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a b s t r a c t

Dantzig–Wolfe reformulation of an integer program convexifies a subset of the
constraints, which yields an extended formulation with a potentially stronger linear
programming (LP) relaxation. We would like to better understand the strength
of such reformulations in general. As a first step we investigate the classical edge
formulation for the stable set problem. We characterize weakest possible Dantzig–
Wolfe reformulations (with LP relaxations not stronger than the edge formulation)
and strongest possible reformulations (yielding the integer hull). We (partially)
extend our findings to related problems such as the matching problem and the set
packing problem. These are the first non-trivial general results about the strength
of relaxations obtained from decomposition methods, after Geoffrion’s seminal 1974
paper about Lagrangian relaxation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Consider the integer program

(IP ) max cT x

s. t. aT
i x ≤ bi ∀i ∈ I

x ∈ Zn ∩ [ℓ, u],

where I denotes a finite index set, n ∈ Z>0, ℓ, u, c, ai ∈ Qn and bi ∈ Q for i ∈ I. The integer hull PIP of
(IP ) is defined as

PIP := conv
{

x ∈ Zn ∩ [ℓ, u] : aT
i x ≤ bi ∀i ∈ I

}
.

The fractional polytope PLP contains all solutions that are feasible to the linear programming (LP) relaxation
of (IP ), i.e.,

PLP :=
{

x ∈ Rn ∩ [ℓ, u] : aT
i x ≤ bi ∀i ∈ I

}
.

* Corresponding author.
E-mail addresses: marco.luebbecke@rwth-aachen.de (M.E. Lübbecke), jonas.witt@rwth-aachen.de (J.T. Witt).
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Let I ′ ⊆ I and define the integer hull corresponding to the integer program that only consists of constraints
with index in I ′ as

X(I ′) := conv
{

x ∈ Zn ∩ [ℓ, u] : aT
i x ≤ bi ∀i ∈ I ′} .

In Dantzig–Wolfe reformulation for integer programs every solution x ∈ X(I ′) is reformulated as a convex
combination of extreme points of X(I ′). Thereby the variables x are replaced by new variables, one for
each extreme point of X(I ′), determining the coefficients in the convex combination. When we solve the LP
relaxation of the resulting integer program, we implicitly optimize over the polytope

PDW (I ′) :=
{

x ∈ Rn ∩ [ℓ, u] : aT
i x ≤ bi ∀i ∈ I \ I ′, x ∈ X(I ′)

}
,

which corresponds to convexifying the constraints with index in I ′ [1]. We remark that the polytope PDW (I ′)
is also obtained when the constraints with index in I \ I ′ are dualized in Lagrangian relaxation [2] or when
all valid inequalities for X(I ′) are added to the LP relaxation of (IP ). Furthermore, note that optimizing
over PDW (I ′) can be done in polynomial time if optimizing over X(I ′) can be done in polynomial time.

The strength of relaxations of integer programs is a classical and well-studied topic in polyhedral
combinatorics. For Dantzig–Wolfe reformulations in general we obviously have that

PIP ⊆ PDW (I ′) ⊆ PLP ∀I ′ ⊆ I. (1)

Since we are completely free to choose I ′ ⊆ I, and in particular both extreme cases PIP = PDW (I) and
PLP = PDW (∅) are possible, we must necessarily relate the notion of strength to the set of convexified
constraints. It was proven in the context of Lagrangian relaxation by Geoffrion [2] that the relation
PDW (I ′) ⊊ PLP holds only if

X(I ′) ⊊
{

x ∈ Rn ∩ [ℓ, u] : aT
i x ≤ bi ∀i ∈ I ′} . (2)

Notice that the opposite direction is not true in general: If Eq. (2) holds, but all valid inequalities for
X(I ′) are dominated by constraints aT

i x ≤ bi for i ∈ I, then PLP ⊆ X(I ′), and hence, PDW (I ′) = PLP .
Interestingly, this is already all we know about the strength of Dantzig–Wolfe reformulations of integer
programs in general. In order to make further progress, we will now focus on a particular problem but stay
generic in terms of reformulations.

In this context, the stable set problem is a canonical problem to study. In fact, the stable set problem was
used to understand the strength of other types of relaxations such as the Sherali–Adams, Lovász–Schrijver,
and Lasserre relaxations [3], the corner relaxation [4–6], as well as some other families of relaxations [7].
Note also that the stable set problem, and the closely related more general set packing problem, appear in
more general integer programs to model all kinds of “conflicts” arising in many applications. In fact, such
structures are extracted from general integer programs in the form of the conflict graph [8] in which feasible
solutions to the integer program correspond to stable sets. This in turn can be exploited when separating
cutting planes (such as clique or odd cycle inequalities).

The literature knows several Dantzig–Wolfe reformulations of the classical textbook model for the stable
set problem. This model has a constraint for each edge (see below), so that we interchangeably speak of
convexifying a subset of constraints and convexifying a subgraph. Warrier et al. [9] presented a branch-
and-price approach for the stable set problem, where they apply Dantzig–Wolfe reformulation either by
convexifying chordal induced subgraphs (such that optimizing over PDW (I ′) can be done in polynomial
time) or by convexifying induced subgraphs using a heuristic partitioning of the node set of the graph.
Sachdeva [10] extended the idea of Warrier et al. by using a partition of the edge set created from a partition of
the node set to obtain a potentially stronger Dantzig–Wolfe reformulation. Ribeiro et al. [11] used a similar
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idea when they applied Lagrangian relaxation to stable set problems arising in map labeling problems.
Campêlo and Corrêa [12] took a completely different approach and presented a Lagrangian relaxation based
on representatives of stable sets. Another idea of Warrier et al. was picked up by Gabrel [13], who convexified
perfect subgraphs such that optimizing over PDW (I ′) can again be done in polynomial time.

In contrast to all previous rather empirical work, that was also limited to reformulating specific classes of
subgraphs, we are interested in more fundamental and more general results. We stress that at this time, our
work is not meant to imply any computationally viable solution procedure for the stable set problem. Our
main results are a characterization of Dantzig–Wolfe reformulations for the stable set problem with PLP =
PDW (I ′) as well as a characterization of Dantzig–Wolfe reformulations with PIP = PDW (I ′). These findings
give new insights on the stable set polytope and (partially) extend to related problems like the matching
and the set packing problem. To the best of our knowledge, after Geoffrion’s 1974 paper [2], these are the
first non-trivial general results about the strength of relaxations obtained from decomposition methods.

2. The stable set problem

Let G = (V, E) be a simple, undirected graph with n := |V | nodes. A set of nodes S ⊆ V is called a stable
set in G if no nodes of S are adjacent in G, i.e., |e∩S| ≤ 1 for all e ∈ E. Note that each edge e ∈ E is a set of
nodes e = {u, v} for some u, v ∈ V with u ̸= v. Abbreviating, we denote the edge {u, v} with uv. Let S(G) be
the set of all stable sets in G. A stable set S∗ is called maximum stable set if S∗ ∈ argmax{|S| : S ∈ S(G)}.
The maximum cardinality α(G) := max{|S| : S ∈ S(G)} is called stability number of G. Given a weighting
w ∈ ZV

≥0 on the nodes, a stable set S∗ in G with weighting w is called maximum weighted stable set if
S∗ ∈ argmax{

∑
v∈Swv : S ∈ S(G)}. The maximum weight αw(G) := max{

∑
v∈Swv : S ∈ S(G)} is called

weighted stability number of G with weighting w. We denote the weight of stable set S using weighting w

with w(S) :=
∑

v∈Swv.
The classical way of formulating the maximum weighted stable set problem as an integer linear program

is to introduce a binary variable xv ∈ {0, 1} for each node v ∈ V indicating whether node v is in the stable
set (xv = 1) or not (xv = 0). Furthermore, we have a constraint for each edge e ∈ E enforcing that at most
one node in the stable set is incident to edge e. The objective is to maximize the weight of the stable set.
This leads to the following so-called edge formulation:

max
∑
v∈V

wv · xv

s. t. xu + xv ≤ 1 ∀uv ∈ E

x ∈ {0, 1}V .

For convenience, we denote by {0, 1}V the set of n-dimensional binary vectors, where the dimensions are
labeled according to the elements in V . The stable set polytope STAB(G) is defined as the convex hull of
incidence vectors of stable sets in G, i.e.,

STAB(G) := conv{x ∈ {0, 1}V : xu + xv ≤ 1 ∀uv ∈ E}.

The set of LP-feasible solutions for the edge formulation is denoted by FRAC(G) and is defined as

FRAC(G) := {x ∈ [0, 1]V : xu + xv ≤ 1 ∀uv ∈ E}.

We refer to FRAC(G) as the fractional stable set polytope and we call a solution x̄ ∈ FRAC(G) a fractional
stable set in G.

In Dantzig–Wolfe reformulation for integer programs a subset of the constraints is implicitly convexified.
Let E′ ⊆ E be a subset of the edges of G and define G′ := (V, E′). We will convexify all constraints
corresponding to edges in E′:

DW(G, G′) := {x ∈ [0, 1]V : xu + xv ≤ 1 ∀uv ∈ E \ E′, x ∈ STAB(G′)}.
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Specializing (1), the previously defined polytopes relate as

STAB(G) ⊆ DW(G, G′) ⊆ FRAC(G).

We want to investigate the strength of Dantzig–Wolfe reformulations by investigating the polytope
DW(G, G′). Especially, we are interested in conditions for G′ such that either STAB(G) = DW(G, G′)
or DW(G, G′) = FRAC(G) holds. Obviously, the identity STAB(G) = DW(G, G) holds because every
constraint is convexified. In this case the reformulation is strongest possible. If we choose E′ = ∅, the identity
FRAC(G) = DW(G, G′) holds and the reformulation is weakest possible. In the next section, we characterize
when exactly these strongest and weakest Dantzig–Wolfe reformulations for the stable set problem occur.

Notation. Let G = (V, E) be a graph. For V ′ ⊆ V we denote by G[V ′] the subgraph induced by V ′. We use
E(G′) to refer to the edge set of any subgraph G′ = (V ′, E′) of G, i.e., E(G′) = E′. Analogously define a
subset of nodes V (G′) = V ′. Let further G−C := (V, E\C) for any C ⊆ E denote the graph obtained from G

by deleting all edges e ∈ C. We analogously define G+C. For V ′ ⊆ V , N(V ′) := {v ∈ V \V ′ | u ∈ V ′, uv ∈ E}
defines the set of neighbors of V ′.

3. Weakest possible Dantzig–Wolfe reformulations

Nemhauser and Trotter [14] characterized graphs G such that the stable set polytope STAB(G) equals
the fractional stable set polytope FRAC(G).

Theorem 1 ([14]). Let G = (V, E) be a graph. Then FRAC(G) = STAB(G) holds if and only if G is
bipartite.

Thus, if G is bipartite, all three polytopes FRAC(G), DW(G, G′), and STAB(G) coincide, no matter how
we choose the graph G′. Note that the graph G′ is always bipartite in this case.

A graph is bipartite if and only if it does not contain an odd cycle, i.e., a cycle with an odd number
of nodes (and an odd number of edges). Let C = (VC , EC) be an odd cycle in G with |VC | = 2k + 1 for
some k ∈ Z>0. The following odd cycle inequality [15] is valid for the stable set polytopes STAB(G[VC ]) and
STAB(G): ∑

v∈VC

xv ≤ k.

We will use Theorem 1 and odd cycle inequalities in order to prove the following characterization of weakest
possible Dantzig–Wolfe reformulations:

Theorem 2. Let G = (V, E) be a graph, let E′ ⊆ E be a subset of the edges, and define G′ := (V, E′). Then
DW(G, G′) = FRAC(G) if and only if G′ is bipartite.

Proof. Consider the definitions of the polytopes:

DW(G, G′) = {x ∈ [0, 1]V : xu + xv ≤ 1 ∀uv ∈ E \ E′, x ∈ STAB(G′)},

FRAC(G) = {x ∈ [0, 1]V : xu + xv ≤ 1 ∀uv ∈ E}
= {x ∈ [0, 1]V : xu + xv ≤ 1 ∀uv ∈ E \ E′, x ∈ FRAC(G′)}.

It is easy to see that STAB(G′) = FRAC(G′) implies DW(G, G′) = FRAC(G). This also follows directly
from Geoffrion’s result [2].
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Now suppose DW(G, G′) = FRAC(G) holds and assume that STAB(G′) ̸= FRAC(G′). Then there exists
an odd cycle C = (VC , EC) in G′. Let x̄ be the solution with x̄v = 1

2 for v ∈ VC and x̄v = 0 otherwise. The
solution x̄ is obviously in FRAC(G), but x̄ is not in STAB(G′), because it does not satisfy the odd cycle
inequality corresponding to the odd cycle C. Since STAB(G′) ⊇ DW(G, G′), this implies x̄ ̸∈ DW(G, G′)
and therefore DW(G, G′) ̸= FRAC(G), which is a contradiction to the assumption DW(G, G′) = FRAC(G).

Thus, the equation DW(G, G′) = FRAC(G) holds if and only if STAB(G′) = FRAC(G′). Together with
Theorem 1 this proves the theorem. □

Notice that Theorem 2 (in combination with Theorem 1) shows that Geoffrion’s necessary condition [2]
for PDW (I ′) ⊊ PLP is sufficient when considering the edge formulation for the stable set problem.

4. Strongest possible Dantzig–Wolfe reformulations

Theorem 2 states that a Dantzig–Wolfe reformulation is stronger than the LP relaxation if and only if
G′ is not bipartite. Hence, G′ must contain some odd cycle. An odd induced cycle is an induced cycle with
an odd number of nodes, that is, at least three. An edge e is called chord of a cycle C = (VC , EC) in G

if e ̸∈ EC , but e ∈ E(G[VC ]). Hence, an odd induced cycle is an odd cycle without chords. The literature
calls odd induced cycles with at least five nodes odd holes. Since we explicitly include cycles on three nodes
(triangles or 3-cliques) we stick to odd induced cycles to avoid confusion. Note that a graph contains an odd
induced cycle if and only if it contains an odd cycle. Thus, a graph is bipartite if and only if it does not
contain an odd induced cycle. We prove in this section that we obtain a strongest possible reformulation,
i.e., the integer hull, if and only if G′ contains all odd induced cycles.

4.1. Necessary condition

Theorem 3. Let G = (V, E) be a graph, let E′ ⊆ E , and define G′ := (V, E′). If DW(G, G′) = STAB(G)
holds, then G′ contains all odd induced cycles of G.

Proof. Suppose that DW(G, G′) = STAB(G) holds and assume there exists an odd induced cycle
H = (VH , EH) that is not contained in G′, i.e., EH ̸⊆ E′. Hence, there exists an edge e ∈ EH with
e ̸∈ E′. Let VH = {v1, v2, . . . , v2k+1} and

EH = {vivi+1 : i = 1, . . . , 2k} ∪ {v1v2k+1}

for some k ∈ Z>0. Furthermore, let e = v1v2k+1.
The solution x̄ with x̄v = 1

2 for v ∈ VH and x̄v = 0 otherwise is obviously not in STAB(G), because
the odd cycle inequality

∑
v∈VH

xv ≤ k is not satisfied. The solution x̄ is a convex combination of incidence
vectors xeven and xodd of the stable sets Seven := {v2ℓ : ℓ = 1, . . . , k} and Sodd := {v2ℓ+1 : ℓ = 0, . . . , k} in G′,
respectively, using coefficients 1

2 for both incidence vectors, i.e., x̄ = 1
2 xeven + 1

2 xodd. Thus, x̄ ∈ STAB(G′)
holds. Furthermore, the edge inequalities xu + xv ≤ 1 ∀uv ∈ E \ E′ are satisfied, which implies that
x̄ ∈ DW(G, G′) holds. This contradicts the assumption DW(G, G′) = STAB(G). □

Note that Theorem 3 is not true if we replace odd induced cycles by odd cycles. The graph G = (V, E)
with V = {v1, . . . , v5} and E = {vivi+1 : 1 ≤ i ≤ 4} ∪ {v5v1, v2v5} gives a counter example. If we choose the
edge set of the graph G′ as E′ := {v1v2, v2v5, v5v1}, we already obtain DW(G, G′) = STAB(G), although
the odd cycle C = (VC , EC) with VC = V and EC = E \ {v2v5} is not covered by G′.

4.2. Sufficient condition

On our way to prove the converse of Theorem 3 we analyze the structure of (weighted graphs that define)
facets of the stable set polytope.
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The inequalities xv ≥ 0 and xv ≤ 1 for v ∈ V are called trivial inequalities. The inequalities xv ≥ 0 for
v ∈ V define facets of STAB(G), and the inequality xv ≤ 1 for some v ∈ V is a facet of STAB(G) if and
only if v is an isolated node. All other facets are called non-trivial. The edge inequalities xu + xv ≤ 1 for
uv ∈ E define facets (called edge-facets) if and only if uv is a maximal clique [15]. Let

∑
v∈V πvxv ≤ π0

be a non-trivial, non-edge facet of STAB(G). Then πv ≥ 0 for all v ∈ V , π0 > 0, and π0 = απ(G)
holds [16–18]. Let V0 := {v ∈ V : πv > 0} be the set of nodes corresponding to non-zero entries of π and
let G0 := G[V0] = (V0, E0) be the subgraph of G induced by V0. Using a simple projection argument, it is
easy to see that the inequality

∑
v∈V0

πvxv ≤ απ(G0) defines a facet of STAB(G0) [16]. This implies that
the identity π0 = απ(G0) holds. A graph G0 = (V0, E0) with weights πv > 0 for v ∈ V0 will be called
facet-graph [16,17] if

∑
v∈V0

πvxv ≤ π0 defines a facet of STAB(G0).
The following useful lemma gives us an idea of the special structure of facet-graphs.

Lemma 1 ([18]). Let G0 = (V0, E0) with weights πv > 0 for all v ∈ V0 be a connected facet-graph with
|V0| ≥ 3 and let uv ∈ E0 be an edge. Then there exists a maximum weighted stable set in G0 that contains
neither u nor v.

The following definition was also used in [16–18]. An edge e ∈ E in a graph G = (V, E) with weighting
π is called critical if απ(G − {e}) > απ(G) holds. A graph G with weighting π is called απ-critical if every
edge e ∈ E is critical.

The class of απ-critical graphs contains the well-known α-critical graphs, which are απ-critical graphs
with weights πv = 1 for all v ∈ V . For α-critical graphs the following theorem was proven by Andrásfai [19]
and inspired similar results [20,21] for α-critical graphs.

Theorem 4 ([19]). Let G0 = (V0, E0) with weights πv = 1 for all v ∈ V0 be a connected graph with |V0| ≥ 3
and let e ∈ E0 be a critical edge. Then there exists an odd induced cycle H = (VH , EH) in G0 containing
the edge e, i.e., e ∈ EH .

The following result is a generalization of Theorem 4 to the weighted case using a similar proof idea as
Andrásfai [19] used for the unweighted case.

Theorem 5. Let G0 = (V0, E0) with weights πv > 0 for all v ∈ V0 be a connected facet-graph with |V0| ≥ 3
and let e ∈ E0 be a critical edge. Then there exists an odd induced cycle H = (VH , EH) in G0 containing
the edge e, i.e., e ∈ EH .

Proof. Let e = uv ∈ E0 be a critical edge. Lemma 1 implies that there exists a maximum weighted
stable set S in G0 with u, v ̸∈ S. Let S+ be a maximum weighted stable set in G+

0 := G0 − {e}. Since we
deleted a critical edge to obtain G+

0 from G0, the weight of a maximum weighted stable set in G+
0 increases

compared to a maximum weighted stable set in G0. Hence, π(S+) > π(S) holds. Additionally, it holds that
u, v ∈ S+ because otherwise S+ contained at most one of the nodes incident to the deleted edge e = uv and,
thus, S+ would have been a stable set in G0 with larger weight than S (which would be a contradiction to
the maximality of S). Consider the induced bipartite subgraph Gbip := G+

0 [S+ \ S ∪ S \ S+] of G+
0 with

bipartition (S+ \ S, S \ S+).
Assume that u and v are in different connected components of Gbip. First, we remark that there are

no isolated nodes in Gbip, because otherwise we could increase the weight of either S or S+ which would
contradict the definition of these maximum weighted stable sets in G0 and G+

0 , respectively. Hence, each
connected component of Gbip has nodes in S \ S+ as well as in S+ \ S. Since

π(S+ \ S) = π(S+) − π(S+ ∩ S) > π(S) − π(S+ ∩ S) = π(S \ S+)
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Fig. 1. A sketch of the connected components of the graph Gbip and the stable set S++ depicted with solid border (under the
assumption that u and v are in different connected components of Gbip).

holds, there exists a connected component K of Gbip with

π(S+ \ S ∩ K) > π(S \ S+ ∩ K). (3)

Note that there does not exist an edge between the node set V (Gbip) = (S ∪S+)\ (S ∩S+) and the node set
S ∩ S+ in G0. Since the connected component of K is by definition not connected to the rest of the graph
Gbip and K contains by assumption not both u and v, we can replace (S \ S+) ∩ K by (S+ \ S) ∩ K in the
stable set S in order to obtain the following new stable set in G0

S++ := (S ∩ S+) ∪ ((S \ S+) \ K) ∪ (S+ \ S ∩ K) (4)

as sketched in Fig. 1.
Using inequality (3) in combination with the definition (4) of S++, we know that the weight π(S++) of

the stable set S++ in G0 is greater than the weight π(S) of the stable set S in G0:

π(S++) = π(S++ ∩ S) + π(S+ \ S ∩ K) > π(S++ ∩ S) + π(S \ S+ ∩ K) = π(S).

This contradicts the condition that S is a maximum weighted stable set in G0. Hence, u and v are in the
same connected component of Gbip.

Let P = (u, w1, . . . , wℓ, v) be some u-v-path of shortest length in Gbip. Note that P is an induced path
in Gbip. Since u and v are contained in the same partite set, the path has even length, i.e., ℓ + 1 = 2k

for some k ∈ Z>0. The odd cycle H = (VH , EH) of G0 with VH := uv ∪ {wi : i = 1, . . . , ℓ} and EH :=
{uw1, wℓv, uv}∪{wiwi+1 : i = 1, . . . , ℓ−1} is chordless and contains the edge e, which concludes the proof. □

Since not every edge of a facet-graph is critical, we will introduce a more general definition by considering
subsets of edges. A subset C ⊆ E of the edges is called critical if απ(G − C) > απ(G). The critical set C

of edges is minimal if απ(G − (C \ {e})) = απ(G) holds for all e ∈ C. Note that a set C = {e} containing
exactly one edge e is critical if and only if the edge e is critical.

The following lemma generalizes the result of Theorem 5 from critical edges to critical sets of edges.

Lemma 2. Let G0 = (V0, E0) with weights πv > 0 for all v ∈ V0 be a connected facet-graph with |V0| ≥ 3
and let C ⊆ E0 be a minimal critical set of edges. Then there exists an edge e ∈ C that is contained in an
odd induced cycle H = (VH , EH) in G0, i.e., e ∈ EH .

Proof. Since C is a minimal critical set of edges, each edge e ∈ C is critical in G0 − (C \ {e}). Let
C = {e0, . . . , e|C|−1} and Ck := {ei : k ≤ i ≤ |C| − 1} = {ek, . . . , e|C|−1} for all k ∈ Z with 1 ≤ k ≤ |C|. We
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will prove by induction on k ∈ Z with 1 ≤ k ≤ |C| that there exists an edge e ∈ C \ Ck = {e0, . . . , ek−1}
that is contained in an odd induced cycle of Gk := G0 − Ck.

In case k = 1, the edge e0 is critical in G0 − (C \ {e0}) and by Theorem 5 contained in an odd induced
cycle of G0 − (C \ {e0}) = G0 − C1 = G1.

Suppose the claim holds for some fixed k ∈ Z with 1 ≤ k ≤ |C| − 1 and let e ∈ C \ Ck = {e0, . . . , ek−1} be
an edge that is contained in an odd induced cycle H = (VH , EH) in Gk. We will prove that the claim also
holds for k + 1. When adding edge ek to the graph Gk = G0 − Ck in order to obtain Gk+1 = G0 − Ck+1,
the following cases can occur:

1. |ek ∩ VH | ≤ 1: In this case H is also an odd induced cycle in Gk+1 and the edge e ∈ C \ Ck ⊆ C \ Ck+1
is still an edge of the odd induced cycle H.

2. |ek ∩VH | = 2: In this case ek is a chord of the odd cycle H in Gk+1 and a new odd induced cycle H+ in
Gk+1 with ek ∈ E(H+) and E(H+) ⊊ EH ∪{ek} arising when the edge ek was added to the graph Gk.

By induction this proves the claim for k ∈ Z with 1 ≤ k ≤ |C|. For k = |C| we obtain the statement of
the theorem. □

We have seen that odd induced cycles and (minimal) critical (sets of) edges in facet-graphs are strongly
linked. The following lemma extends this link even more.

Lemma 3. Let G0 = (V0, E0) with weights πv > 0 for all v ∈ V0 be a connected facet-graph with |V0| ≥ 3.
Then there exists a connected απ-critical subgraph T = (V0, E(T )) with απ(G0) = απ(T ) such that every
edge e ∈ E(T ) is contained in some odd induced cycle He in G0, i.e., e ∈ E(He).

Proof. A connected απ-critical subgraph T = (V0, E(T )) of G0 can be obtained as follows [17,18]:

1. Let i := 0.
2. If Gi is απ-critical, define T := Gi as the απ-critical subgraph, otherwise continue.
3. If there exists a non-critical edge of Gi that is not contained in any odd induced cycle in G0, we select

such an edge as ei. Otherwise, let ei be any arbitrary non-critical edge of Gi. Let Gi+1 := Gi − ei.
4. Update i := i + 1 and go to step 2.

Note that at step 3, given some i ≥ 0, it holds that απ(Gi) = απ(Gi+1), because a non-critical edge was
deleted from Gi to obtain Gi+1. This implies απ(G0) = απ(G0 − Ē) for all Ē ⊆ E0 \ E(T ).

We remark that only step 3 differs from [17,18]: In order to obtain a connected απ-critical subgraph
T = (V0, E(T )) of G0, it suffices to choose an arbitrarily non-critical edge of Gi. Due to this modification,
we can prove that every edge e ∈ E(T ) is contained in some odd induced cycle He in G0, i.e., e ∈ E(He).

Assume there exists an edge e ∈ E(T ) that is not contained in an odd induced cycle in G0. Let
Ē ⊆ E(G0) \ E(T ) be a minimal subset of deleted edges such that e is critical in G0 − Ē. Note
that such a set Ē exists since e is critical in T and E(T ) ⊆ E \ Ē. Then, Ē ∪ {e} is critical since
απ(G0 − Ē − e) > απ(G0 − Ē) = απ(G0). Furthermore, the critical set Ē ∪ {e} is minimal since
απ(G0 − (Ē − e′) − e) = απ(G0 − (Ē − e′)) = απ(G0) for all e′ ∈ Ē. Then Ē ∪ {e} is a minimal critical set of
edges in G0 and by Lemma 2 there exists an edge eh ∈ Ē ∪ {e} that is part of an odd induced cycle in G0.
Before eh was removed from G0 both edges e and eh were not critical and, hence, we should have deleted
the edge e before edge eh. This is a contradiction to the fact that e is an edge in T and, therefore, was not
removed at all, whereas eh was removed. □

With Lemma 3 we are finally ready to prove one of our main results.

Theorem 6. Let G = (V, E) be a graph, let E′ ⊆ E, and define G′ := (V, E′). If G′ contains all odd
induced cycles of G, then DW(G, G′) = STAB(G) holds.
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Proof. Let
∑

v∈V πvxv ≤ π0 be some non-trivial, non-edge facet of STAB(G). Let V0 := {v ∈ V : πv > 0}
and let G0 := G[V0] = (V0, E0) be the induced subgraph on the nodes with positive weights. Then G0 with
weights πv > 0 for all v ∈ V0 is a facet-graph and |V0| ≥ 3 holds.

Let T0 = (V0, E(T0)) be a connected απ-critical subgraph of G0 such that every edge e ∈ E(T0) is
contained in some odd induced cycle in G0. Such a graph exists due to Lemma 3. Since G0 is an induced
subgraph of G, every induced cycle in G0 is also induced in G. Hence, by hypothesis all edges of T0 are
contained in E′ and T0 is a subgraph of G′.

Since π0 = απ(G0) = απ(T0), the inequality
∑

v∈V0
πvxv ≤ π0 is valid for STAB(T0). Since T0 is a

subgraph of G′, the inequality is also valid for STAB(G′), and therefore also for DW(G, G′) ⊆ STAB(G′).
The facet

∑
v∈V πvxv ≤ π0 was chosen arbitrarily, which implies that DW(G, G′) ⊆ STAB(G) and therefore

DW(G, G′) = STAB(G) holds. □

This allows us to characterize the strongest possible Dantzig–Wolfe reformulations.

Theorem 7. Let G = (V, E) be a graph, let E′ ⊆ E, and define G′ := (V, E′). Then DW(G, G′) = STAB(G)
if and only if G′ contains all odd induced cycles of G.

Proof. Follows directly from Theorems 3 and 6. □

5. A polyhedral result for the stable set polytope

When working on this paper it was pointed out to us by Bruce Reed that Theorem 7 can be stated as a
previously unproven result for the stable set polytope.

A pair of non-adjacent nodes (v, w) is called an odd pair in G if all induced v-w-paths have odd length.
Such pairs were particularly studied in the context of perfect graphs and the proof of the strong perfect
graph theorem. Note that (v, w) is an odd pair in G if and only if there exists no odd induced cycle in G+vw

containing the edge vw. This leads us to

Theorem 8. Let G = (V, E) be a graph and let v, w ∈ V with vw ̸∈ E. It holds that (v, w) is an odd pair
if and only if

STAB(G + vw) = {x ∈ STAB(G) : xv + xw ≤ 1}. (5)

Proof. By definition of the Dantzig–Wolfe polytope, the right hand side of Eq. (5) equals

DW(G + vw, G) = {x ∈ STAB(G) : xv + xw ≤ 1}.

By Theorem 7, the Dantzig–Wolfe polytope DW(G + vw, G) is equal to STAB(G + vw) if and only if G

contains all odd induced cycles of G + vw. This is the case if and only if (v, w) is an odd pair in G, which
proves the theorem. □

Theorem 8 was most recently proven using a different technique unrelated to Dantzig–Wolfe reformulations
by Witt et al. [22]. This again implies Theorem 7. It is still important to keep our (alternative) proof of
Theorem 7 for its insights into the structure of facet-graphs and the separation of cutting planes for the
stable set problem.

6. Dantzig–Wolfe reformulations for related problems

In this section we investigate the question as to what extent similar proof ideas are useful for characterizing
strongest and weakest Dantzig–Wolfe reformulations of other combinatorial optimization problems.
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6.1. The clique and the node covering problem

Theorem 7 immediately translates to the clique and the node covering problem because of their close
proximity to the stable set problem.

A (fractional) clique in a graph G = (V, E) is a (fractional) stable set in the complement graph G = (V, E)
and vice versa. This is why CLIQUE(G) = STAB(G) holds, where CLIQUE(G) denotes the convex hull
of incidence vectors of cliques in G. Analogously, this equation also holds for the corresponding fractional
polytopes, i.e., FCLIQUE(G) = FRAC(G), where

FCLIQUE(G) := {x ∈ [0, 1]V : xu + xv ≤ 1 ∀uv ∈ E}.

Hence, our results extend to the clique problem.
The complement of a (fractional) stable set is a (fractional) node cover and vice versa. Hence, x ∈

STAB(G) if and only if 1 − x ∈ NC(G), where NC(G) is the convex hull of incidence vectors of node covers
in G and 1 is the vector of suitable dimension having all entries equal to one. The same holds for the fractional
counterparts, the fractional stable set polytope FRAC(G) and the fractional node covering polytope

FNC(G) := {x ∈ [0, 1]V : xu + xv ≥ 1 ∀uv ∈ E}.

Since the function f : [0, 1]V → [0, 1]V , x ↦→ 1 − x is an affine isomorphism, affine independence is preserved
using this mapping. This implies that πT x ≤ π0 is a facet of the (fractional) stable set polytope if and only
if πT (1 − y) ≤ π0 (or equivalently πT y ≥ πT 1 − π0) is a facet of the (fractional) node covering problem.
This is why our results extend to the node covering problem.

6.2. The matching problem

Once our argumentation is in place, we can see other polyhedral results from the literature through this
lens. In particular, we exemplarily show how complete descriptions of integer hulls can be employed.

Let G = (V, E) be a graph with m := |E| edges. A set of edges M ⊆ E is called matching in G if no edges
of M are adjacent in G, i.e., |{e ∈ M : v ∈ e}| ≤ 1 for all v ∈ V . Let M(G) be the set of all matchings
in G. Given a weighting w ∈ ZE

≥0 on the edges, a matching M∗ in G with weighting w is called maximum
weighted matching if M∗ ∈ argmax{

∑
e∈M we : M ∈ M(G)}.

The maximum weighted matching problem can be formulated as an integer linear program by introducing
a binary variable xe ∈ {0, 1} for each edge e ∈ E indicating whether edge e is in the matching (xe = 1) or
not (xe = 0). Furthermore, we have a constraint for each node v ∈ V enforcing that at most one edge in the
matching is incident to node v. The objective is to maximize the weight of the matching. This leads to the
so-called node formulation:

max
∑
e∈E

we · xe

s. t. x(δ(v)) ≤ 1 ∀v ∈ V

x ∈ {0, 1}E ,

where δ(v) := {e ∈ E : v ∈ e} for v ∈ V denotes the set of incident edges to v and x(Ẽ) :=
∑

e∈Ẽxe for
Ẽ ⊆ E. Note that δ(v) refers to the set of edges incident to v in a particular graph G. We will use the
notation δG(v) whenever it is ambiguous which graph is referred to.

The matching polytope MP(G) is defined as the convex hull of incidence vectors of matchings in G, i.e.,

MP(G) := conv{x ∈ {0, 1}E : x(δ(v)) ≤ 1 ∀v ∈ V }.
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The set of LP-feasible solutions for the node formulation is denoted by FMP(G) and is defined as

FMP(G) := {x ∈ [0, 1]E : x(δ(v)) ≤ 1 ∀v ∈ V }.

We refer to FMP(G) as the fractional matching polytope.
Let V ′ ⊆ V be a subset of the nodes of G. We define

MP(G, V ′) := conv
{

x ∈ {0, 1}E : x(δ(v)) ≤ 1 ∀v ∈ V ′} .

Note that the polytope MP(G, V ′) has the same dimension as the polytope MP(G), but only the degree
constraints corresponding to nodes in V ′ are considered in the definition of the polytope MP(G, V ′).
Obviously, it holds that MP(G, V ) = MP(G). Similarly, we define the corresponding fractional polytope

FMP(G, V ′) :=
{

x ∈ [0, 1]E : x(δ(v)) ≤ 1 ∀v ∈ V ′} .

Following Dantzig–Wolfe reformulation, we will convexify all constraints of the node formulation correspond-
ing to nodes in V ′:

DW(G, V ′) :=
{

x ∈ [0, 1]E : x ∈ MP(G, V ′), x(δ(v)) ≤ 1 ∀v ∈ V \ V ′} .

Before we consider weakest and strongest possible Dantzig–Wolfe reformulations for the matching problem,
we repeat known results on the matching problem and the corresponding polytopes from the literature.

The following theorem plays a role identical to Theorem 1 for the stable set problem.

Theorem 9 ([23]). Let G = (V, E) be a graph. Then, FMP(G) = MP(G) ⇐⇒ G is bipartite.

In contrast to the stable set polytope, a complete description for the matching polytope is known.

Theorem 10 ([24]). Let G = (V, E) be a graph. The matching polytope MP(G) can be described using the
node inequalities as well as the so-called blossom inequalities:

MP(G) =
{

x ∈ [0, 1]E : x (δG(v)) ≤ 1 ∀v ∈ V,

x (E(S)) ≤ |S| − 1
2 ∀S ⊆ V, |S| odd

}
,

where E(S) := E (G[S]) for S ⊆ V .

In fact, not all blossom inequalities are necessary for a complete description of the matching polytope.
The following class of graphs will be important to see this. A graph G = (V, E) is called factor-critical [25]
if G[V \ {v}] has a perfect matching for each v ∈ V . For example, every odd cycle is factor-critical. Note
that each factor-critical graph has an odd number of nodes. With this definition at hand, we can state the
following result proven by Edmonds [25]:

Theorem 11 ([25]). Let G = (V, E) be a graph and let S ⊆ V with |S| odd. Then x(E(S)) ≤ |S|−1
2 is a

facet of MP(G) if and only if G[S] is 2-connected and factor-critical.

In contrast to the stable set problem, we used a modified polytope, namely MP(G, V ′), instead of the
matching polytope of a subgraph to define the Dantzig–Wolfe polytope DW(G, V ′). The following lemma
will be helpful when working with the polytope MP(G, V ′) and its fractional counterpart FMP(G, V ′).

Lemma 4. Let G = (V, E) and let G′ := G[V ′] = (V ′, E′) be the subgraph induced by V ′ ⊆ V . Then there
exists a graph G̃ = (Ṽ , Ẽ) with (i) Ṽ ⊇ V ′, (ii) G̃[V ′] = G′, and (iii) dG̃(v) := |δG̃(v)| ≤ 1 for v ∈ Ṽ \ V ′,
such that the polytopes FMP(G, V ′) and FMP(G̃) as well as MP(G, V ′) and MP(G̃) are isomorphic.
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Proof. Let δG(V ′) :=
⋃

v∈V ′δG(v). Note that E′ ⊆ δG(V ′). For each e = uv ∈ δG(V ′) \ E′ with v ∈ V \ V ′

define a new node ve and a new edge ẽ := uve. For each e = uv ∈ E \ δG(V ′) define new nodes ue and ve as
well as a new edge ˜̃e := ueve. Let G̃ := (Ṽ , Ẽ) be the graph with

Ṽ := V ′ ∪ {ve : e = uv ∈ δG(V ′) \ E′, v ∈ V \ V ′}
∪ {ue, ve : e = uv ∈ E \ δG(V ′)}

Ẽ := E′ ∪ {ẽ : e ∈ δG(V ′) \ E′} ∪ {˜̃e : e ∈ E \ δG(V ′)}.

With this definition of G̃ it is easy to see that the polytopes FMP(G, V ′) and FMP(G̃) as well as MP(G, V ′)
and MP(G̃) are isomorphic. □

Using Lemma 4, Theorem 9 can be extended to the polytopes FMP(G, V ′) and MP(G, V ′) as follows:

Lemma 5. Let G = (V, E) be a graph and let G′ := G[V ′] = (V ′, E′) be the subgraph of G induced by
V ′ ⊆ V . Then, FMP(G, V ′) = MP(G, V ′) ⇐⇒ G′ is bipartite.

Furthermore, we can derive a complete description for MP(G, V ′) using Theorems 10 and 11 in
combination with Lemma 4:

Corollary 1. Let G = (V, E) be a graph and let V ′ ⊆ V be a subset of nodes. The polytope MP(G, V ′) can
be described as follows:

MP(G, V ′) =
{

x ∈ [0, 1]E : x(δG(v)) ≤ 1 ∀v ∈ V ′,

x(E(S)) ≤ |S| − 1
2 ∀S ⊆ V ′, (6)

G[S]2-connected and factor-critical
}

.

By means of the results for the polytopes MP(G, V ′) and FMP(G, V ′), we can investigate Dantzig–
Wolfe reformulations for the matching problem: The following theorem makes an analogous statement to
Theorem 2 and characterizes the weakest possible Dantzig–Wolfe reformulations of the node formulation for
the matching problem:

Theorem 12. Let G = (V, E) be a graph and let V ′ ⊆ V be a subset of nodes. Then, FMP(G) = DW(G, V ′)
holds if and only if G′ is bipartite.

Proof. Necessity follows from Geoffrion’s result [2] in combination with Lemma 5.
For sufficiency suppose FMP(G) = DW(G, V ′) holds and assume that the graph G′ is not bipartite. Then

there exists an odd cycle H in G′. Let x̄ be the solution with

x̄e =

⎧⎨⎩
1
2 if e ∈ E(H)

0 otherwise.

The solution x̄ is obviously in FMP(G) but not in MP(G, V ′), because it does not satisfy the blossom
inequality corresponding to V (H). Since MP(G, V ′) ⊇ DW(G, V ′), this implies x̄ ̸∈ DW(G, V ′). Therefore,
DW(G, V ′) ̸= FMP(G), which is a contradiction to the assumption DW(G, V ′) = FMP(G). □

Similar to Theorem 2 for the stable set problem, Theorem 12 (in combination with Lemma 5) shows that
Geoffrion’s necessary condition [2] for PDW (I ′) ⊊ PLP is sufficient when considering the node formulation
for the matching problem.

On the other hand, strongest possible Dantzig–Wolfe reformulations of the node formulation for the
matching problem are characterized as follows:
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Theorem 13. Let G = (V, E) be a graph and let V ′ ⊆ V be a subset of nodes. Then MP(G) = DW(G, V ′)
holds if and only if G′ contains all 2-connected, factor-critical induced subgraphs of G.

Proof. If G′ contains all 2-connected, factor-critical induced subgraphs of G, then Corollary 1 implies that
MP(G) = DW(G, V ′).

Suppose MP(G) = DW(G, V ′) holds and assume there exists a 2-connected, factor-critical induced
subgraph G[S] of G for some S ⊆ V with S ̸⊆ V ′. Hence, there exists some v ∈ S with v ̸∈ V ′. Since
G[S] is factor-critical, there exists some vertex x ∈ FMP(G[S]) with x ∈ {0, 1

2 , 1}E(S) and x(E(S)) = |S|
2

for which {e ∈ E(S) : xe = 1
2 } consists of a single cycle containing node v [26,27]. Let {ei = vivi+1 : i =

1, . . . , 2k} ∪ {e2k+1 = v1v2k+1} ⊆ E(S) with v = v1 be this cycle for some k ∈ Z>0. The solution x̄ ∈ [0, 1]E
with x̄e = xe for e ∈ E(S) and x̄e = 0 otherwise is obviously not in MP(G), because the blossom inequality
corresponding to S is not satisfied. The solution x̄ is a convex combination of incidence vectors xeven and xodd

of the edge sets Meven := {e2ℓ : ℓ, . . . , k}∪{e ∈ E : x̄e = 1} and Modd := {e2ℓ+1 : ℓ, . . . , k}∪{e ∈ E : x̄e = 1}
using coefficients 1

2 for both incidence vectors, i.e., x̄ = 1
2 xeven+ 1

2 xodd. Notice that Meven is a matching in G,
and hence, xeven ∈ MP(G) ⊆ DW(G, V ′). On the contrary, Modd is no matching in G since e1 = v1v2 ∈ Modd

and e2k+1 = v2k+1v1 ∈ Modd. Nevertheless, it holds that xeven ∈ DW(G, V ′) because there is no degree
constraint corresponding to node v = v1 in a full description of MP(G, V ′) (compare Corollary 1). Hence,
x̄ ∈ DW(G, V ′), which contradicts the assumption MP(G) = DW(G, V ′). □

We have seen that we can characterize weakest and strongest possible Dantzig–Wolfe reformulations
for the matching problem using results from the literature. In particular, we exploited that a complete
description of the matching polytope is known in order to prove the sufficient condition for strongest
possible Dantzig–Wolfe reformulations. Besides, the structure of most proofs is similar to the structure
of the corresponding proofs for the stable set problem. In the same way, one may derive similar results for
other problems for which a complete description of the corresponding integer hull is known.

6.3. The set packing problem

The set packing problem is intimately related to the stable set problem. Nevertheless, characterizing
weakest and strongest possible Dantzig–Wolfe reformulations for the set packing problem seems to be more
challenging, as we will see next.

Let A ∈ {0, 1}m×n and c ∈ Qn. The set packing problem is the following binary program:

(SP ) max cT x
s. t. Ax ≤ 1

x ∈ {0, 1}n.

The set packing polytope SP(A) is defined as

SP(A) := conv{x ∈ {0, 1}n : Ax ≤ 1}.

The set of LP-feasible solutions to (SP ) is denoted by FSP(A) and is defined as

FSP(A) := {x ∈ [0, 1]n : Ax ≤ 1}.

The polytope FSP(A) is called fractional set packing polytope. Furthermore, we call solutions x̄ ∈ SP(A)
set packings and solutions x̄ ∈ FSP(A) fractional set packings. Let I ′ ⊆ I := {1, . . . , m} and let
A′ := AI′ ∈ {0, 1}|I′|×n be the matrix that consists of the rows with index in I ′. Analogously to the
stable set problem, we define the Dantzig–Wolfe polytope DW(A, A′) corresponding to the Dantzig–Wolfe
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reformulation of (SP ), where the constraints A′x ≤ 1 are convexified, as

DW(A, A′) :=
{

x ∈ [0, 1]n : AI\I′x ≤ 1, x ∈ SP(A′)
}

.

A matrix A ∈ {0, 1}m×n is called perfect [28,29] if and only FSP(A) = SP(A).
We denote with Aij the entry of matrix A in the ith row and jth column; with Ai· we denote the row

vector corresponding to the ith row. A row Ar· of A is dominated [30] by row As· of A with r ̸= s if Ar· ≤ As·
holds, where the comparison is componentwise. Let G(A) = (V (A), E(A)) be the conflict graph [30] of A,
i.e., V (A) = {1, . . . , n} and uv ∈ E(A) if and only if there exists a row r such that Aru = Arv = 1. Note that
SP(A) = STAB(G(A)) and FSP(A) ⊆ FRAC(G(A)) [15]. This is why we sometimes refer to set packings
as stable sets in the conflict graph. Using these observations, we can derive the following subset relation for
the Dantzig–Wolfe polytopes of the respective problems:

DW(A, A′) =
{

x ∈ [0, 1]n : AI\I′x ≤ 1, x ∈ SP(A′)
}

=
{

x ∈ [0, 1]n : x ∈ FSP(AI\I′), x ∈ SP(A′)
}

=
{

x ∈ [0, 1]n : x ∈ FSP(AI\I′), x ∈ STAB(G(A′))
}

⊆
{

x ∈ [0, 1]n : x ∈ FRAC(G(AI\I′)), x ∈ STAB(G(A′))
}

= {x ∈ [0, 1]n : xu + xv ≤ 1 ∀uv ∈ E(AI\I′), x ∈ STAB(G(A′))}
= DW(G(A), G(A′)).

A matrix A ∈ {0, 1}m×n is a clique-node incidence matrix of graph G = (V, E) with n = |V | if there is a
one-to-one correspondence between the maximal cliques of G and the rows of A such that for each maximal
clique Q ⊆ G there exists some row j of A with Aij = 1 for i ∈ V (Q) and Aij = 0 for i ∈ V \ V (Q).

Perfect matrices are closely related to perfect graphs:

Theorem 14 ([31]). A matrix A ∈ {0, 1}m×n is perfect if and only if its non-dominated rows form the
clique-node incidence matrix of a perfect graph.

In the following, we will investigate Dantzig–Wolfe reformulations for the set packing problem using the
results for the stable set problem and similar proof ideas.

6.3.1. Weakest possible Dantzig–Wolfe reformulations
When investigating weakest possible Dantzig–Wolfe reformulations for the set packing problem, the results

obtained for the stable set problem are unfortunately not helpful, although the corresponding fractional
polytopes are related to each other. We remark that the fractional set packing polytope FSP(A) can
be obtained by adding “some” clique inequalities to the description of the fractional stable set polytope
FRAC(G(A)).

Nevertheless, we can use Geoffrion’s result in combination with the definition of perfect matrices in order
to obtain the following sufficient condition for DW(A, A′) = FSP(A):

Corollary 2. Let A ∈ {0, 1}m×n be a matrix and let A′ be a submatrix of A with A′ = AI′ for some
I ′ ⊆ I := {1, . . . , m}. If A′ is perfect, then DW(A, A′) = FSP(A) holds.

Proof. Follows from Geoffrion [2] and the definition of perfect graphs. □

In contrast to the specialization of Geoffrion’s necessary condition for PDW (I) ⊊ PLP [2] in context of
the stable set problem, this is not a sufficient condition for PDW (I) ⊊ PLP in the context of the set packing
problem. Note that constraints in AI\I′x ≤ 1 can be much stronger than the edge constraints xu + xv ≤ 1
for uv ∈ E \ E′.
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Fig. 2. Example of a conflict graph G(A) belonging to a set packing problem, in which the condition of Proposition 1 is satisfied,
but the condition of Corollary 2 is not.

Consider the example of Fig. 2: Suppose the rows of A correspond to the maximal cliques in the graph
depicted in Fig. 2. When A′ consists of all constraints but the constraint corresponding to the clique
G[{1, 2, 5}], then DW(A, A′) = SP(A). Note that G(A′) is not perfect because of the odd induced cycle
consisting of the node set {1, 2, 3, 4, 5}. This example shows that the condition of Corollary 2 is not a
necessary condition for DW(A, A′) = FSP(A).

Nevertheless, we can generalize the sufficient condition for PDW (I) = PLP used in Corollary 2 as follows:

Proposition 1. Let A ∈ {0, 1}m×n be a matrix and let A′ be a submatrix of A with A′ = AI′ for some
I ′ ⊆ I := {1, . . . , m}. If there exists a perfect graph G̃ with G(A′) ⊆ G̃ ⊆ G(A) and all clique inequalities
corresponding to cliques in G̃ are dominated by constraints in Ax ≤ 1, then DW(A, A′) = FSP(A) holds.

Proof. Let Ã be the clique-node incidence matrix of G̃. Because G(A′) is a subgraph of G̃, it holds
STAB(G(A′)) ⊇ STAB(G̃) and

SP(A′) ⊇ SP(Ã). (7)

Furthermore, it holds that

SP(Ã) = FSP(Ã) (8)

since Ã is the clique-node incidence matrix of the perfect graph G̃.
Since all clique inequalities corresponding to cliques in G̃ are dominated by constraints in Ax ≤ 1, the

following holds

{x ∈ [0, 1]n : Ax ≤ 1} = {x ∈ [0, 1]n : Ax ≤ 1, Ãx ≤ 1}. (9)

Finally, the following subset relations complete the proof:

FSP(A) = {x ∈ [0, 1]n : Ax ≤ 1}
(9)= {x ∈ [0, 1]n : Ax ≤ 1, Ãx ≤ 1}
= {x ∈ [0, 1]n : Ax ≤ 1, x ∈ FSP(Ã)}
(8)= {x ∈ [0, 1]n : Ax ≤ 1, x ∈ SP(Ã)}
(7)
⊆ {x ∈ [0, 1]n : AI\I′x ≤ 1, x ∈ SP(A′)}
= DW(A, A′)
⊆ FSP(A). □



Please cite this article in press as: M.E. Lübbecke, J.T. Witt, The strength of Dantzig–Wolfe reformulations for the stable set and related
problems, Discrete Optimization (2018), https://doi.org/10.1016/j.disopt.2018.07.001.

16 M.E. Lübbecke, J.T. Witt / Discrete Optimization ( ) –

Notice that in an arbitrary graph G̃ ⊆ G(A) there can exist clique inequalities corresponding to cliques in
G̃ that are not dominated by constraints in Ax ≤ 1 only if A is no clique-node incidence matrix. Furthermore,
we remark that the set packing problem from Fig. 2 satisfies the condition of Proposition 1 (by choosing
G̃ = G(A), which is a perfect graph).

The sufficient condition for DW(A, A′) = FSP(A) used in Proposition 1 is related to the perfect graph
sandwich problem. Given the edge set E of a graph G, let E denote the edge set of the complement graph
G. The sandwich problem for property Π [32,33] is the following problem: Given a graph G = (V, E)
and a set E0 ⊆ E of (optional) additional edges, we ask whether there exists a graph G′ = (V, E′) with
E ⊆ E′ ⊆ E ∪ E0 satisfying the desired property Π (such as being perfect in our case). The complexity of
the perfect graph sandwich problem is still open [32,33]. This is one of the reasons why this problem seems
difficult to tackle. Unfortunately, we were not yet able to find a counterexample or prove that the sufficient
condition for DW(A, A′) = FSP(A) used in Proposition 1 is also a necessary condition.

6.3.2. Strongest possible Dantzig–Wolfe reformulations
The characterization of strongest possible Dantzig–Wolfe reformulations for the stable set problem can

be helpful when investigating strongest possible Dantzig–Wolfe reformulations for the set packing problem
because the corresponding integer hulls are identical. Using the observations on the correspondence between
the polytopes introduced in the context of the stable set and the set packing problem, we can easily derive
the following sufficient condition for DW(A, A′) = SP(A):

Corollary 3. Let A ∈ {0, 1}m×n be a matrix and let A′ be a submatrix of A with A′ = AI′ for some
I ′ ⊆ I := {1, . . . , m}. If for every e ∈ E(A) that is contained in an odd induced cycle of G(A) it holds that
e ∈ E(A′), then DW(A, A′) = SP(A) holds.

Proof. Under the hypothesis, Theorem 7 implies

DW(G(A), G(A′)) = STAB(G(A)). (10)

The following subset relations complete the proof:

SP(A) ⊆ DW(A, A′)
⊆ DW(G(A), G(A′))
(10)= STAB(G(A))
= SP(A). □

An antihole is the complement graph of an odd hole. Let H = (VH , EH) be an odd antihole in G(A) with
|VH | = 2k + 1 for some k ∈ Z with k ≥ 2. The following odd antihole inequality [15] is valid for the set
packing polytope SP(A) (and for the stable set polytope STAB(G(A))):∑

v∈VH

xv ≤ 2.

Using this together with a similar proof idea as in the context of the stable set problem, we can derive the
following necessary condition for DW(A, A′) = SP(A):

Corollary 4. Let A ∈ {0, 1}m×n be a matrix and let A′ be a submatrix of A with A′ = AI′ for some
I ′ ⊆ I := {1, . . . , m}. If DW(A, A′) = SP(A) holds, then for every e ∈ E(A) that is contained in an odd
hole or odd antihole of G(A) it holds that e ∈ E(A′).
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Fig. 3. Odd antihole H = (VH , EH ) for k = 3 used in the proof of Corollary 4. The solid edges are contained in G(A′), whereas
the dashed edge is not.

Proof. Suppose that DW(A, A′) = SP(A) holds and assume there exists an odd hole H = (VH , EH) of
G(A) that is not contained in G(A′), i.e., EH ̸⊆ E(A′). Analogously to the proof of Theorem 3, we can
create a solution x̄ ∈ DW(A, A′) that does not satisfy the odd cycle inequality corresponding to the odd
hole H such that x̄ ̸∈ SP(A) holds. This contradicts the assumption DW(A, A′) = SP(A).

Now suppose that DW(A, A′) = SP(A) holds and assume there exists an odd antihole H = (VH , EH) of
G(A) that is not contained in G(A′), i.e., EH ̸⊆ E(A′). Hence, there exists an edge e ∈ EH with e ̸∈ E(A′).
Let VH = {v1, v2, . . . , v2k+1} and

EH = E(A) \ ({vivi+1 : i = 1, . . . , 2k} ∪ {v1v2k+1})

for some k ∈ Z>0. W.l.o.g., let e = v1v3. The antihole is depicted in Fig. 3.
The solution x̄ with

x̄v :=

⎧⎨⎩
1
2 if v ∈ {v1, v2, v3, v2k, v2k−1}

0 otherwise,

is obviously not in SP(A), because the odd antihole inequality
∑

v∈VH
xv ≤ 2 is not satisfied. The solution

x̄ is a convex combination of set packings x1 and x2 in G(A′) with

x1
v :=

{
1 if v = v1, v2, v3
0 otherwise,

and

x2
v :=

{
1 if v = v2k, v2k−1
0 otherwise,

using coefficients 1
2 for both set packings, i.e., x̄ = 1

2 x1 + 1
2 x2. Thus, x̄ ∈ SP(A′) holds. Furthermore, the

solution x̄ satisfies Ax̄ ≤ 1 by construction. This implies that x̄ ∈ DW(A, A′) holds, which contradicts the
assumption that DW(A, A′) = SP(A). □

Consider the conflict graph in Fig. 4 and suppose that we are given a matrix A that has a row for each
3-clique in the conflict graph.

In order to obtain a strongest possible Dantzig–Wolfe reformulation, it is not clear what to do with the
(rows that induce) edges in the conflict graph that are contained in 3-cliques, but not in an odd hole or
odd antihole. The set packing polytope SP(A) (or equivalently, the stable set polytope STAB(G(A))) is
completely described by the odd wheel inequality

∑5
v=1xv + 2x6 ≤ 2 and the 3-cliques. In this example, the

reformulation is strongest possible, i.e., DW(A, A′) = SP(A), if and only if the odd wheel G[{1, . . . , 6}] is
contained in the conflict graph G(A′).

Considering the following three cases, we should get an idea why it seems difficult to decide whether an
edge that belongs to a 3-clique in the conflict graph G(A) should be contained in the conflict graph G(A′):
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Fig. 4. Example of a conflict graph G(A) belonging to a set packing problem, in which it is difficult to decide which conflicts
that correspond to edges in 3-cliques in G(A) should be represented in the conflict graph G(A′) in order to construct a strongest
possible Dantzig–Wolfe reformulation.

• Choose A′ such that E(A′) = E(A) \ {{1, 7}, {2, 7}, {1, 8}, {5, 8}}. In this case DW(A, A′) = SP(A)
holds because the odd wheel is contained in the conflict graph G(A′). All odd holes but not all 3-cliques
(the outer ones are missing) are represented in the conflict graph G(A′).

• Choose A′ such that E(A′) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}. In this case DW(A, A′) ̸= SP(A)
holds because the odd wheel is not contained in the conflict graph G(A′). All odd holes but not all
3-cliques (all 3-cliques are missing) are represented in the conflict graph G(A′).

• Choose A′ such that E(A′) = E(A) \ {{1, 6}}. In this case DW(A, A′) ̸= SP(A) holds because the odd
wheel is not contained in the conflict graph G(A′). All odd holes but not all 3-cliques (some inner ones
are missing) are represented in the conflict graph G(A′).

This example shows that we have to further differentiate the conflicts contained in 3-cliques of the conflict
graph. In order to choose A′ in such a way that DW(A, A′) = SP(A) holds, it is crucial whether the 3-clique
{1, 2, 6} or the 3-clique {1, 2, 7} (analogously, {1, 5, 6} or {1, 5, 8}) is represented in the conflict graph G(A′).

7. Discussion

Dantzig–Wolfe reformulation of an integer program naturally lends itself to a multitude of relaxations since
we are free to choose the decomposition to apply to a model. In particular, we always have the (uninteresting)
options to reformulate all constraints, thereby obtaining the integer hull, or to reformulate no constraint,
leading to the LP relaxation. Consequently, asking for “the” strength of Dantzig–Wolfe reformulation is non-
obvious in general. As a seminal step towards an answer, we focus on the textbook model of the stable set
problem. It has been the object of study in previous investigations of the strength of several other relaxations.

In this paper, we characterize the two extreme cases. We have seen that we obtain a weakest
possible Dantzig–Wolfe reformulation if and only if the convexified subgraph is bipartite. A Dantzig–Wolfe
reformulation that is strongest possible is obtained if and only if the convexified subgraph contains all odd
induced cycles of the original graph.

The proofs leading to Theorem 7 give new insights into the structure of facet-graphs and on the separation
of cutting planes for the stable set problem. Sewell asked in his Ph.D. thesis [18] if every pair of critical edges
in a facet-graph is contained in an odd induced cycle. We reconsidered this question and proved that every
critical edge in a facet-graph is contained in an odd induced cycle. In addition, we generalized this result
to critical sets of edges. Furthermore, we proved that every facet-graph contains a connected απ-critical
subgraph with the same set of nodes such that every edge of the connected απ-critical subgraph is contained
in an odd induced cycle of the initial facet-graph. When searching for facet-inducing cutting planes, we only
have to consider the subgraph spanned by all edges contained in some odd induced cycle of the graph.
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We see it as a contribution of independent interest that our results motivated viewing at polyhedral results
from a different angle. The main theorem of Witt et al. [22], a polyhedral characterization of odd pairs in
graphs, can be proven using our characterization of a strongest possible Dantzig–Wolfe decomposition (see
proof of Theorem 8) and vice versa (see [22]).

Computational implications of our work may be interesting, but are out of the scope of this paper. If we
wanted to apply the strongest possible Dantzig–Wolfe reformulation for the stable set problem in practice,
we had to decide which edges are contained in an odd induced cycle. Unfortunately, deciding this for a given
edge is an NP-complete problem already [34]. Moreover, the parameterized problem of deciding whether
a given edge is contained in an odd hole of size at most k for some given parameter k ∈ Z≥3 is W[1]-
complete [35]. Even if we managed to practically produce the reformulation, we expect the LP relaxation
of the Dantzig–Wolfe reformulation to be too hard to solve effectively in practice. Then again, the actual
strengthening of the formulation by Dantzig–Wolfe reformulation also depends on the objective function,
and a theoretically weak reformulation may be strong in practice (and vice versa). From a theoretical point
of view, a logical next step is to investigate Dantzig–Wolfe reformulations between the two extremes. An
interesting family of reformulations for the stable set problem is obtained by convexifying all odd induced
cycles of size at most k ∈ Z≥0, which may be fixed or dependent on the size of the graph. This may yield
a provably strong formulation, while solving the LP relaxation of the Dantzig–Wolfe reformulation stays
computationally tractable.

The most interesting question is how our work can be further developed or generalized. While we were
able to extend our characterizations to intimately related problems, the still related but richer set packing
problem defied our efforts (we were not able to close the gap between our necessary and sufficient conditions
for weakest and strongest possible Dantzig–Wolfe reformulations). This will not become easier when models
become more complex. For other combinatorial optimization problems or integer programs in general it is
not clear whether a proper subset of constraints exists that, when convexified, yield the respective integer
hull. So one would need to settle with less. Therefore, it would be interesting to investigate the strength of
Dantzig–Wolfe reformulations relative to other relaxations, when both are applied to the same problem and
model. Such an endeavor could theoretically support practical evidence that Dantzig–Wolfe reformulations
cannot (much) be further strengthened by generic classes of cutting planes [36].

We hope that our work contributes to an understanding of and spawns further interest in “the” strength
of Dantzig–Wolfe reformulations in general.
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