Residual network

Contracted network

Minimum mean cost cycle

Complexity analysis

Strongly polynomial algorithm

a b s t r a c t

This paper addresses the solution of the capacitated minimum cost flow problem on a network contain-

ing n nodes and m arcs. Satisfying necessary and sufficient optimality conditions can be done on the

residual network although it can be quite time consuming as testified by the minimum mean cycle-

canceling algorithm (MMCC). We introduce a contracted network which exploits these conditions on

a much smaller network. Since the construction of this contracted network is very flexible, we study

its properties depending on the construction choice. A generic contraction algorithm is then produced

around the contracted network. Interestingly enough, it turns out it encapsulates both the MMCC and

primal network simplex algorithms as extreme cases. By guiding the solution using a particular expan-

sion scheme, we are able to recuperate theoretical results from MMCC. As such, we obtain a strongly

polynomial Contraction-Expansion algorithm which runs in O (m

3 n 2) time. There is thus no improvement

of the runtime complexity, yet the expansion scheme sticks to very practical observations of MMCC’s be-

havior, namely that of phases and jumps on the optimality parameter. The solution time is ultimately

significantly reduced, even more so as the size of the instance increases.

© 2017 Elsevier Ltd. All rights reserved.

G

T

s

i

g

t

a

o

p

s

c

w

t

o

i

e

c

1. Introduction

The primal network simplex algorithm performs surprisingly

well considering that only a small fraction of iterations induce

non-degenerate pivots (see Ahuja et al., 1993 , Fig. 18.7). In fact, the

network simplex and the cost scaling methods are typically pre-

ferred over competing alternatives for the solution of capacitated

minimum cost flow problems (CMCF). Kovács (2015) suggests the

use of the former for smaller networks and the latter for larger

instances.

The minimum mean cycle-canceling algorithm (MMCC) is a

prominent such alternative. Introduced by Goldberg and Tarjan

(1989) , this algorithm copes with degeneracy at the expense

of a more involved pricing problem able to identify improving

directions only, that is, with strictly positive step sizes. Despite

its strongly polynomial time complexity, the theoretical behavior

of MMCC is in practice no match for other methods. Radzik

and Goldberg (1994) even improve the complexity some five

years later and introduce the concept of phases. Two decades

further down the road brings another improvement due to
∗ Corresponding author.

E-mail addresses: jean-bertrand.gauthier@hec.ca (J.B. Gauthier), jacques.

desrosiers@hec.ca (J. Desrosiers), marco.luebbecke@rwth-aachen.de (M.E. Lübbecke).

b

t

e

i

http://dx.doi.org/10.1016/j.cor.2017.02.019

0305-0548/© 2017 Elsevier Ltd. All rights reserved.
authier et al. (2015) which combines phases with Cancel-and-

ighten (CT) presented alongside MMCC in the seminal paper as a

elf-standing algorithm.

This paper presents a Contraction-Expansion algorithm (CE)

nspired by MMCC and its complexity proof. Since the visual aid

ranted by the network flow formulation gives a lot of perspective

o the theoretical analysis, we opt to present algorithmic choices in

 constructive fashion. We adopt the definitions and nomenclature

f Ahuja et al. (1993) .

The paper is organized as follows. Section 2 defines the network

roblem and exposes the building block of this paper, namely the

o-called contracted network. The contracted network is a flexible

onstruction which gives rise to a generic contraction algorithm

hose properties are discussed in Section 3 . A behavioral study of

he so-called optimality parameter follows in Section 4 . From these

bservations, an expansion scheme guiding the solution process

s drafted in Section 5 , where the ensuing complexity analysis

xpands upon theoretical results from the minimum mean cycle-

anceling algorithm. Our final thoughts can be found in Section 6 .

We should also mention that the goal of this research is not to

eat leading algorithms on network problems. Our intent is a bet-

er understanding of algorithms with strictly positive step size at

very iteration. We believe that a more involved pricing problem

s worth investigating in methods where rather complex mathe-

http://dx.doi.org/10.1016/j.cor.2017.02.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.02.019&domain=pdf
mailto:jean-bertrand.gauthier@hec.ca
mailto:jacques.desrosiers@hec.ca
mailto:marco.luebbecke@rwth-aachen.de
http://dx.doi.org/10.1016/j.cor.2017.02.019

J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32 17

m

e

2

N

p

a

r

a

G

f

z

s

w

n

m

t

r

o

c

p

s

(

a

n

t

i

v

t

a

t

d

o

t

r

r

t

f

t

i

P

a

u

x

i

c

m

2

fl

(

Fig. 1. A change of variables.

T

p

A

r

t

t

I

A

j

o

r

z

s

w

O

s

s

F

E

v

�

e

a

o

A

L

e

t

≥

2

r

s

B

c

n

r

(

o

s
atical programs are already solved to guide the solution process,

voking in particular, the oracle of a column generation algorithm.

. Network problem

Assume a capacitated directed network G := (N , A), where

 denotes the set of n nodes and A the set of m arcs. The arc

arametrization is captured by the cost vector c := [c ij] (i , j) ∈ A
nd non-negative bounds [� ij , u ij], (i , j) ∈ A . A supply or demand,

espectively, defined by a positive or negative value b i , i ∈ N , is

ssociated with each node such that
∑

i ∈ N b i = 0 . Supported by

 and the vector of bounded flow variables x := [x ij] (i , j) ∈ A , a

ormulation of CMCF is given by:

∗ := min

∑

(i, j) ∈ A
c i j x i j

.t.
∑

j :(i, j) ∈ A
x i j −

∑

j:(j,i) ∈ A
x ji = b i , [πi] , ∀ i ∈ N,

� i j ≤ x i j ≤ u i j , ∀ (i, j) ∈ A, (1)

here π := [πi] i ∈ N is the vector of dual variables, also known as

ode potentials. We further assume that G does not contain any

ultiarc, i.e., two or more arcs sharing both the same head and

ail nodes.

When the right-hand side b := [b i] i ∈ N is the vector of all ze-

os, we obtain a circulation problem. The latter is also the support

f the minimum mean cycle-canceling algorithm. Indeed, its core

omponent, namely the so-called residual network is a circulation

roblem for which upper bounds are eventually neglected while

earching for an improved solution.

We recall the path and cycle definitions used by Ahuja et al.

1993) . A path from node i 1 to node i r (abbreviated i 1 � i r) in

 directed graph G = (N, A) is a sequence without repetition of

odes and arcs i 1 − a 1 − i 2 − a 2 − . . . − i r−1 − a r−1 − i r , satisfying

he property that either a k = (i k , i k +1) ∈ A (forward arc) or a k =
(i k +1 , i k) ∈ A (backward arc) for all k, 1 ≤ k ≤ r − 1 . The sequence

s typically given using nodes only. A directed path is an oriented

ersion of a path consisting of forward arcs only. A cycle is a path

ogether with either the forward arc (i r , i 1) ∈ A or the backward

rc (i 1 , i r) ∈ A . A directed cycle is a directed path together with

he arc (i r , i 1) ∈ A (which indeed imposes the orientation of the

irected cycle). The cost of a path or a cycle is the sum of the cost

n the forward arcs minus that on the backward arcs. Note that

here is no backward arc in a directed path nor a directed cycle.

With respect to any dual variable vector π := (πi) i ∈ N , the

educed cost of x ij , (i , j) ∈ A , is defined as c̄ i j := c i j − πi + π j . The

educed cost of a path or a cycle is then computed analogously

o its cost. Therefore, although Ahuja et al. (1993) state the

ollowing fundamental property for a directed cycle, the same

elescopic summation argument proves to be enough regardless of

ts directed nature.

roposition 1. The cost and reduced cost of a cycle, directed or not,

re equal.

In the following we define the traditional residual network

sing which we can determine whether the current solution

0 := [x 0
i j

] (i, j) ∈ A can be improved or not. An optimality certificate

s then provided which indeed amounts to the statement of

ycle-canceling algorithms. We finally move on to a contraction

anipulation which induces a so-called contracted network.

.1. Residual network

The residual network allows a marginal construction of the

ow that may traverse the network aside the current flow x 0

increasing flow on certain arcs, possibly decreasing it on others).
he combination of x 0 along with an optimal residual flow com-

uted on the residual network is optimal in the original network.

s depicted in Fig. 1 , each arc (i , j) ∈ A can be replaced by two

esidual arcs representing possible flow increments or decrements

hat depend on the remaining capacities:

• a forward arc (i , j) with cost d ij := c ij and residual flow

0 ≤ y i j ≤ r 0
i j

:= u i j − x 0
i j

;

• a backward arc (j , i) with cost d ji := −c i j and residual flow

0 ≤ y ji ≤ r 0
ji

:= x 0
i j

− � i j .

Denoted G (x 0) := (N , A (x 0)), the residual network with respect

o x 0 reflects the change of variables y i j − y ji := x i j − x 0
i j
, (i , j) ∈ A .

t is based on the original nodes in N and the set of residual arcs

 (x 0). Indeed, among the possible arc support A

′ := {(i , j) ∪ (j , i) | (i ,
) ∈ A } only those arcs with strictly positive residual capacities are

f interest, i.e., A (x 0) := { (i, j) ∈ A

′ | r 0
i j

> 0 } .
An equivalent formulation of (1) using the new y -variables

eads as

∗ = z 0 + min

∑

(i, j) ∈ A (x 0)

d i j y i j

.t.
∑

j :(i, j) ∈ A (x 0)

y i j −
∑

j:(j,i) ∈ A (x 0)

y ji = 0 , [πi] , ∀ i ∈ N,

0 ≤ y i j ≤ r 0 i j , ∀ (i, j) ∈ A (x

0) , (2)

here z 0 := c �x 0 is the objective function value of the solution x 0 .

bserve that using both forward and backward arcs between the

ame pair of nodes can be simplified to sending the net flow in a

ingle direction only. This is why we assume y i j y ji = 0 , (i , j) ∈ A .

Fig. 2 exhibits the construction of the residual network G (x 0).

ig. 2 a contains arc flow variables x 0
i j
, (i , j) ∈ A , at different values.

ach of these can be attributed a status depending on its actual

alue: lower when x 0
i j

= � i j , upper when x 0
i j

= u i j , or free when

 i j < x 0
i j

< u i j . When a variable is free, the flow can be varied in

ither direction, implying the presence of two anti-parallel residual

rcs. However, when a variable is lower (resp. upper), this induces

nly one arc oriented in the forward (resp. backward) direction.

n arc at its lower or upper bound is also said to be restricted .

et the disjoint sets L (x 0), U (x 0), and F (x 0) be a partition that

choes the status of the original arcs at x 0 . In order to simplify

he presentation, we denote this partition by { L k , U

k , F k }, where k

0 refers to the solution x k in iteration k .

.2. Optimality conditions

It is known that a flow solution x ∗ is optimal if and only if the

esidual network G (x ∗) contains no negative cost directed cycle,

hortened to negative cycle , (see Ahuja et al., 1993 , Theorem 9.1).

y iteratively sending as much flow as possible along negative

ycles, i.e., canceling negative cycles, and updating the residual

etwork accordingly, one obtains a generic cycle-canceling algo-

ithm which terminates when there remains no negative cycle

 Klein, 1967).

We recall here three equivalent necessary and sufficient

ptimality conditions which can be interpreted in different per-

pectives with respect to network flows (see Ahuja et al., 1993 ,

18 J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32

Fig. 2. Residual network construction where undirected edges represent two anti-parallel arcs.

f

n

2

(

s

s

n

w

(

t

M

i

R

d

f

t

s

c

t

l

e

i

(

i

a

G

i

r

a

I

w

a

L

a
Theorems 9.1, 9.3, and 9.4). The first two refer to the residual

network whereas the third is based on the original network. In

regards to the dual condition perspective, with respect to any dual

variable vector π, the reduced cost of x ij , (i , j) ∈ A , is defined as

c̄ i j := c i j − πi + π j . Let the reduced cost d̄ i j := d i j − πi + π j of y ij ,

(i , j) ∈ A (x 0), be computed in the same way.

Primal: G (x 0) contains no negative cycle.

Dual: ∃ π such that d̄ i j ≥ 0 , ∀ (i, j) ∈ A (x 0) .

Complementary slackness: ∃ π such that, for every arc (i , j) ∈ A ,

x 0 i j = � i j if c̄ i j > 0 ; x 0 i j = u i j if c̄ i j < 0 ; c̄ i j = 0 if � i j < x 0 i j < u i j .

(3)

Although the notion of cycle cancellation can be seen as an

intuitive step size method, its foremost intention is the elimination

of said cycle from the current residual network. Indeed, passing a

strictly positive flow on any directed cycle W in G (x 0) obviously

permits a transition between solutions, yet maintaining feasibility

is ensured by limiting the flow to at most the smallest residual

capacity of the arcs forming the cycle, say ρ := min (i, j) ∈ W

r 0
i j

. A di-

rected cycle is canceled when the step size is equal to ρ such that

at least one of the residual capacities r 0
i j
, (i, j) ∈ W, is saturated.

Note that any negative cycle qualifies for an improvement with

respect to the objective function value since ρ > 0 by definition.

As such, various oracles capable of coming up with negative cycles

are conceivable, not all of these leading to strongly polynomial

algorithms (see Ahuja et al., 1993 , Section 9.6).

Since negative cycles are canceled sequentially, the oracle

essentially defines a cycle-canceling algorithm. The minimum

mean cycle-canceling is one such algorithm famous for its strongly

polynomial runtime complexity, see Gauthier et al. (2015) for a

recent survey. MMCC uses an oracle which dismisses residual

capacities from the residual network and only identifies negative

cycles of minimum mean cost. Technical aspects of this algorithm

are presented in Section 4.2 where we build upon these results

to show the runtime complexity of our Contraction-Expansion

algorithm. The contracted network permits the exploration of

alternative oracle constructions hoping to identify negative cycles
aster. Whether these cycles are directed or not on the residual

etwork remains to be seen.

.3. Contracted network

A cycle free solution x 0 does not contain any cycle of free arcs

 Ahuja et al., 1993). In primal simplex terminology, such and only

uch solutions are basic. If one assumes a basic solution x 0 , the

et of free arcs F 0 then defines a forest, that is, a collection of

ode-disjoint trees.

We arbitrarily identify each tree with one of its nodes which

e call its root . For every node i ∈ N , let R (i) be its associated root

or tree identifier) such that any two nodes i
 = j in N belonging

o the same tree must have the same root node R (i) = R (j) .

oreover, if the node i is a root, then R (i) = i . For the example

n Fig. 3 a, root nodes 1, 2, and 3 have been chosen such that

 (1) = R (4) = R (5) = R (6) = 1 . Also, as a visual aid, we intro-

uce the notion of a tree-layer to group the trees consisting of

ree arcs. Let G (F 0 , x 0) denote the residual network on x 0 where

he tree-layer defined with respect to the set of free arcs F 0 is

uperposed. Note that G (F 0 , x 0) ≡ G (x 0). In fact, the arcs within the

louds in Fig. 3 a are bidirectional such that one must imagine the

ree-layer with respect to the original arcs in A . Based on the tree-

ayer, we perform a contraction of every tree to its root node which

ffectively hides all free arcs and lets the remaining restricted arcs

n L 0 ∪ U

0 be visible. The tail and head for each of these visible arcs

 i , j) is respectively redefined to R (i) and R (j) . This contraction

s likely to produce multiarcs. For instance, the arcs (2, 6), (7, 4),

nd (8, 5) have the same head and tail in the contracted network.

ranted the actual cost computation has yet to be addressed, triv-

al cost dominance rules can be applied on such multiarcs. The end

esult appears in Fig. 3 b where the presence of the two dominated

rcs between root nodes 1 and 2 concerns only efficiency matters.

Recall that a tree T is a connected graph that contains no cycle.

n linear algebra terms, the coefficient columns in (1) associated

ith the arcs of T are linearly independent. By extension, we call

 subset of arcs linearly independent if no cycle can be formed.

et us formalize the construction of the contracted network using

 general tree-layer definition. While a great deal of attention is

J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32 19

Fig. 3. Contracted network based on the set of free arcs, arcs within a cloud are contracted and become hidden while the others remain visible .

g

b

d

i

t

t

r

H

V

D

r

N

a

n

o

H

w

c

l

f

s

b

u

d

v

z

o

n

F

e

n

w

V

t

S

i

a

e

s

s

t

a

p

r

t

d

i

e

c

d

f

P

f

3

S

p

b

d
iven to the set of free arcs F 0 , the truth is that the tree-layer can

e defined with respect to an arbitrary although linearly indepen-

ent set of arcs, say P 0 ⊂ A , where the superscript is omitted unless

terate comparisons are required. The set P is then used to parti-

ion the arcs of A (x 0) in two categories. As such, one can think of

he sets H P (x
0) and V P (x

0) as those arcs that are hidden and visible ,

espectively, in the contracted network. These sets are formed by

 P (x

0) :=

⋃

(i, j) ∈ P

{

(i, j) , (j, i) , if (i, j) ∈ F 0

(i, j) , if (i, j) ∈ L 0

(j, i) , if (i, j) ∈ U

0

(4)

 P (x

0) := A (x

0) \ H P (x

0) . (5)

efinition 1. With respect to the set P , the tree-layer identifies

oot nodes in the set

 P (x

0) := { i ∈ N | R (i) = i } , (6)

s well as the arc partition H P (x
0) and V P (x

0) of the residual

etwork G (x 0).

The contracted network H (P , x 0) is then obtained from the sets

f root nodes and visible arcs:

(P, x

0) := (N P (x

0) , V P (x

0)) . (7)

here every visible arc (i , j) in the set V P (x
0) is remapped to

(R (i) , R (j)) thus maintaining a bijection between arcs of the

ontracted network and the residual arcs.

We present two alternative contraction examples which col-

ectively cover all possibilities. The first example uses a subset of

ree arcs P ⊂ F 0 while the second combines free arcs with some re-

tricted arcs such that P ⊃F 0 . In the most general case, one can mix

oth possibilities by using some elements of F 0 and some of A �F 0 .

Fig. 4 covers the first example where the subset of free arcs

sed is P = F 0 \ { (5 , 6) } . In Fig. 4 a, the free arc (5, 6) has been

uplicated in both directions and consequently appears in the

isible set V P (x
0) with both arcs now being at a lower bound of

ero in the residual network. We refer to this kind of manipulation
n free arcs as coerced degeneracy . This yields a larger contracted

etwork since there is now a forest with four trees to handle.

ig. 4 b portrays the consequent contracted network.

As additional free arcs are duplicated in both directions, one

ventually reaches a point where the set P ⊆F 0 is empty, such that

o free arcs are hidden at all, hence yielding a contracted network

hose arc set is the same as that of the residual network, i.e.,

 ∅ (x 0) = A (x 0) . The reader is now invited to consider the other ex-

reme case where the tree-layer consists of a single spanning tree.

uch is the content of Fig. 5 where the set P = F 0 ∪ { (7 , 4) , (3 , 9) }
s still linearly independent and consists of the union of the free

rcs along with two additional restricted arcs. Without loss of gen-

rality, assume these two arcs are basic degenerate in the primal

implex sense such that P = B 0 ≡ B (x 0) corresponds to a set of ba-

ic arcs at x 0 . The tree-layer G (B 0 , x 0) seen in Fig. 5 a then splits

he arcs in two subsets: The nine basic arcs of the spanning tree

nd the seven nonbasic arcs. The contracted network H (B 0 , x 0) ap-

ears in Fig. 5 b, where the spanning tree is contracted to the sole

oot node hiding all basic arcs in the process and leaving visible

he nonbasic ones. Each nonbasic arc becomes a loop, indeed, a

irected cycle on H (B 0 , x 0).

The arc cost computations of the contracted network are com-

ng in the midst of the following section where features and prop-

rties of the contracted network are derived according to the

hoice of the set P , most notably the nature of the optimality con-

itions the oracle derived from the contracted network is able to

ulfill. Since the discussion revolves around the content of the set

 , it is worthwhile to underscore that only two cases are possible

or an arc contained in the latter: It is either free or it is not.

. Contracted network properties

Although the selection of the set P is fairly arbitrary,

ection 3.1 addresses how easy it is to meet the linear inde-

endence requirement regardless of the current solution x 0 being

asic or not. Section 3.2 then states that any contracted cycle , a

irected cycle identified on the contracted network, is uniquely

20 J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32

Fig. 4. Contracted network with coerced degeneracy on the free arc (5, 6).

Fig. 5. Contracted network with a set of basic arcs (primal network simplex algorithm).

a

t

d

s

d

y

a

w

d

P

f

c

P

d

p

I

s
extended on the residual network G (x 0). The analysis of the

contracted network’s arc cost is performed in Section 3.3 which

is followed with the so-called pricing problem and the algorithm

in Section 3.4 . We then derive in Section 3.5 the optimality cer-

tificate whose nature depends on the selected set P . As the set P

influences the content of the contracted network, different known

algorithms are referenced in Section 3.6 by examining the possible

outcomes of the pricing problem. Finally, Section 3.7 shows that

once the set P is selected, the remaining arbitrary decisions that

must be made have no impact on the algorithm.

3.1. Nonbasic solution

The set F 0 trivially fulfills the linear independence assumption

when the current solution x 0 is basic. We show that the basic sta-

tus is not restrictive for the selection of the set P . Fig. 6 a presents a

nonbasic solution where a cycle of free arcs is contained in a given

feasible solution. Figs. 6 b and 6 c handle the issue using two al-

ternative mechanisms. With the first mechanism, the cycle of free

arcs is canceled, in either direction, yielding at least one restricted
rc within the cycle. Since the cancellation ultimately modifies

he current solution, one may altogether prefer the improving

irection, say saturating the arc (5, 6) to its upper bound. With the

econd mechanism, the arc (4, 1) is coerced degenerate in G . This

uplicating manipulation does not change the current solution

et provides a fast way to eliminate the cycles of free arcs thus

llowing one to define the set P using only independent arcs of F 0 .

Letting f := | F 0 | ≤ m , Proposition 2 asserts that, regardless of

hether x 0 is basic or not, it is easy to maintain a tree-layer in-

uced by a linear independent set P .

roposition 2. A linear independent set P ⊂ A (x 0) can be derived

rom F 0 either by removing any cycle of free arcs using at most f cycle

ancellations or by applying coerced degeneracy to at most f arcs.

roof. It is trivial to verify that rendering at most f arcs coerced

egenerate means that there remains a suitable linearly inde-

endent subset of free variables capable of forming a tree-layer.

n fact, one may think of these coerced degenerate variables as

uper-basic such that canceling a cycle of free arcs amounts to

J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32 21

Fig. 6. Working with a nonbasic feasible solution on network G .

Fig. 7. Rooted path R (i) � R (j) associated with visible arc (i , j).

t

s

3

a

R

F

n

i

r

(

w

f

r

D

i

t

∈

t

p

P

H

G

P

p

a

r

t

I

d

H

W

b

t

l

R

e

G

T

r

t

N

i

c

u

a

u

c

t

f

e

W

w

{

3

e

t

a

n

d

b

t

p

s

e

o

t

t

t

a

P

o

r

o

he recovery of an optimal [or not] basis which can be done in a

traightforward manner according to Marsten et al. (1989) . �

.2. Uniqueness of the extended cycle

Observe that in the tree-layered residual network, any visible

rc (i , j) ∈ V P (x) connects two root nodes using first a path from

 (i) to i followed by arc (i , j) and second a path from j to R (j) .

ig. 7 portrays such an alternated path-arc-path sequence, from

ow on called a rooted path . When performing the contraction, it

s convenient to let P(i) , i ∈ N , denote the path from node i to

oot node R (i) . The rooted path associated with the visible arc

 i , j) ∈ V P (x) can therefore be decomposed as {−P(i) , (i, j) , P(j) } ,
here −P(i) is the reversed path P(i) and the orientation of a

ree arc is the one given by (i , j).

Several remarks about the rooted path are noteworthy. The two

oot nodes can possibly be the same, see the arc compatibility

efinition 2 . The two distinct paths are formed using only arcs

n H P (x
0), that is, hidden arcs in tree structures. Either or both of

hese paths could be of length zero such that the defining arc (i , j)

 V P (x
0) could support the rooted path by itself. Finally, by defini-

ion of a tree, any visible arc (i , j) ∈ V P (x
0) induces a unique rooted

ath.

roposition 3. Any contracted cycle W H obtained on the network

 (P , x 0) yields a unique extended cycle W H: G on the residual network

 (x 0) .

roof. Since only arcs that are part of the bijection are used to

roduce contracted cycles, the uniqueness of rooted paths guar-

ntees that the extended cycle uniquely exists in the tree-layered

esidual network. Once again, the orientation of the free arcs in

he extended cycle is given by that of the contracted cycle. �

mplementation. The remainder of this section is dedicated to

escribing a contracted cycle obtained on the contracted network

 (P , x 0) in more details. Let

 H := { (R (i 1) , R (j 1)) , (R (i 2) , R (j 2)) , . . . , (R (i | W H |) , R (j | W H |)) }
e one such directed cycle on the contracted network. Observe

hat it produces a sequence of entry and exit nodes in the tree-

ayer which ultimately cycle through the same root nodes, i.e.,
 s := R (j s) = R (i s +1) , s ∈ { 1 , . . . , | W H |} , where i | W H | +1 abusively

quals to i 1 . The extended cycle, seen on the residual network

 (x 0), can then be expressed as a concatenation of rooted paths.

his may not immediately lead to an elementary cycle.

One may take a look at Fig. 8 should the following explanation

equire visual support. Think of the path contained in a given

ree, say between the arcs (i s , j s) and (i s +1 , j s +1) , s ∈ { 1 , . . . , | W H |} .
otice that both paths P (j s) and −P (i s +1) have at least one node

n common, namely the root node R s . A cycle is formed during the

oncatenation if and only if there exists some other common node

 s
 = R s . Consider for instance that P(j s) follows the path j s � u s
nd then u s � R s while −P(i s +1) travels on R s � u s followed by

 s � i s +1 . Since all nodes connecting u s to R s and vice versa are

ommon to both paths, an elementary path is found by detecting

he node u s ∈ P(j s) closest to j s thus eliminating any back and

orth play across opposing arcs. At last, the extended cycle W H: G

xtracted from the contracted cycle W H is given by

 H: G :=

| W H | ⋃

s =1

{ (i s , j s) , P(j s) \ P(u s) , −P(i s +1) \ −P(u s) } , (8)

here some of the composing paths P(j s) ∪ −P(i s +1) , ∀ s ∈
 1 , . . . , | W H |} , may be truncated to obtain an elementary cycle.

.3. Arc cost transfer policy

So far, it has been established that any contracted cycle W H

xists uniquely as W H : G on the residual network. In order to ex-

end optimality conditions to the contracted network, we require

 somewhat opposite feature: If the residual network contains a

egative cycle then so must the contracted network.

Since we assume that P contains only free arcs, optimality con-

itions imply that the reduced cost on all these arcs must be zero

y the complementary slackness conditions (3) . This is in line with

he way dual variables are determined in the primal network sim-

lex algorithm, that is, Ahuja et al. (1993 , Chapter 11.4) arbitrarily

et to zero the dual variable of the root node allowing a unique

stablishment for the remaining dual variables. It is a consequence

f this procedure that π i , i ∈ N , gives the cost of the path from i to

he root node (with the cost from the root to itself of zero). This in

urn produces a reduced cost of zero for every arc in the spanning

ree. We reproduce the same scheme using the more general

rbitrary constant initialization of the root node in Procedure 1 .

rocedure 1 (Compute dual variable values) . The dual variable

f a root node π i , i ∈ N P (x
0), is fixed to an arbitrary value. The

emaining dual variable values π i , i ∈ N �N P (x
0), are then the cost

f the path P(i) plus πR (i) .

22 J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32

Fig. 8. Elementary tree path detection between j s and i s +1 .

V

a

t

I

e

fi

F

μ

c

c

μ

a

W

ρ

w

u

fl

P

a

t

t

p

u

t

a

t

3

u

a

t

c

a

u

a

e

F

o
By construction, the reduced cost of every arc in the forest

induced by P is zero, i.e., d̄ i j = 0 , (i , j) ∈ H P (x
0), indeed for all

those arcs that are hidden in the contracted network.

Proposition 4. Given π satisfying Procedure 1 , the reduced cost

of the contracted cycle W H is equal to the cost of its extended

counterpart W H : G .

Proof. Hiding the zero-cost arcs of W H : G makes the reduced

cost of the contracted cycle W H equal to the reduced cost of its

extended version. By Proposition 1 , as the reduced cost and the

cost of a cycle (directed or not) are the same, theresult follows. �

Remark. Since the cost and reduced cost of a cycle are equal, the

way dual variables are established in order to satisfy optimality

conditions effectively transf ers cost information of hidden arcs in

H P (x
0) to those that remain visible in the pricing problem V P (x

0).

Indeed, as the reduced cost of the former set is zero, the reduced

cost of the latter set must essentially capture the original cost

information. Furthermore, in case of multiarcs in the contracted

network, it is possible to keep only a single arc with the smallest

reduced cost. Such an arc is non-dominated with respect to its

reduced cost.

3.4. Contraction algorithm

We are now ready to present a contraction algorithm. We aim

to detect a negative cycle using the contracted network H(P, x 0) =
(N P (x 0) , V P (x 0)) . Like in the pricing oracle of the minimum mean

cycle-canceling algorithm, residual capacities are omitted and we

bound the flow values by a normalizing constraint (Dantzig and

Thapa, 2003 , Section 10.2). Proposition 5 states the kind of cycles

that are identified using the following pricing problem:

μH := min

∑

(i, j) ∈ V P (x 0)

d̄ i j y i j

s.t.
∑

(i, j) ∈ V P (x 0) |R (i)= �
y i j −

∑

(i, j) ∈ V P (x 0) |R (j)= �
y i j = 0 , [π�] , ∀ � ∈ N P (x 0) ,

∑

(i, j) ∈ V P (x 0)

y i j = 1 , [μ] ,

y i j ≥ 0 , ∀ (i, j) ∈ V P (x 0) , (9)

where dual variables appear on the right between brackets. Flow

conservation constraints are defined for each root node where the

summation indices simply specify all arcs from V P (x
0) that are

related to the specified root nodes.

Proposition 5. An extreme point solution to the pricing problem

(9) corresponds to a minimum mean cost directed cycle on H (P , x 0),

averaged over the number of arcs it contains.

Proof. Define the strictly positive arc support set W := { (i, j) ∈
 P (x 0) | y ∗

i j
> 0 } of an optimal solution. By flow conservation, the
rcs in W form either a cycle or a collection of cycles. Solutions of

he latter category cannot be expressed as extreme points of (9) .

n the former case, the normalizing constraint forces the flow on

ach arc of the single cycle to be equal to 1/| W |. Finally, cost coef-

cients of the pricing problem (9) are d̄ T

 = [d i j − πi + π j] (i, j) ∈ V P (x 0) .

actoring out 1/| W | and using Proposition 1 , we arrive at

H =

1
| W |

∑

(i, j) ∈ W

d̄ i j =

1
| W |

∑

(i, j) ∈ W

d i j . �

By Proposition 4 , if the residual network contains a negative

ycle, we identify one by solving the pricing problem (9) . By

onstruction, the current solution x k , k ≥ 0, is optimal when
k
H

≥ 0 , that is, when the contracted network does not contain

ny negative cycle. Otherwise, given the identified contracted cycle

k
H
, one computes the non-negative step size

k := min

(i, j) ∈ W

k
H: G

r k i j ≥ 0 , (10)

hich is zero only if an arc of the extended cycle W

k
H: G

has a resid-

al capacity of zero. We then obtain the solution x k +1 where the

ow update, if any, is only performed on the arcs of W

k
H: G

, that is,

x k +1
i j

:=

⎧ ⎨

⎩

x k
i j

+ ρk , ∀ (i, j) ∈ A | (i, j) ∈ W

k
H: G

x k
i j

− ρk , ∀ (i, j) ∈ A | (j, i) ∈ W

k
H: G

x k
i j
, otherwise

z k +1 := z k + ρk | W

k
H | μk

H .

(11)

Observe that when ρk = 0 , the set P k +1 must be different from

k for otherwise the algorithm would not terminate. Degeneracy

nd cycling phenomena from the primal simplex algorithm come

o mind. Indeed, unless rules for zero step size cycles are included,

he same minimum mean cycle is identified in the next iteration. A

seudo-code is elaborated in Fig. 9 where this process is repeated

ntil optimality is reached.

The nature of the optimality certificate in the generic contrac-

ion algorithm goes hand in hand with the non-degeneracy guar-

ntee provided (or not) by the selected set P and the induced con-

racted network. Let us analyze this property.

.5. Nature of the optimality conditions

Given that any contracted cycle is uniquely extended, the

nderlying expectation is that it is possible to travel on the hidden

rcs, i.e., the extended cycle is directed on G (x 0). Depending on

he actual status of the arcs in set P , this expectation could be

hallenged. Verifying that any set P which consists of only free arcs

lways provides a contracted cycle W H on which at least one flow

nit can always be sent on the extended cycle W H : G is trivial: All

rcs unaccounted for can be used in either direction. As supporting

vidence, the first three extended cycle extractions illustrated in

ig. 10 are directed in G (x 0). They come from contracted cycles

btained on a contracted network using only free arcs (Fig. 3 b or

J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32 23

Fig. 9. Generic contraction algorithm for network flow problems.

Fig. 10. Extended cycle extractions.

4

y

l

c

u

p

F

b

T

c

c

(

o

{

U

t

p

d

g

h

p

c

n

w

i

c

P

g
 b). The fourth extended cycle extraction comes from Fig. 5 b and

ields an undirected cycle inducing a zero step size.

Fig. 10 a is obtained from a contracted cycle defined by the arc

oop on root node 1 in the contracted network of Fig. 3 b. Fig. 10 b

omes from the same contracted network but the contracted cycle

ses more arcs: {(1, 3), (3, 9), (8, 5)}. Fig. 10 c identifies part of the

revious cycle although it is based on the contracted network of

ig. 4 b where more visible arcs are available. Finally, Fig. 10 d is

ased on Fig. 5 b used with the primal network simplex algorithm.

he arc (7, 4) is basic degenerate and one of the nonbasic arcs

orresponds to the visible arc (2, 6), a loop on root node 1. The

orresponding extended cycle is defined by { (2, 6) , (6, 5), (5, 4),

4, 7), (7, 2)}, or in accordance with the threefold decomposition

f W H : G given in (8) as

 (2 , 6) , {{ (6 , 1) } \ { (6 , 1) }} ,
{{ (1 , 6) , (6 , 5) , (5 , 4) , (4 , 7) , (7 , 2) } \ { (1 , 6) }}} .
nfortunately, the arc (4, 7) is not a residual arc and reduces

he possible flow on the identified extended cycle to zero. In the
rimal simplex algorithm, pivoting on arc variable x 26 induces a

egenerate pivot.

When P ⊆F 0 and μ0
H

< 0 , the contracted network H (P , x 0) is

uaranteed to identify a directed extended cycle, that is, when the

idden arcs are free, any contracted negative cycle has a strictly

ositive step size on G (x 0). This refers to the primal optimality

onditions of Section 2.2 . On the other hand, when P �F 0 , there is

o such guarantee since the extended cycle could contain an arc

ith a residual capacity of zero such that the associated step size

s non-negative. In that case, μ0
H

≥ 0 is only a sufficient optimality

ondition. This proves the following proposition.

roposition 6. Given the set P ⊂ A of linearly independent arcs, if

• P ⊆F 0 , the oracle (9) provides necessary and sufficient optimality

conditions for (1) , i.e., x 0 is optimal if and only if μ0
H

≥ 0 .

• P �F 0 , the oracle (9) provides sufficient optimality conditions for

(1) , i.e., x 0 is optimal if μ0
H

≥ 0 .

Regardless of the choice of the set P , arcs (i , j) ∈ A can be cate-

orized in two classes: Those arcs that link nodes of the same tree,

24 J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32

|

a

s

i

a

t

t

t

o

L

F

a

p

m

v

w

t

a

s

p

l

a

o

a

s

u

t

t

b

p

(

f

t

3

w

h

i

o

w

P

p

m

i

P

t

s

(

w

fi

c

o

o

s

m

t

c

r

i.e., the head and tail of the residual arc have the same root node

R (i) = R (j) , and those that link different trees, i.e., R (i)
 = R (j) .

Definition 2. An arc (i , j) ∈ A is compatible with P if and only if

the head and tail refer to the same root node in the contracted

network, i.e., R (i) = R (j) . Otherwise, it is incompatible .

Compatible arcs are easy to identify as loops on the contracted

network thus forming directed cycles on their own. Examples

can be seen in Fig. 3 a as arcs (4, 1) and (9, 10) or in Fig. 3 b as

the two loops on root nodes 1 and 2. This also implies that the

extended cycle associated with a compatible arc (i , j) ∈ V P (x
0) is

not influenced by the content of other trees. The reduced cost of

a loop is therefore the reduced cost of the cycle. For incompatible

arcs, rooted paths have to be combined to form cycles in H (P , x 0).

In this respect, we like to think of the reduced cost d̄ i j , (i , j) ∈
V P (x

0), as a rooted cost .

3.6. Extremal point solution space

It is straightforward to verify that the extreme cases, P = ∅
and P = B 0 , respectively, correspond to the minimum mean cycle-

canceling algorithm and the primal network simplex algorithm.

In the former case, the contracted network H (∅ , x 0) has exactly

the same structure as the residual network G (x 0), thus yielding a

pricing problem equivalent to MMCC’s. In the latter case, consider

the contracted network of Fig. 5 where the arcs of P are basic arcs

(indeed forming the primal network simplex spanning tree) and

all visible arcs are nonbasic. Also recall that the arc cost transfer

policy seen in Procedure 1 is a generalized version of the one

used in the primal network simplex algorithm where only one root

node is used. As each visible arc is compatible (appearing as a loop

in H (B 0 , x 0)), applying cost dominance trivially results in a single

contender for the pricing problem to identify which incidentally

reconciles us with the entering variable of Dantzig’s pivot rule.

Let C P denote the set of all directed cycles obtainable from

extreme points of the pricing problem (9) . The cardinality of this

set can be measured in two parts, that is, the compatible and in-

compatible portions. The first portion is insignificant and reduces

to a single element regardless of the set P while the second grows

exponentially as the set P reduces in cardinality.

Proposition 7. The cardinality of the set of extreme point solutions

|C P | of the pricing problem (9) on the contracted network H (P , x 0) is

O (2 (n −| P| +1) 2) .

Proof. For the sake of simplicity, the argument is carried with

a dominance rule applied on the visible arcs. Furthermore, we

use a worst case type analysis on the density of these sets. As

an extreme point of (9) can only identify a single compatible arc,

dominance can be applied across all compatible arcs regardless of

their root node association.

The more interesting portion thus concerns incompatible

combinations which of course require at least two incompatible

arcs. Using combinatorial enumeration, let us count the cycles in

rough numbers by randomly selecting arcs within the available

possibilities V P (x
0) thus forming directed cycles of different sizes

ranging from 2 to n − | P | + 1 , the number of nodes in the con-

tracted network, i.e., |C P | =

∑ n −| P| +1

k =2

(| V P (x 0) |
k

)
. Then again, once

dominance is applied, the set of visible arcs vastly overestimates

the actual number of arcs remaining in the contracted network

which for a complete graph amounts to (n − | P | + 1) 2 . Since basic

calculus reduces

n ∑

k =1

(
n 2

k

)
to the dominant term 2 n

2
, we obtain

|C | ∈ O (2 (n −| P| +1) 2) . �
P
Granted it is possible to order the cardinalities, |C ∅ | � |C F | �
C B | , the same cannot be done for the actual sets. Indeed, hidden

rcs and dominance rules means that directed cycles present in a

maller set are not necessarily present in a larger one. Consider for

nstance Fig. 10 b and c where the cycle uses the non-dominated

rc (8, 5) for the former and (7, 4) for the latter.

While this computation tremendously dramatizes the size of

he extreme point solution set of the pricing problem (9) , it gives

he general intuition that some balance can be achieved between

he workload offset transferred to the oracle and the simplicity of

btaining undirected cycles that may induce a step size of zero.

et us put this in perspective of the contracted networks seen in

igs. 3 b, 4 b, and 5 b. The formulation of the pricing problem (9) is

lways the same, yet the contracted network reminiscing of the

rimal network simplex algorithm (5 b) has |C B | = 1 whereas many

ore cycles are present in the contracted network using all free

ariables (3 b). While the density of the resulting contracted net-

ork converges towards the density of the original network such

hat the exponential bound becomes increasingly approximative

s | P | get smaller, it is nevertheless expected that the difficulty of

olving the pricing problem (9) follows the burden of the extreme

oint solution set.

Furthermore, for the exponential cardinality growth to be in

ine with Proposition 6 , one must realize that additional cycles

vailable through a smaller set P must come from the combination

f cycles available in a larger set P . Consequently, since cycles

vailable using the set P = F are sufficient to ascertain optimality,

ome of the cycle combinations available in the pricing problem

sing set P ⊂ F must lead to nonbasic solutions. In this matter,

he purpose of Section 3.1 which handles nonbasic solutions is

wofold. Sure enough, it manages the initial starting solution

ut more importantly solutions encountered during the solution

rocess. That is, in particular there is no guarantee that MMCC

with P = ∅) travels through extreme points and the same is true

or other cases where actual free arcs are rendered visible in V P ,

hat is, when P ⊂ F .

.7. Root selection

Since the selection of root nodes is arbitrary, the reader might

onder what impact, if any, a different set of root nodes would

ave on the oracle and thus the algorithm’s course. As shown

n the proof of Proposition 8 , it turns out very little. Indeed, the

racle’s content is modified on a per component basis yet as a

hole it is completely unaffected.

roposition 8. The root selection has no influence on the pricing

roblem (9) . The compatible set, the extreme point solution set C P , the

ean cost evaluation μH and the nature of the optimality certificate

n Proposition 6 are unaltered.

roof. On the one hand, it is no surprise that, for all nodes i ∈ N ,

he paths P(i) and their costs π i are modified when an alternative

et of root nodes is used. This means that while each visible arc

 i , j) of V P (x
0) continues to exist on H (P , x 0), it is now associated

ith a different reduced or rooted cost d̄ i j = d i j − πi + π j . The

rst observation is that the set of extreme point solutions C P
orresponding to directed cycles obtained by linear combination

f visible arcs is unaltered. Furthermore, by Proposition 4 the

riginal cost on each cycle is maintained regardless of the root

election. As such, the mean cost of every extended cycle is also

aintained which obviously means as much for the nature of

he optimality certificate. Finally, observe that not only is the

ompatibility status of any arc (i , j) persistent, the reduced or

ooted cost of a compatible arc is also immune to change. �

J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32 25

g

d

s

o

o

c

v

o

t

a

P

≥

d

i

a

p

o

4

p

f

a

e

m

d

c

C

4

o

f

m

w

m

n

μ

t

c

P

s

h

μ

P

G

i

a

d

μ

a

i

o

m

m

v

s

t

a

w

c

w

μ

m

c

e

d

i

m

h

t

t

e

F

m

a

L

l

r

c

w

p

e

c

j

t

r

a

t

t

r

c

e

t

4

g

s

w

o

G

w

a

o

n

t

p

t

l

p

(

i

i

This is a testament to the fact that a degenerate solution

rants degrees of freedom for dual variables, in fact one for each

egenerate constraint in accordance with Procedure 1 . Intuitively

peaking, the pricing problem (9) can be interpreted to optimize

ver these degrees of freedom. Indeed, solving the former not

nly provides an optimal cycle W

0
H

of minimum mean reduced

ost μ0
H

on the contracted network but also a new set of dual

ariable values for the root nodes. The following is an adaptation

f Goldberg and Tarjan (1989 , Theorem 3.3) or, more directly in

erms of notation, of Gauthier et al. (2015 , Proposition 3) which

lso bases its argument on linear programming theorems.

roposition 9. When solving the pricing problem (9) at iteration k

0, there exists some dual variable values π k
� , � ∈ N P (x k) , such that

 ̄i j − π k
R (i)

+ π k
R (j)

≥ μk
H
, (i , j) ∈ V P (x

k) . By complementary slackness,

the latter in fact hold at equality for all strictly positive variables,

.e., (i, j) ∈ W

k
H

.

In other words, the initial dual variable values on root nodes

re irrelevant as much as the roots selection. Either way, the

ricing problem (9) optimizes dual variables aiming to satisfy

ptimality conditions.

. Behavioral study

Supported by numerical results from a minimum cost flow

roblem instance containing 1 025 nodes and 92 550 arcs (re-

erred to as Instance 1), in Section 4.1 we analyze the behavior of

 specific variant of the contraction algorithm opposite MMCC’s

stablished behavior. This study not only serves to grasp some

echanical aspects of these algorithms, but more importantly

raws attention on key points of the theoretical minimum mean

ycle-canceling complexity. Section 4.2 connects the dots with

ancel-and-Tighten and digs into more advanced aspects.

.1. A lower bound on the minimum mean cost

Our analysis opposes the mean cost of negative cycles obtained

n the contracted network to those that would be obtained in the

ramework of MMCC. At a given iteration k ≥ 0, let μk
G

be the

inimum mean cost of the directed cycle W

k
G

on the residual net-

ork as obtained by MMCC. We then denote by μk
H

the minimum

ean cost of the directed cycle W

k
H

fetched on the contracted

etwork and

k
H: G = μk

H

| W

k
H |

| W

k
H: G

| (12)

he mean cost of the extended cycle where hidden arcs are ac-

ounted for. The following proposition is verified by construction.

roposition 10. Let x k , k ≥ 0, be a non-optimal solution. Given the

et P ⊆F k , the following ordering of the minimum mean costs always

olds:

k
H ≤ μk

G ≤ μk
H: G . (13)

roof. The cycle W

k
H: G

is visible as is on the residual network

 (x k) which means μk
G

≤ μk
H: G

trivially holds by the nature of min-

mizing the mean cost in G (x k). Furthermore, although contracted,

ny cycle W

k
G

that also appears in H (P , x k) is evaluated with a

ifferent mean cycle cost which eventually uses less arcs such that
k
H

≤ μk
G

. �

Since we aim to establish complexity results in light of MMCC’s

nalysis, it is quite natural to think of W

k
G

as the reference min-

mum mean cost cycle. The inequalities literally state that the

ptimal value of the minimum mean cost μk
G

may be underesti-

ated by μk
H

and overestimated by μk
H: G

. The notion of estimation
ight be better understood by observing the evolution of the

arious μ during the solution process. For illustrative purposes, we

ystematically use the contracted network H (F k , x k) at every itera-

ion, where all and only the free arcs are hidden. The value of μk
H

nd its counterpart μk
H: G

are naturally obtained on top of which

e also poll for the value μk
G

as if to look for the minimum mean

ycle. Fig. 11 shows the evolution of these measures for Instance 1.

While all three plots show a general increasing tendency,

hat is striking is how different the inequality μk
H

≤ μk
G

is from
k
G

≤ μk
H: G

. The first gap is fairly intuitive and goes back to basic

athematics: The density of the contracted network produces

ontracted cycles which use relatively few arcs compared to their

xtended counterparts. As the cycle costs remain the same, the

enominator strongly influences the mean evaluation. The order-

ng (13) can then be interpreted as a deceptively small minimum

ean cost μk
H

whose value is corrected when accounting for the

idden arcs. Observe that the ordering (13) is equal throughout if

here are no hidden arcs in the contracted cycle, i.e., | W

k
H
| = | W

k
H: G

| .
The second gap is much more tight and deserves more at-

ention. In this matter, Fig. 12 zooms on the evolution of the

xtended mean cycle cost μk
H: G

and minimum mean cycle cost μk
G

.

or the record, MMCC both searches for and applies a minimum

ean cycle at each iteration, yielding an algorithm which features

 non-decreasing property on μk
G
, see Goldberg and Tarjan (1989 ,

emma 3.5) or Gauthier et al. (2015 , Proposition 4). Take a close

ook around the 10 0 0 0th iteration. This is not a graphical aber-

ation showing that this property is indeed lost when negative

ycles are not canceled in the order suggested by MMCC. What

e think is surprising for this particular instance is how little this

henomenon occurs, only 21 times within 14 258 iterations to be

xact.

Convergence. As the contraction algorithm identifies a negative

ycle at every iteration, it is evident that convergence of the ob-

ective function to optimality is guaranteed. By default, there are

hen at most O (mCU) such negative cycles, a weakly polynomial

esult referring to the largest absolute cost (C := max (i , j) ∈ A | c ij |)
nd interval bound values (U := max (i, j) ∈ A u i j − � i j).

Nevertheless, comparing the canceled cycle mean cost to that of

he minimum mean cycle cost is an enlightening exercise. Indeed,

he erratic behavior also appears in a strongly polynomial algo-

ithm, namely Cancel-and-Tighten. Section 4.2 recalls some con-

epts from the minimum mean cycle-canceling algorithm (Gauthier

t al., 2015) for which strongly polynomial runtime is established

hrough the analysis of the so-called optimality parameter .

.2. Optimality parameter analysis

Strongly polynomial runtime complexity certifies that an al-

orithm performs a polynomial number of operations measured

olely by the size of its input (see Cormen et al., 2009). For net-

ork flow problems, this number should be a function of m and n

nly. In introducing the minimum mean cycle-canceling algorithm,

oldberg and Tarjan (1989) also provide such a complexity proof

hich holds in two parts. First, an oracle capable of producing

 minimum mean cost directed cycle in O (mn) time. Second, an

ptimal solution is reached by canceling at most O (m

2 n log n) such

egative cycles. The first part can be seen as the inner loop and

he second as the outer loop. Their product then yields a strongly

olynomial global complexity. Radzik and Goldberg (1994) refine

he complexity analysis, reducing the number of cycle cancel-

ations to O (m

2 n). Although they also introduce the concept of

hases to analyze the behavior of the algorithm, Gauthier et al.

2015) strongly insist on the latter to further improve the complex-

ty result by combining the Cancel-and-Tighten strategy introduced

n Goldberg and Tarjan (1989) with the original algorithm.

26 J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32

Fig. 11. Comparison of μk
H , μ

k
G and μk

H: G .

Fig. 12. Zoom on comparison of μk
G and μk

H: G .

o

I

e

t

e

t

d

(

C

c

b

c

t

P

o

b

c

4

t

i

p

a

l

a

p

k

a
In MMCC, the value μk
G

is coined as the optimality parameter

because it converges without oscillations to 0 from below in

strongly polynomial time. It might however be more appropri-

ate to reserve this name for another value as illustrated by the

upcoming analysis.

Type 2 (negative) cycles. Even though the non-decreasing

property of μk
G

across iterations in the minimum mean cycle-

canceling algorithm is interesting, it has been argued by Gauthier

et al. (2015) that the strictly increasing behavior observed across

phases is more enlightening. The phase definition goes hand in

hand with the proof of Gauthier et al. (2015 , Proposition 5) which

distinguishes between Type 1 and Type 2 cycles. It shows that a

Type 2 cycle is attained within m cancellations or optimality is

achieved, where a Type 2 cycle is obtained when there exists at

least one variable in the cycle with a non-negative reduced cost

computed with respect to a set of dual variables established at the

beginning of a phase. Given μh
G

at the beginning of phase h ≥ 0,

such a Type 2 cycle W

� then serves to imply a strict increase on

μh
G

as

μ�
G ≥

(
1 − 1 / | W

� |)μh
G ≥ (1 − 1 /n) μh

G (14)

thus marking the end of the phase, i.e., the sequence of iterations

leading to this measurable jump factor .

Since each phase h ≥ 0 contains at most m cancellations, the

number of cancellations can be interpreted as at most O (mn log n)

or O (mn) phases depending on the complexity point of view

(Gauthier et al., 2015). These points of view respectively refer to

Theorem 2 which uses the minimal increasing factor (1 − 1 /n)

and Theorem 3 rather exploiting the stronger factor (1 − 1 / | W

� |) .
While the concept of phases is useful for the complexity analysis
f MMCC, it is not transparent at all in the implementation.

ndeed, in MMCC, the phase is purely a question of theoretical

xistence; dual variables are never required to advance such

hat the solution process cares not about these cycle Types. The

nlightenment comes from the inclusion of Cancel-and-Tighten in

he analysis where phases are observed in actu . The latter fixes

ual variables and depletes the residual network of Type 1 cycles

those formed with negative reduced cost arcs only). Once this

ancel-step is terminated, one must conclude that a Type 2 cycle

omes next thus implying a jump with respect to some lower

ound ˆ μh
CT

on μh
G

at the beginning of phase h .

Fig. 13 opposes the mean value μk
CT

at iteration k of the Type 1

ycles canceled in the Cancel-and-Tighten implementation with

he lower bound value ˆ μk
CT

≤ μk
G

proposed by Gauthier et al. (2015 ,

roposition 14). While the erratic behavior of μk
CT

can clearly be

bserved throughout the solution, a general pattern of increase can

e noted across the phases. The minimum (i.e., optimal) mean cy-

le value μk
G

is once again fetched as background information. The

 900th iteration is worth a look: Again, a small decrease for μk
G

. In

otal, four such occurrences within 7 294 cancellations contained

n 357 phases. Furthermore, Cancel-and-Tighten maintains strongly

olynomial runtime despite the usage of Type 1 cycles going

gainst the non-decreasing property of μk
G

. The strictly increasing

ower bounds ˆ μh
CT

between phases obtained with the existence of

 Type 2 cycle marking the end of phase h is indeed where the

roperties are established (Gauthier et al., 2015 , Theorem 6).

Arc fixing. Strongly polynomial time complexity is achieved by

eeping track of the number of phases through the concept of

rc fixing as seen in the minimum mean cycle-canceling algorithm

J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32 27

Fig. 13. Comparison of μk
CT , μ

k
G and ˆ μk

CT .

(

a

f

v

f

w

h

(

u

P

b

i

l

i

i

s

v

r

i

b

b

c

a

a

w

5

s

f

w

o

p

c

a

I

s

r

5

e

i

d

t

t

m

D

t

p

t

l

s

r

D

a

a

μ

μ

P

m

P

w

μ

p

a

a

a

μ

b

μ

T

2

C

 Gauthier et al., 2015 , Propositions 9 and 11). A relaxation of the

rc fixing condition is used in Proposition 11 , where the two dif-

erent arc fixing conditions are in line with the complexity point of

iews, that is, O (mn log n) or O (mn) phases. The proof is straight-

orward and recuperates the Cancel-and-Tighten proof adaptation

here the lower bound values ˆ μh
CT

are shown to mimic the be-

avior of the true value μh
G

. Indeed, as mentioned in Gauthier et al.

2015 , p. 131), it is conceivable to rewrite the arc fixing conditions

sing a lower bound ˆ μh on μh
G

instead.

roposition 11. Assuming ˆ μh is a lower bound for μh
G

at the

eginning of phase h ≥ 0 .

• Arc fixing for arc (i , j) ∈ A occurs or has already occurred if

| ̄c h
i j
| ≥ −2 n ̂ μh .

• Implicit arc fixing for arc (i , j) ∈ A occurs or has already occurred

if | ̄c ∗
i j
| > −n ̂ μh , where c̄ ∗

i j
is the reduced cost of arc (i , j) computed

with an optimal set of dual variables.

It is at this point important to distinguish between μk
G

at

teration k and strongly polynomial runtime. Indeed, whether one

ooks at μk
H

or μk
CT

or any other cycle-canceling method, the min-

mum mean cycle value μk
G

can always be fetched as secondary

nformation (recall that μk
H

≤ μk
G

≤ μk
H: G

and ˆ μk
CT

≤ μk
G

≤ μk
CT

). If

trongly polynomial properties are to be established on oscillating

alues from one iteration to the next, it appears mandatory to

ather divert the analysis to a lower bound ˆ μh over the phases

nstead. In other words, while the portion above μk
G

(blue) may

e unpredictable, it is the portion below μk
G

(green) that should

e well-behaved. We are ready to propose an adaptation of the

ontraction algorithm. Whether that adaptation is necessary to

chieve a strongly polynomial time complexity is an open question

lthough, since the proof relies on a controllable behavior of μH ,

e conjecture that it is.

. Contraction-Expansion algorithm

Section 5.1 introduces a flexible phase definition based on

o-called Type 3 cycles that serve as end-phase markers. This is

ollowed in Section 5.2 by a discussion of an expansion scheme

hich controls the visible and hidden arc sets, that is the content

f the set P , for the proposed algorithm. Section 5.3 argues that ap-

lying the contraction on the residual network and expanding the

ontracted network using that specific expansion scheme as the

lgorithm progresses produces a strongly polynomial algorithm.

n Section 5.4 , we show that the expansion scheme is not unique

uch that different strategies can be used to improve the algo-

ithm. Finally, computational results are presented in Section 5.5 .
.1. End-phase markers

Our contribution is to revisit the phase definition in order to

xtract the true pertinent information which allows convergence

n strongly polynomial time. In this respect, the current phase

efinition is built upon a weak jump condition which waits for

he identification of a Type 2 cycle as the minimum mean cycle

o confirm a jump on μh
G

at the end of phase h . Let us propose a

ore flexible definition.

efinition 3. A phase h ≥ 0 is a sequence of cycle cancellations

erminated whenever a measurable jump is observed in strongly

olynomial metrics, that is, both the factor and the time required

o obtain it are expressed in strongly polynomial time. A phase so-

ution x h is understood as the solution at the beginning of phase h .

The factor proposed in the following cycle Type obviously

atisfies the strongly polynomial requirement whereas the time

equirement is shown in Proposition 12 .

efinition 4. Let x h , h ≥ 0, be a non-optimal phase solution. At

n iteration t within the phase h , let us call a cycle W

t on G (x t)

 Type 3 (negative) cycle if its underestimated mean cost ˆ μt (with

ˆ t ≤ μt
G

≤ μt) produces the measurable jump

ˆ t ≥
(

1 − 1

| W

t |
)
μh

G . (15)

roposition 12. In MMCC, a Type 3 cycle is identified within at most

 cancellations.

roof. Consider the phase h . The proof is trivial and connects

ith the existence of a Type 2 cycle, say W

� , which must have
�
G

= ˆ μ� ≥ (1 − 1 / | W

� |) μh
G

. Therefore, the iteration t either hap-

ens simultaneously to � or earlier. �

Observe that whether the jump factor is obtained using an

ctual Type 2 cycle or not is irrelevant: A phase is completed in

ccordance with Definition 3 . In other words, the only important

spect of the Type 2 cycle is the measurable jump it procures on
h
G
, a tactic which can incidentally also be verified against a lower

ound according to Proposition 11 , that is,

ˆ t ≥
(

1 − 1

| W

t |
)

ˆ μh . (16)

his is true for ˆ μh = ˆ μh
CT

in Cancel-and-Tighten (Gauthier et al.,

015 , Theorem 3) and is also used with ˆ μh = μh
H

in the proposed

ontraction-Expansion algorithm.

28 J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32

Fig. 14. Contraction-Expansion algorithm.

W

5

r

w

t

h

u

t

e

t

P

p

P

s

d

m

c

fi

n

l

m

a

t

W

v

t

u

r

j
5.2. Expansion scheme

The focus on phases should by now be realized by the reader.

Fig. 14 presents a pseudo-code for the Contraction-Expansion algo-

rithm whereas the following paragraphs explain how the proposed

expansion scheme constrains the latter into producing such phases.

Let x 0 be a non-optimal solution at iteration k = 0 . Note that

x 0 is also a non-optimal phase solution ensuring a lower bound

ˆ μ0 ≤ μ0
G

. Let the set P 0 = F 0 . By Proposition 6 , the extended cycle

0
H: G

is directed on the residual network G (x 0) and the step size is

strictly positive.

When W

0
H: G

is canceled, the aftermath is hard to predict but

one thing is for certain: Only the arcs part of W

0
H: G

are affected.

Some arcs that were free in x 0 remain free in x 1 in the next

iteration while all the other arcs have changed status either from

restricted lower to restricted upper and vice versa, from free to

restricted or from restricted to free for a total of six possibilities.

Four of these end up with a new status restricted whereas two

end up with a free status. Intuitively speaking, since the contrac-

tion happens around the free variables and the non-decreasing

μk
G

property is lost when the contraction is systematically applied,

let us concentrate on controlling these newly freed variables in

x 1 , i.e., F 1 �F 0 . By applying coerced degeneracy on these specific

variables, the hidden set then contains only those variables that

were already free in x 0 and are still free in x 1 . This amounts to

selecting the set P 1 = F 1 ∩ F 0 at iteration k = 1 .

From there, the idea is simple, repeatedly apply cycle cancel-

lation with the extended cycle W

k
H: G

at iteration k and expand

the contracted network using the intersection of variables free in

both the previous and new solution until the algorithm reaches

a Type 3 cycle, that is, a negative cycle producing a jump factor

of at least (1 − 1 / | W

k
H: G

|) . The phase h = 0 is then terminated and

a new phase begins. Since we may at this point re-apply the full

contraction, it is worthwhile to eliminate any cycle of free arcs

from the phase solution to maximize the contraction benefit.
t

u
.3. Complexity analysis

The complexity analysis of the Contraction-Expansion algorithm

evolves around bringing the solution process of the latter to terms

ith MMCC’s behavior. As testified by Cancel-and-Tighten, these

erms refer to the strictly increasing phase markers. Fig. 15 might

elp to get a feel for this endeavor. It displays the value of μk
H

sing the minimal expansion scheme P k +1 = F k +1 ∩ F k where each

rail corresponds to a phase during the solution of Instance 1.

The upcoming analysis focuses on the outer loop, that is, we

xamine the time required to reach the end of a phase and the

otal number of such phases.

roposition 13. The Contraction-Expansion algorithm completes a

hase in O (m

2 n) time.

roof. The proof is threefold with respect to the expansion

cheme portion of the algorithm. We prove that 1) the non-

ecreasing property of μk
H

during the phase is maintained, 2) at

ost O (n) contracted cycle cancellations are required to reach a

ontracted network equivalent to the residual network, and 3)

nding the minimum mean reduced cost cycle on the contracted

etwork requires O (mn) time.

Gauthier et al. (2015 , Proposition 4) state that a cycle cancel-

ation on the residual network G (x k) cannot introduce a minimum

ean cycle in G (x k +1) yielding μk +1
G

< μk
G

in the following iter-

tion. Here is an adaptation for the expansion scheme. Consider

he contracted network H (P k , x k) and an optimal contracted cycle

k
H

of mean reduced cost μk
H

along with an optimal set of dual

ariables π k
� , � ∈ N P (x k) , on the root nodes (Proposition 9). From

here, fix the root nodes’ dual variables to these new values and

pdate the remaining dual variables accordingly (Procedure 1). The

esidual network G (x k) hence satisfies d̄ i j − π k
R (i)

+ π k
R (j)

≥ μk
H
, (i ,

) ∈ A (x k), and in particular d̄ i j = 0 , (i , j) ∈ H P (x
k). Upon canceling

he expanded cycle W

k
H: G

and obtaining x k +1 , every new resid-

al arc in G (x k +1) either has a reduced cost of 0 or −μk , i.e.,

H

J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32 29

Fig. 15. Evolution of μk
H with the Contraction-Expansion algorithm.

d

F

t

w

g

c

t

b

s

c

a

b

a

c

i

o

g

p

o

n

T

t

F

c

c

a

1

a

t

u

m

p

T

s

P

d

i

v

A

l

fi

t

e

i

μ

o

c

T

t

e

5

a

e

e

i

P

s

(

s

a

l

c

o

a

e

a

a

p

e

e

i

μ

w

h

c

O

a

c

 ̄i j − π k
R (i)

+ π k
R (j)

≥ μk
H
, (i, j) ∈ A (x k +1) . Observe that every arc in

k ∩ F k +1 already has a reduced cost of 0 such that the arc cost

ransfer policy already holds. The contraction is readily available

ith every remaining visible arc evaluated at a reduced cost

reater than or equal to μk
H

. The mean cost of the next contracted

ycle is then at least μk
H

.

Recall that the pricing problem in MMCC can be derived from

he pricing problem (9) by making visible all residual arcs, that is,

y setting P = ∅ . Then, observe that the set P is updated by inter-

ecting the sets of free variables of the previous solution with the

urrent one such that its size either stays the same or decreases

t each cancellation. Assuming the initial phase solution x 0 is a

asic solution, at most | F 0 | ∈ O (n) cancellations yielding a decrease

re then obviously required to reach P = ∅ . Furthermore, when a

ycle is canceled without modifying the set of free arc variables,

t means that one or several restricted variables change from

ne bound to another. Unfortunately, this kind of phenomenon

ives meaning to the worst case complexity bound observed in

athological instances. An iteration counter limiting the number

f cancellations prior to reaching the residual network to at most

 is put in place to make the move directly should it be necessary.

rivially, at most n cycle cancellations allow the expansion scheme

o reach a contracted network equivalent to the residual network.

rom there, a Type 3 cycle is ensured within an additional m cycle

ancellations (Proposition 12). To sum up, at most n + m ∈ O (m)

ycle cancellations are required to meet the required jump.

Finally, solving the pricing problem (9) , which can still be

ccomplished in O (mn) time using dynamic programming (Karp,

978), dominates all the other operations performed at every iter-

tion. Indeed, the data structure is maintained in O (m) time while

he extended cycle extraction, step size computation and solution

pdate is done in O (n) time. A phase is ultimately completed in at

ost O (m) iterations each one requiring at most O (mn) for a total

hase runtime of O (m

2 n). �

heorem 1. The Contraction-Expansion algorithm runs in O (m

3 n 2)

trongly polynomial time.

roof. We show that at most O (mn) phases can occur in accor-

ance with Gauthier et al. (2015 , Theorem 3). Since μk
H

≤ μk
G

is

ndeed a lower bound for the true minimum mean cycle cost

alue by Proposition 10 , this is also true for any phase solution.

s soon as μk
H

≥ ˆ μh (1 − 1 / | W

k
H: G

|) , the phase h ends and the

ower bound is increased to ˆ μh +1 := μk
H

. By Proposition 11 , arc

xing occurs on the lower bound value ˆ μh as well such that

he phase time complexities are valid. By Proposition 13 , since

ach phase runs in O (m

2 n), the compound time is obtained. An
nitial valid lower bound for μ0
G

can be trivially obtained with

ˆ 0 := − max (i, j) ∈ A | c i j | . �

The proposed phase definition along with the Type 3 cycle not

nly satisfy theoretical properties of the strongly polynomial time

omplexity of MMCC, they also express very practical observations.

he hope is that not only the Type 3 cycle occurs much earlier

han after m cancellations, it also happens while the phase still

xploits the contracted network.

.4. Alternative end-phase markers and expansion schemes

So long as strongly polynomial phase time is maintained,

lternative expansion schemes may be used. Figs. 16 –17 show the

volution of μk
H

for two simple variations. The first variation (cycle

xpansion) updates the set P with a more aggressive reduction,

.e., a faster expansion. The update writes as

k +1 =

(
F k +1 ∩ F k

) \ { (i, j) ∈ A | (i, j) ∈ W

k
H: G or (j, i) ∈ W

k
H: G }

(17)

uch that all arcs of the expanded cycle W

k
H: G

that are still free

thus common to F k and F k +1) are also removed from P k +1 . The

econd variation (cycle expansion & loops) uses the same update

nd also uses a post cycle-cancellation heuristic which cancels

oops derived from all compatible variables with negative rooted

osts as well.

For anyone familiar with successful divide-and-conquer meth-

ds, the solution speed typically benefits from the decomposition

t a higher rate than the cost of the latter. While postponing the

nd of a phase with a less aggressive expansion scheme appears to

gree with this statement, expanding the contracted network faster

lso means that end-phase markers are reached faster at which

oint the full contraction is re-applied. It seems that reaching said

nd-phase markers as fast as possible is of particular interest.

Speaking of end-phase markers, a measurable jump could be

stablished using alternative Type 3 cycle definitions. Consider for

nstance the modification of (16) as follows:

ˆ t ≥
(

1 − 1

| W

t |
)

ˆ μh ≥
(

1 − 1

max k ∈ h | W

k |
)

ˆ μh ≥
(

1 − 1

n

)
ˆ μh .

(18)

here k ∈ h is understood as an iteration k within the phase

 . While the last criterion is reminiscing of Theorem 2 which

ontents itself with the same jump every time thus obtaining the

 (mn log n) phases, the second criterion also tracks a cycle length

nd compromises on the desired jump. The latter is in fact the

riterion used in all plots of the Contraction-Expansion algorithm.

30 J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32

Fig. 16. Evolution of μk
H with cycle expansion.

Fig. 17. Evolution of μk
H with cycle expansion and cancellation of negative loops.

(

t

a

p

G

b

t

d

(

w

i

a

l

l

c

M

t

1

i

a

s

d

n

m

o

o

c

t

c

1

5.5. Computational experiments

This section is separated in two parts. The first details compu-

tational results with respect to three specific instances and serves

to show CE indeed behaves as expected when identifying smaller

cycles on the contracted network. The second complements intu-

itive assertions made in the first part with a computational profile

on benchmark instances from DIMACS . The latter contains several

network problems of different nature codenamed by family GOTO ,
GRIDGEN , GRIDGRAPH , NETGEN , ROAD , and VISION . Each family

is further divided into subcategories of different sizes each one

containing five versions A-E which vary only in the data set.

Algorithms are implemented in C++ . All results are obtained using

an Intel i7-4770K@3.50GHz with 16GB of RAM, running

Windows 10 .
Table 1 resumes the content of plots displayed in Figs. 15–

17 along with their computational times as well as averages of

cycle sizes and induced step sizes. The performances of MMCC

and CT are added for order comparison purposes whereas results

regarding CE also incorporate an average contraction level given

by α where αk = | N P (x k) | /n, k ≥ 0.

First of all, there is no denying that Cancel-and-Tighten is

orders of magnitude faster than MMCC. The proposed Contraction-

Expansion algorithm sits somewhere in between although it is

clear that the contraction boosts the speed of fetching nega-

tive cycles by a significant amount even more so as the size of

the instance gets larger. The same feel is palpable across other

benchmark instances such as the significantly larger problem grid-

gen_sr_13a from the GRIDGEN family which contains 8 191 nodes

and 745 381 arcs. It is important to understand that the benefit of

the contraction comes from the degeneracy observed in encoun-

tered solutions. For instance, the problem road_paths_05_WI_a
 n = 519 157 and m = 1 266 876) from the ROAD family is struc-

ured with uniform capacities at 1 such that there are never

ny free variables, hence no contraction. We therefore just get

enalized with the contraction computational overhead.

The remainder of this section looks at the version A of the

RIDGRAPH , NETGEN , and GRIDGEN families, in the process,

ringing further testimonies to the previous claims. The compu-

ational results obtained on the first family are presented in more

etails as follows. For each of the three categories of problems

 long , square , wide), the number of arcs is roughly m ≈ 2 n

hereas the node size n ranges from 2 8 to 2 17 , where the power

s given by the instance difficulty index i . Table 2 displays the aver-

ge contraction level and CPU time CPU CE for CE. As expected the

atter increases with the instance size, yet the average contraction

evel of about 60% appears stable across this family. The middle

olumns indicate the relative CPU time calculated with respect to

MCC’s as β := CPU CE / CPU MMCC . For instance, CE requires 2 619 s

o solve grid_square_16 meaning that MMCC took 2 619/0.21 ≈
2 471 s to terminate. The relative computing times β are plotted

n Fig. 18 with respect to the instance difficulty index i . Once

gain, the relative performance of CE increases with the instance

ize.

The NETGEN family is broken down into five categories (8 ,

eg , lo_8 , lo_sr , sr). The category deg is stable in node size at

 = 4 096 although it increases exponentially in terms of arcs

 = n 2 i . All other problems range from sizes 2 8 to 2 19 in terms

f nodes n , and in terms of arcs either m = 8 n for 8 and lo_8

r m = n 2 i/ 2 for lo_sr and sr problems. The mean of the average

ontraction levels α is about 93% although it is significantly closer

o 100% for problems in the lo_8 and lo_sr categories. Said lack of

ontraction is apparent in Fig. 19 where β is mostly present above

 represented by the horizontal dotted line.

J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32 31

Table 1

Computational results for variations of CE vs. MMCC and CT.

Solution CPU (sec) k / cycles h | W | ρ α

Instance 1

MMCC 91.52 4 296 90 27.11 1.30 –

CE - minimal expansion 87.59 7 256 151 5.46 1.30 0.32

CE - cycle expansion 63.98 4 686 144 5.19 1.70 0.47

CE - cycle expansion/loops 51.84 3 449/9 499 142 7.40/3.32 1.61/2.23 0.58

CT 0.82 7 294 357 21.62 1.37 –

gridgen_sr_13a

MMCC 15 629.40 20 893 289 72.85 7.45 –

CE - minimal expansion 6 709.96 25 291 301 5.93 9.70 0.56

CE - cycle expansion 2 435.97 9 202 236 4.70 19.18 0.62

CE - cycle expansion/loops 1 906.97 6 034/23 429 224 7.13/2.58 18.53/36.01 0.70

CT 36.17 27 473 1 482 49.80 7.28 –

road_paths_05_WI_a

MMCC 9 552.52 1 119 300 82.27 1.00 –

CE - cycle expansion 10 355.30 1 122 348 82.20 1.00 1.00

CT 2 389.51 3 248 18 647 34.85 1.00 –

Table 2

Computational results for CE on the GRIDGRAPH family, version A .

long square wide

i CPU CE (sec) β α CPU CE (sec) β α CPU CE (sec) β α

8 0.01 0.65 0.64 0.01 0.60 0.64 0.01 0.60 0.64

9 0.02 0.44 0.59 0.04 0.43 0.56 0.05 0.50 0.59

10 0.08 0.31 0.56 0.16 0.36 0.58 0.21 0.41 0.61

11 0.18 0.26 0.61 0.64 0.30 0.56 0.93 0.44 0.64

12 0.59 0.19 0.56 2.95 0.29 0.58 4.43 0.38 0.64

13 1.51 0.12 0.50 11.96 0.26 0.57 19.72 0.39 0.64

14 5.45 0.16 0.45 59.18 0.26 0.58 89.83 0.41 0.63

15 8.51 0.08 0.51 325.44 0.22 0.60 476.19 0.38 0.63

16 23.15 0.04 0.45 2 619.07 0.21 0.60 2 911.39 0.31 0.63

17 402.98 0.13 0.45 17 890.40 0.27 0.61 15 944.70 0.34 0.63

Fig. 18. Relative CPU time for CE when solving the GRIDGRAPH family, version A .

Fig. 19. Relative CPU time for CE when solving the NETGEN family, version A .

32 J.B. Gauthier et al. / Computers and Operations Research 84 (2017) 16–32

Fig. 20. Relative CPU time for CE when solving the GRIDGEN family, version A .

T

e

t

t

p

o

n

i

t

c

m

c

m

t

t

c

a

f

c

t

c

i

A

E

R

A

C

D

D

G

G

K

K

M

R

The GRIDGEN family is partitioned into three categories of

problems (8 , deg , sr). The category deg is once again stable at

n = 4 097 and increases exponentially in terms of arcs m = n 2 i . The

two other categories range in node sizes n from 2 8 to 2 18 whereas

the number of arcs is given by m = 8 n for the former category and

m = n 2 i/ 2 for the latter. The mean of the average contraction levels

α is about 90% for these problems. Fig. 20 displays the experiment

outcome on this family and still features increasing relative perfor-

mance as the instances grow in difficulty.

While we certainly did not cover the complete benchmark suite,

this paper does not pretend to propose a competitive algorithm

just yet. As a case in point, even larger instances up to 2 22 nodes

are available but MMCC’s solution proved to be far too demand-

ing. We also believe the omitted instance versions and/or more re-

sults from other families would not significantly contribute to this

framework. Finally, we recall that PS is a top performer for the so-

lution of minimum cost flow problems despite the fact that the

vast majority of pivots performed, read over 70%, are degenerate

(Ahuja et al., 1993 , Fig. 18.7). With this in mind, the goal of this

paper is rather to understand better the mechanics of algorithms

with strictly positive step size improvements.

6. Conclusion

We start with a note addressed to users of the primal network

simplex algorithm. Observe that the spirit of the minimum mean

cycle-canceling algorithm is tangibly similar to that of PS. The

pricing step is home to the optimality certificate whereby the

latter is acquired unless an improving direction is identified. It

turns out this is not all that surprising since it has been shown

that PS and MMCC belong to (even constitute extreme cases of) a

more generic contraction algorithm.

A variety of special cases inducing strictly positive step sizes

is also identified. By combining these with results from MMCC,

a strongly polynomial Contraction-Expansion algorithm which

behaves much better than the former, especially as the instance’s

size increases, comes to life. The reader is carried around this

birth process by opposing the behavior of MMCC and Cancel-and-

ighten in a computational study. Both iteration and phase bases

are illustrated, although a strong emphasis on the latter concept is

systematically done thus providing an alternative way of showing

strongly polynomial runtime.

Such a property can also be observed in this framework when

using partial contraction. The latter is obtained by modifying the

choice of hidden arcs as the algorithm progresses. The selection is

made in such a way that it actually corresponds to an expansion of

the contracted network. Furthermore, the proposed Contraction-

Expansion algorithm sticks to practical observations otherwise

overlooked in MMCC. As such, phase markers are verified algo-

rithmically rather than just existing for theoretical purposes. It
ven recuperates the idea that not all jumps are created equal

hus underlining the important aspect of Type 2 cycles, namely

he measurable jump. The Type 3 cycle is born. The strongly

olynomial argument uses both phases and Type 3 cycles on top

f which the convergence of the original optimality parameter is

eglected in favor of a lower bound.

Furthermore, while it is true that the time complexity is not

mproved with respect to MMCC, we believe it is more interesting

o note that the same time complexity is achieved despite a more

omplicated algorithm. Indeed, strongly polynomial algorithms

ight benefit from another look that aims to combine their time

omplexity with practical observations that make them behave

ore efficiently.

There seems to be some arbitrage to be done between trying

o meet optimality conditions in a more aggressive manner and

he work required to do so. By contenting itself with a sufficient

ondition, a significant proportion of cancellations performed in PS

re degenerate whereas MMCC uses a rule whose computational

ootprint is too high. That being said, the contracted network is

loser to the spirit of an oracle than is the residual network. By

his, we mean that it matters not to see all directed negative cost

ycles so long as at least one can be detected thus allowing to

mprove and repeat.

cknowledgements

Jacques Desrosiers acknowledges the Natural Sciences and

ngineering Research Council of Canada for its financial support.

eferences

huja, R.K. , Magnanti, T.L. , Orlin, J.B. , 1993. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Upper Saddle River, NJ, USA .

ormen, T.H. , Leiserson, C.E. , Rivest, R.L. , Stein, C. , 2009. Introduction to Algorithms.

The MIT Press, Cambridge, MA, USA and London, England 3rd edition .
antzig, G.B. , Thapa, M.N. , 2003. Linear programming 2: Theory and extensions.

In: Springer Series in Operations Research and Financial Engineering (Book 2).
Springer, New York, NY, USA .

IMACS,. Network flows and matching: First DIMACS implementation challenge,
1990–1991. URL ftp://dimacs.rutgers.edu/pub/netflow .

authier, J.B., Desrosiers, J., Lübbecke, M.E., 2015. About the minimum mean cycle-

canceling algorithm. Discrete Appl. Math. 196, 115–134 . Advances in Combina-
torial Optimization doi: 10.1016/j.dam.2014.07.005

oldberg, A.V., Tarjan, R.E., 1989. Finding minimum-cost circulations by canceling
negative cycles. J. ACM 36 (4), 873–886. doi: 10.1145/76359.76368 .

arp, R.M., 1978. A characterization of the minimum cycle mean in a digraph. Dis-
crete Math. 23 (3), 309–311. doi: 10.1016/0012-365X(78)90011-0 .

lein, M. , 1967. A primal method for minimal cost flows with applications to the

assignment and transportation problems. Manage. Sci. 14 (3), 205–220 .
Kovács, P., 2015. Minimum-cost flow algorithms: an experimental evaluation. Optim.

Methods Softw. 30 (1), 94–127. doi: 10.1080/10556788.2014.895828 .
arsten, R.E., Saltzman, M.J., Shanno, D.F., Pierce, G.S., Ballintijn, J.F., 1989. Imple-

mentation of a dual affine interior point algorithm for linear programming.
ORSA J. Comput. doi: 10.1287/ijoc.1.4.287 .

adzik, T., Goldberg, A.V., 1994. Tight bounds on the number of minimum-mean cy-

cle cancellations and related results. Algorithmica 11 (3), 226–242. doi: 10.1007/
BF01240734 .

http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0003
ftp://dimacs.rutgers.edu/pub/netflow
http://dx.doi.org/10.1016/j.dam.2014.07.005
http://dx.doi.org/10.1145/76359.76368
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30059-X/sbref0007
http://dx.doi.org/10.1080/10556788.2014.895828
http://dx.doi.org/10.1287/ijoc.1.4.287
http://dx.doi.org/10.1007/BF01240734

	A strongly polynomial Contraction-Expansion algorithm for network flow problems
	1 Introduction
	2 Network problem
	2.1 Residual network
	2.2 Optimality conditions
	2.3 Contracted network

	3 Contracted network properties
	3.1 Nonbasic solution
	3.2 Uniqueness of the extended cycle
	3.3 Arc cost transfer policy
	3.4 Contraction algorithm
	3.5 Nature of the optimality conditions
	3.6 Extremal point solution space
	3.7 Root selection

	4 Behavioral study
	4.1 A lower bound on the minimum mean cost
	4.2 Optimality parameter analysis

	5 Contraction-Expansion algorithm
	5.1 End-phase markers
	5.2 Expansion scheme
	5.3 Complexity analysis
	5.4 Alternative end-phase markers and expansion schemes
	5.5 Computational experiments

	6 Conclusion
	 Acknowledgements
	 References

