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We propose a new mixed integer programming formulation and solution algorithm for a multi-mode

resource-constrained project scheduling problem with availability constraints (calendars) and the objective

to minimize the resource availability cost. Our model exploits the problem structure and has an exponential

number of variables, which necessitates a column generation approach. The linear programming relaxation

is strengthened by adding valid inequalities that need to be carefully separated in order to show the desired

effect. Integer optimal solutions are obtained by an exact state-of-the-art branch-price-and-cut algorithm.

Classical time-indexed mixed integer programming formulations for similar problems quite often fail already

on instances with only 30 jobs, depending on the network complexity and the total freedom of arranging

jobs. A reason is the typically very weak linear programming relaxation. Our model can be interpreted as

a non-trivial Dantzig–Wolfe reformulation of a time-indexed formulation. In particular, for larger instances

our reformulation gives significantly tighter dual bounds, enabling us to optimally solve instances with 50

multi-mode jobs. This outperforms the classical formulation by far.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a complex project scheduling problem that is mo-

tivated by an industrial application from chemical engineering. It

was recently introduced in Megow, Möhring, and Schulz (2011) as

turnaround scheduling: For the inspection and renewal of parts in

chemical plants, these are shut down and disassembled, work is done,

and plants are finally rebuilt. This induces a partial ordering of jobs to

be done. Jobs are multi-mode, that is, they can be sped-up to a certain

extent by investing in more workers. The time horizon and the num-

ber of workers hired for each job determine production downtime

and working cost. We thus face a time-cost tradeoff, and a solution

approach to turnaround scheduling is to binary search over the time

horizon. For a fixed time horizon—which is assumed throughout this

paper—the problem turns into a resource leveling problem, i.e., we
✩ A preliminary version appeared in Coughlan, Lübbecke, and Schulz (2010). Our new

computational results reveal that the tighter dual bounds are a crucial ingredient for

solving the proposed instances. With new cutting planes and a customized branching

strategy, we increase the critical size of hard instances from before 30 to 50 jobs.
∗ Corresponding author. BASF SE, Scientific Computing, Carl-Bosch-Straße 31, 67056
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eed to decide how many workers are hired—this number is then

xed for the entire time horizon.

Workers, or more generally renewable resources, are of different

pecialization or type. Each resource type is associated with availabil-

ty periods that can be thought of as working shifts. We assume that

ach job needs (possibly several units of) exactly one resource type

or the following reason. The processing time of a job decreases with

n increased resource usage. A model with multiple resource types

er job must encode how the processing time of a job is shortened de-

ending on which resource types are increased. Planners would need

o encode all possible combinations of resource assignments to a job,

nd even worse, estimate the resulting processing times, possibly re-

pecting synergy or interference between resources. It is unrealistic

o assume valid data about this in a practical setting on one hand, and

ardly doable, if at all, with standard software like MS ProjectTM on

he other hand. Reliable data are difficult to obtain even for one re-

ource type (the actual work increases with increased resource usage

ue to, e.g., communication overhead). Nonetheless, the need of mul-

iple resources was studied by other authors, e.g., Santos and Tereso

2011) and can be modeled via generalized precedence constraints.

hese blend easily with our approach, if absolutely needed.

We want to level the resources, i.e., we minimize the maximum

apacity requirement of each resource type, at a minimum total re-

ource cost. Balancing the resource usage, i.e., to flatten the variability

f the resource usage over time, is not an issue at our higher-level

lanning stage.

http://dx.doi.org/10.1016/j.ejor.2015.02.043
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From a methodological point of view, when it comes to optimally

olving larger instances of such scheduling problems, mixed integer

rogramming (MIP) has not fared very well. This is mainly due to

he weak dual bounds obtained from linear programming (LP) re-

axations of classical models. We therefore propose a model which

an be interpreted as a non-trivial Dantzig–Wolfe reformulation of a

ime-indexed formulation and thus provides much stronger bounds.

ariables represent entire sub-schedules, thus are exponential in

umber, and necessitate a dynamic generation of variables to solve

he LP relaxation. Yet, the relation to classical models via Dantzig–

olfe reformulation enables us to exploit the literature on valid in-

qualities for scheduling problems, and we demonstrate how to use

hem to strengthen the formulation. Constraint programming (CP) is

sually considered a promising approach for solving scheduling prob-

ems, due its expressiveness of logical constraints, and we hybridize

ome CP elements in our otherwise MIP based approach.

.1. Our Contribution

We propose a new model for a multi-mode project scheduling

roblem with availability constraints (working shifts) and the objec-

ive to minimize the resource availability cost. Our model is generic

n the way resource calendars are respected. For its solution we de-

ign a full-fledged branch-price-and-cut algorithm. This does not only

roduce very strong dual bounds, as did a few previous studies in

roject scheduling before, but it is also able to provide optimal primal

olutions. With this it is the first approach in this area of complex

roject scheduling that “works on both ends.” Our model builds on a

on-trivial Dantzig–Wolfe reformulation of a classical time-indexed

odel, and we exploit the relationship between these two in design-

ng branching rules and deriving cutting planes. We finally conduct

n experimental study which shows how the methodological state-

f-the-art in branch-and-price should be instantiated in a complex

cheduling context. Our implementation is able to optimally solve

nstances with 50 multi-mode jobs, thus outperforming a state-of-

he-art MIP solver by far that is only able to solve 25 percent of the

nstances we solve.

. Formal problem description

We assume familiarity with resource-constrained project schedul-

ng (RCPSP) in general; for a recent survey refer to Hartmann and

riskorn (2010). We are given a set J of non-preemptable jobs and

set R of renewable resources. Precedence constraints are given as

n acyclic digraph G = (J , E) with (i, j) ∈ E if and only if job i has to

e completed before job j starts. Each job j may be run in exactly one

ut of a discrete set Mj of modes. Processing job j in mode m ∈ Mj

akes pjm time units and requires rjmk units of resource k ∈ R. Each
Fig. 1. Schematic representation of turnaround scheduling with two resources. Arrows ind
ob needs exactly one resource for execution, so we write rjm if the

esource is clear from the context.

All jobs have to be completed before the end of the time horizon T.

ach resource k ∈ R has a set Ik := {[a1, b1], . . . , [aik
, bik

]} of ik avail-

bility periods, also called shifts, where a1 < b1 < · · · < aik
< bik

. A job

equiring resource k can only be executed during a time interval I ∈ Ik.

ig. 1 schematically presents a schedule with two resources and three

vailability periods each that are indicated by the bold lines. Jobs are

epresented by boxes, the length of which represents processing time

nd the height corresponds to resource usage (for simplicity all iden-

ical in this example). The arrows indicate precedence constraints. We

se a parameter δkt which is one if resource k is available at time t,

.e., t ∈ I for some I ∈ Ik, and zero otherwise. Each resource k ∈ R is

ssociated with a per unit cost ck. For each resource k, the available

apacity, which is a variable, is denoted by Rk.

To represent a solution, we denote by S = (S1, . . . , Sn) the vector

f start times of jobs, and by M = (m1, . . . , mn) the vector of modes

n which jobs are executed. For a given schedule (S, M), denote by

(S, M, t) := {j ∈ J : Sj ≤ t < Sj + pjmj
} the set of jobs active at time t.

he amount rk(S, M, t) := ∑
j∈A(S,M,t) rjmjk

of resource k used at time t

ust never exceed the provided capacity Rk. Thus, we obtain resource

onstraints with calendars: rk(S, M, t) ≤ Rk · δkt, ∀k ∈ R, ∀t. In addi-

ion to this resource feasibility a feasible schedule must obey prece-

ence feasibility, i.e., Si + pimi
≤ Sj for all (i, j) ∈ E.

To conclude, we study a multi-mode project scheduling with m

enewable resources of unbounded capacity with precedence con-

traints and working shifts and the objective to minimize the total

esource availability cost, i.e., minimizing
∑

k∈R ck · Rk.

.1. Related work

Turnaround scheduling comprises project scheduling with calen-

ars, multi-mode scheduling, and resource leveling; see again Megow

t al. (2011) for an industrial application. The zoo of project schedul-

ng problems is large, and we mention only the most related prob-

ems. Makespan minimization is a classical scheduling goal. Lower

ounding schemes for this objective are presented in Brucker and

nust (2000), where column generation is employed to solve a re-

axed problem, allowing preemption and precedence constraints for-

ulated as disjunctions. A variable represents a set of jobs selected to

un at a certain point in time. For the case of generalized precedence

onstraints, lower bounds are derived in Bianco and Caramia (2011)

y relaxing resource constraints for jobs which are not precedence

elated. This allows a dynamic programming approach on a modified

ctivity-on-nodes network. In contrast to minimizing the makespan,

ther objective functions that measure the variation of resource uti-

ization, e.g., f (rk(S, t)) are of interest in the pre-planning phase; see

.g., Neumann, Schwindt, and Zimmermann (2003).
icate precedence constraints between jobs; bold lines represent availability periods.
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The resource leveling problem with single-modes per job, which

is denoted by PS|temp|∑ ck max rk(S, t) with generalized precedence

constraints has been considered earlier under the name resource

investment problem. The special case without generalized prece-

dence constraints PS|prec|∑ ck max rk(S, t) has been considered e.g.,

in Demeulemeester (1995) and Möhring (1984). These papers com-

peted on the same instance set which contained about 16 jobs and four

resources, with a time horizon between 47 and 70 time units. Further

computational studies were done containing 15 to 20 jobs and four re-

sources. In the same setting, lower bound computations are proposed

in Drexl and Kimms (2001), one based on Lagrangian relaxation, and

one based on column generation, where variables represent schedules

as in our approach. Twenty jobs with small processing times of about

10 time units can be handled; for 30 jobs the Lagrangian relaxation

wins against the column generation approach.

Multi-mode jobs are a key feature of turnaround scheduling.

Such problems of the form MPS|prec|Cmax have been investigated

with renewable and non-renewable resources, with limited capac-

ity, and makespan minimization, known as multi-mode RCPSP, see

e.g., Demeulemeester and Herroelen (2002) and Hartmann (2001).

The notation MPSm,∞|prec, shifts|∑ ck · max rk(S, M, t) comes close

to our model, but in the literature in an MPS problem, a job requires

different types of resources.

Calendars have been taken into account in previous algorithms as

well. Scheduling problems with fixed processing times and calendars,

but without resource capacities, are considered in Zhan (1992). The

author provides an exact pseudo-polynomial time algorithm (turned

into a polynomial one in Franck, Neumann, and Schwindt (2001)) for

computing earliest and latest start times for preemptable as well as

non-preemptable jobs.

For a computational benchmarking of project scheduling prob-

lems, different problem sets are available in the PSPLib (Kolisch &

Sprecher, 1996), where several variants of the RCPSP and of resource

investment problems can be found. For the RCPSP single-mode case,

test sets containing 60 jobs could not be solved in total by a vast

number of researchers. In the multi-mode case, instances with 30

jobs are not solved yet. For the resource investment problem, test

sets containing 10, 20, or 30 jobs are available, but they do not con-

tain working shifts, are in single-mode or include generalized prece-

dence constraints. On the other hand a job may need more than one

resource type. Even though none of these problem variants is imme-

diately suited for a direct comparison, they are similar to ours, and the

mentioned instances inspired us when generating the test set used in

this study (see Coughlan et al., 2010 and Section 5).

3. Mixed integer programming formulations

For solving large-scale scheduling problems, mixed integer pro-

gramming is not considered as primary choice because of typically

weak LP relaxations. Moreover, huge numbers of variables (in par-

ticular for time-indexed formulations) and constraints may result

in high computation times and memory failures when solving even

only the LP relaxation. The approach we propose demonstrates that

more sophisticated algorithmic techniques can be a partial remedy

for these issues. In the following, we assume the reader to be familiar

with solving MIPs by branch-and-bound, see e.g., Achterberg (2009),

and the basics of column generation and branch-and-price, see e.g.,

Desrosiers and Lübbecke (2005).

3.1. Shortcomings of time-indexed mixed integer programs for RCPSP

One of the most prominent models for the RCPSP is based on a time

discretization and was introduced in Pritsker, Watters, and Wolfe

(1969). Their formulation adapted to our resource leveling problem
reads as follows: f
in
∑

k

ck · Rk (1)

.t.
∑

t

∑

m∈Mj

xjmt = 1 ∀ j ∈ J (2)

t

∑

m∈Mj

t · xjmt = Sj ∀ j ∈ J (3)

t

∑

m∈Mi

(t + pim)ximt ≤
∑

t

∑

m∈Mj

txjmt ∀ (i, j) ∈ E (4)

j∈J

∑

m∈Mj

t∑

τ=t−pjm+1
τ≥0

rjmk · xjmτ ≤ Rk ∀ k, t (5)

j ≥ 0, ∀ j ∈ J Rk ≥ 0, ∀k (6)

jmt ∈ {0, 1} ∀ t, j, m ∈ Mj (7)

Binary (“start-time”) variables xjmt model whether job j starts at

ime t in mode m or not. Each job j must start exactly once, and in

xactly one mode (2). The start time Sj of job j ∈ J is linked to the bi-

ary variables xjmt in Equation (3) and is therefore implicitly integral.

his linking is redundant, but we keep it for instructional purposes.

lso precedence constraints (4), and resource capacity constraints (5)

an be expressed as linear inequalities. In this model we decide about

he resource capacities Rk ≥ 0 for each resource k, such that the total

esource availability cost is minimized via the objective function (1).

or notational convenience we do not restrict the (j, m, t) indices of

jmt variables to their feasible combinations. In fact, certain start times

nd certain modes would violate the calendar boundaries. However,

his can be efficiently taken care of in a preprocessing step, yielding a

uge reduction in the number of variables.

Depending on several factors, such as network complexity (the

ensity of G) or the time discretization considered, this formulation

ay give very weak lower bounds. Very often, we experience that in

n optimal solution to the LP relaxation only few binary variables are

ractional, but the points in time used in the convex combination (3) to

ield the actual start time Sj of a job are far apart from one another. A

imple example is xjmt1
= xjmt2

= 0.5 which results in Sj = (t1 + t2)/2.

hen t1 and t2 lie in different shifts it may happen that Sj is out-

ide any shift, resulting in an infeasible start time. Fractions of jobs

ay violate precedence constraints even though the aggregated con-

traint (4) is fulfilled for the fractional solution. This holds similarly

or the resource constraint (5). Things get more involved in our setting

s different modes can be fractionally used for each job, thus all job

urations between smallest and largest may appear. We informally

all this a “smearing” of start time variables. This smearing gives us

rrelevant information about the schedule and we lose most if not all

tructure in the model. This happens often in MIP models, however,

t hits us particularly hard for scheduling problems.

Finally, branching a binary variable xjmt to zero is a very weak

ecision if the corresponding job can be scheduled one time unit

arlier or later. That is, the decision essentially has no effect. Not

o the upward branch, which fixes a start time and mode and thus

mposes significant structure to the overall solution. It is therefore

o be expected that branching on xjmt variables gives an unbalanced

earch tree, which is not desired.

.2. Master problem: A model based on shift configurations

In order to reduce the effects of “losing the timing information”

aused by the smearing of variables, we propose a model which ex-

loits the problem structure by decomposing the time horizon into

he availability periods of resources. Based on the calendar for each

esource type, every working shift represents a smaller subproblem

or which sub-schedules, or configurations, are stated for one resource
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ype only. These configurations are linked by global constraints en-

uring that exactly one configuration is chosen for each working shift,

nd that precedence constraints are respected.

efinition 1. A configuration ξ for an interval I ∈ Ik of resource type k

s a schedule for a subset J ⊆ J of jobs that all require resource

ype k. Each job j ∈ J is specified by its start time Sjξ and its com-

letion time Cjξ (this uniquely determines its mode). The maximum

imultaneous usage of resource type k by these jobs is denoted by r̄ξ .

For each configuration ξ for a particular shift I ∈ Ik we introduce a

inary variable xξ which indicates whether configuration ξ is chosen

r not. We use the short hand notation j ∈ ξ to express that job j is

xecuted in the shift corresponding to configuration ξ . Note that the

ode of each job is determined by the respective start and completion

imes. The so-called master problem reads:

in
∑

k

ck · Rk (8)

.t. Ci ≤ Sj ∀ (i, j) ∈ E (9)

j =
∑

ξ :j∈ξ

Sjξ · xξ ∀ j ∈ J (10)

j =
∑

ξ :j∈ξ

Cjξ · xξ ∀ j ∈ J (11)

∑

:ξ∈I

r̄ξ · xξ ≤ Rk ∀ k ∀ I ∈ Ik (12)

∑

:j∈ξ

xξ = 1 ∀ j ∈ J (13)

k, Sj, Cj ≥ 0 ∀ k, j ∈ J (14)

ξ ∈ {0, 1} ∀ ξ (15)

Each job is executed exactly once by Equation (13). This constraint

lso ensures, that for each job exactly one mode (from exactly one

onfiguration) can be chosen. The start and completion times for each

ob are computed from the chosen configurations via the linking con-

traints (10) and (11). Constraints (9) model the precedence relations

etween jobs. These could be directly expressed by substituting Sj

nd Cj from the linking constraints, but (10) and (11) are helpful in

he pricing problem (Section 3.3) where they help penalizing or en-

ouraging certain start or completion times of jobs. Constraints (12)

ink resource consumptions to the capacities and ensure that the total

esource capacity available over the planning horizon is at least the

aximum resource usage needed in each shift.

.3. Column generation: Pricing problem

Since the number of feasible configurations is exponential in the

umber of jobs, we solve the LP relaxation of (8)–(15) by column

eneration. That is, we start with a very small (e.g., heuristically gen-

rated) subset of configuration variables, and dynamically add more

ariables to the model until it can be proven that no more promising

ariables exist. This optimality proof is provided—as in the standard

implex method—via non-negativity of reduced costs of all configu-

ation variables. It is checked with the help of an auxiliary optimiza-

ion problem, the pricing subproblem, which determines a negative

educed cost configuration variable, or proves that none exist.

We must solve a pricing problem for every shift I ∈ Ik of each

esource type k. For reduced cost computations, we need the dual

ariables of constraints (10)–(13) which are denoted by sj, cj, ρkI, and

j, respectively. For a fixed shift I only the subset J ⊆ J of jobs needs

o be considered that can be scheduled in I. This subset is restricted

o jobs using the proper resource type, but also—as we see later—

.g., branching and other decisions may render certain start times of
ertain jobs infeasible. The objective function (16) reflects minimizing

he reduced cost.

ax
∑

j

πj · Xj −
∑

j

cj · Cj −
∑

j

sj · Sj − ρkI · r̄k (16)

.t.
∑

t∈I

∑

m∈Mj

xjmt = Xj ∀ j ∈ J (17)

t∈I

∑

m∈Mj

t · xjmt = Sj ∀ j ∈ J (18)

t∈I

∑

m∈Mj

(t + pjm) · xjmt = Cj ∀ j ∈ J (19)

j∈J

∑

m∈Mj

t∑

τ=t−pjm+1
τ∈I

rjmk · xjmτ ≤ r̄k ∀ t ∈ I (20)

¯k ≥ 0 (21)

j, Cj ≥ 0 ∀ j ∈ J (22)

jmt ∈ {0, 1} ∀ j ∈ J, m ∈ Mj, t ∈ I (23)

j ∈ {0, 1} ∀ j ∈ J (24)

The Xj, Sj, and Cj variables are “reporting” variables, and again

resent for instructional purposes only (as they could be substituted).

inary variable Xj decides whether job j ∈ J is processed, and if so, at

hat start time St and completion time Cj. Note once more, that this

niquely determines the job’s mode. All three variables for each job

∈ J characterize a configuration ξ for the specific shift I ∈ Ik of re-

ource type k. This pricing problem is again a scheduling problem

ith a non-regular objective function. By its mechanism, this is again

time-indexed formulation, with binary start-time variables xjmt, as

s MIP (1)–(7). However, it has a much smaller time horizon (only

ne shift), and it is not required that each possible job j ∈ J is actually

xecuted. Constraints (17) model the selection of job j and its mode;

onstraints (18) and (19) encode the start and completion times of

obs according to the chosen mode assignment. Resource capacity

onstraints (20) have to be satisfied as before and the resource usage

n this shift is again a decision variable, denoted by r̄k. The objective

unction value is rewarded by πj if job j is selected into the configura-

ion and by multiples of sj and cj according to the start and completion

imes. A unit increase of resource usage penalizes the objective value

y ρkI .

The pricing problem (16)–(24) is NP-hard as it contains a resource

eveling problem as special case. This can be seen as follows: Set all πj

o a value large enough to ensure that each job must be scheduled,

nd let sj and cj be zero for all j. Then, we need to schedule all jobs

uring I at a minimum resource cost ρkI · r̄k. As we are not aware of

ther exact approaches to this kind of hard scheduling problem, we

olve the pricing problem as a mixed integer program itself.

The master problem (8)–(15) and the pricing problem (16)–(24)

re solved alternately, exchanging dual variable values in one, and

onfiguration variables in the other direction, until optimality of the

aster problem is proven. Note that an optimal solution to the master

roblem can be fractional, and integrality of configuration variables xξ

till needs to be ensured. This leads us to a branch-and-price algorithm,

n which the LP relaxation in each node of the branch-and-bound tree

s solved by column generation as above.

.4. Interpretation as non-trivial Dantzig–Wolfe Reformulation

In a Dantzig–Wolfe reformulation of a MIP min{cT x | Ax ≥ b, Dx ≥
, x ∈ Qn1 × Zn2}, which is called the original formulation in this

ontext, we change the polyhedral representation for a subset of

onstraints, say Dx ≥ d. The convex hull of all the integer points

resp. mixed integer sets) that are feasible for Dx ≥ d is expressed
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as convex combination x = ∑
q λqxq,

∑
q λq = 1, λq ≥ 0 of its finitely

many extreme points xq (assuming that Dx ≥ d is bounded). This con-

vex combination is substituted in the remaining constraints Ax ≥ b,

yielding the master problem. The extreme points are given implic-

itly as solutions to an optimization problem, the pricing problem.

The reformulation, which results in a best possible strengthening

of constraints Dx ≥ d, is applied in order to obtain stronger bounds

from the relaxation. In many practical examples, Dx ≥ d can be sep-

arated into K blocks of disjoint sets of variables and constraints,

Dκxκ ≥ dκ , κ = 1, . . . , K, where the dimensions of vectors and ma-

trices are compatible, and each block gives rise to a reformulation.

We refer to Desrosiers and Lübbecke (2005, 2011) for details.

Considering the original time-indexed formulation (1)–(7), a

Dantzig–Wolfe reformulation is not obvious. Note, however, that vari-

ables can be grouped “into blocks” according to shifts for all resource

types. That is, variables xjmt form a group for each fixed resource type

k and shift I ∈ Ik, containing all jobs j executable during I in all modes

m. For each such group of variables, only those linking constraints (3)

and resource constraints (5) for k and all t ∈ I are relevant. These

κ = ∑|R|
k=1

|Ik| groups of variables and constraints form independent

subproblems Dκxκ ≥ dκ which are reformulated as sketched above.

All other constraints (2) and (4) are global and kept in the role of

master constraints Ax ≥ b. Given k and I, the solution vectors (“ex-

treme points”) of the resulting pricing problem (16)–(24), consisting

of (Xj, Sj, Cj)j∈J and r̄k, characterize a configuration ξ . This information,

except the resource usage, entirely encodes a feasible setting of the

original xjmt variables; or in other words, the original variable vector

can be expressed as selecting exactly one solution vector (Xj, Sj, Cj)j∈J

and r̄k. Fractionally, this is a convex combination with multipliers xξ ,

and the convexity constraint is stated in (13).

It is not necessary to understand the model (8)–(15) as a Dantzig–

Wolfe reformulation of (1)–(7), as our model has a self-supported

interpretation. However, this interpretation motivates the branching

rules we propose as well as the way we make use of cutting planes.

4. Branch-price-and-cut algorithm

4.1. Branching scheme

A solution to the original problem (1)–(7) is given by the resource

capacities Rk, and an assignment of start times Sj and completion

times Cj for each job j. The mode is given by the unique mode mj,

such that pjmj
= Cj − Sj. In a modern branch-and-price context one

tries to branch on these original variables which are expressible, via

the Dantzig–Wolfe reformulation, as a sum of master variables, com-

pare (10)–(12), instead of on single master variables (Desrosiers &

Lübbecke, 2005). A main reason is that branching decisions on sin-

gle master variables are hard to respect in the pricing problems, e.g.,

a configuration ξ , forbidden via xξ = 0, must not be re-generated.

Branching decisions on (combinations of) master variables represent

additional constraints that give rise to additional dual variables that

need to be respected in the pricing problem. This usually implies new

variables and new constraints in the pricing problem. However, when

branching constraints are formulated on the original variables, these

dual variables only affect a subproblem’s objective function, not its

constraints, see e.g., Desrosiers and Lübbecke (2011).

We impose a priority on branching decisions according to the ef-

fect we observed in preliminary experiments (Coughlan et al., 2010).

The order is Rk, Sj, and then Cj, from highest to lowest priority. Only

when all higher priority variables assume integral values, we branch

on variables of the next class. Let a superscript star indicate the vari-

able’s value in the current master LP solution. Branching on resource

capacity values has the largest impact as these have non-zero ob-

jective coefficients. We first evaluate the down-branch Rk ≤ 	R	
k

,

and then the up-branch Rk ≥ 	R	
k

 + 1. Branching on Rk changes the
easible space of the pricing problems, so we branch on these variables

rst even if R	
k

is not fractional. When there is choice between multiple

esource variables, we select a most fractional one and use the objec-

ive function coefficient as a tie-breaker (prefer larger values). Start

nd completion time variables are considered as branching candidates

nly if any corresponding binary configuration variable in (10) is frac-

ional. An unfixed start time variable Sj is selected where the points in

ime corresponding to positive xξ variables differ most, counteract-

ng the smearing of variables. The node is split into two child nodes

ith Sj ≤ 	S	
j

, and Sj ≥ 	S	

j

 + 1, respectively. Completion times are

andled accordingly. This scheme is used in conjunction with prop-

gation rules (described next) and aims at creating a more balanced

earch tree.

.2. Propagation

It is a fundamental principle of constraint programming to tighten

ariable domains due to logical implications given by the constraints,

nd/or already fixed variables. For example, the precedence and re-

ource constraints bear the logical structure of the problem and can

e used to detect infeasible start times of variables which can there-

ore be eliminated from the domains. This is called propagation. In

ranch-and-price, domain propagation can also be used to establish

onsistency of the LP relaxation after branching, i.e., already gener-

ted master variables which represent configurations that contradict

ny previous branching decision taken on the path that led to the

urrent node need to be locally fixed to zero (variables cannot simply

e eliminated as they are essential in other parts of the search tree).

e mentioned earlier that we only use xjmt variables in a pricing

roblem that correspond to feasible combinations of (j, m, t) indices.

hese combinations are restricted after branching and propagation,

nd maybe after cutting. The preprocessing to eliminate infeasible

ombinations is also done in propagation.

In the area of scheduling problems, a large variety of propaga-

ion algorithms is known to detect infeasible start times and perform

ariable bound adjustments. Edge-finding is a constraint program-

ing technique concerned with deriving better bounds for earliest

tart and latest completion times of jobs using energy arguments. We

dapt the algorithm proposed in Mercier and Van Hentenryck (2008)

o the multi-mode case by using the minimum energy used by any

ode for each job, which naturally seems to give weaker bounds. This

s balanced by the fact that jobs are not preemptive, may not cross

hift-bounds and obey precedence constraints which enables further

ropagation of start and completion times.

We use this algorithm in every node of the branch-and-price tree,

rior to calling the pricing problem and cutting plane separation.

.3. Cutting planes

State-of-the-art MIP solvers heavily rely on additional valid in-

qualities (“cutting planes”) in order to improve the dual bound and

y that prune unpromising nodes of the branch-and-bound tree. In

ranch-and-price, formulating cutting planes in the master problem

ariables is possible, but raises again (as with branching constraints)

he issue of how to respect the additional dual variables in the pricing

roblem. It is technically easier to formulate valid inequalities on the

riginal variables and add their Dantzig–Wolfe reformulation, i.e., in

ur case their translation to configuration variables, to the master

roblem. Again, this only changes the objective function of the pric-

ng problem, see again Desrosiers and Lübbecke (2011) for details.

ncidentally, this is a good situation for us as the literature knows

everal cutting planes for various scheduling problems, all of them

ormulated on variables with a meaning as in the standard MIP (1)–

7). Here, we generalize the precedence inequalities as introduced

n Christofides, Alvarez-Valdes, and Tamarit (1987) where jobs have
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fixed processing time:

(i, j) ∈ E, τ :
∑

t≥τ

xit +
∑

t<τ+pi

xjt ≤ 1. (25)

These cuts read as follows: For any point in time τ , in an end-to-

tart precedence relation between jobs i and j, either job i starts the

atest in τ or job j starts before τ + pi. As multiple modes are present

e compute the minimum processing time pi,min a job i may have

ocally, i.e., the minimum over all of its modes. Building on these cuts,

e obtain the following cuts in our master problem:

(i, j) ∈ E, τ :
∑

ξ :Siξ ≥τ

xξ +
∑

ξ :Sjξ ≤τ+pi,min

xξ ≤ 1. (26)

By construction, this does not entail any structural changes to the

ricing problem, but only the coefficients of the objective function

eed to be updated. For each constraint (26) that is added to the

elaxation, we introduce the dual variable μτ ij which integrates in

he reduced cost objective function of the pricing problem. If Si ≥ τ
r Sj < τ + pi,min, the cost coefficient of variable ximt becomes

∑

i,j)∈E

∑

τ≥t

μτ ij +
∑

(k,i)∈E

∑

τ<t+pim

μτki. (27)

The cutting planes are added to the master problem after new

onfiguration variables have been generated and each configuration

ariable is introduced into the corresponding constraints. Overall, this

ives a branch-price-and-cut algorithm. In Appendix A, we present

hese cuts in the context of generalized precedence constraints.

.4. Primal heuristics

For the master problem, rounding heuristics for fractional so-

utions are not promising, since values of binary variables may be

meared over the time horizon and precedence constraints are likely

o be violated in a rounded solution. To improve our upper bounds

e extend a leveling heuristic from Megow et al. (2011) that pro-

uces initial solutions prior to search. We implement a generic list

cheduling algorithm (a serial schedule generation scheme) and a

eady scheduling heuristic (a parallel schedule generation scheme,

ee Coughlan et al., 2010) which are used as standalone heuris-

ics during the branching process as well as in the initial leveling

rocedure.

The two heuristics are called in each node of the search tree. To

his end, we set the capacity of each resource to the fractional variable

alue rounded up, and fix the earliest and latest start and completion

imes for each job to the local bounds of the corresponding variables.

e perform list scheduling using the (fractional) LP solution with jobs

orted by earliest completion times, where each job’s mode is chosen

ccording to the largest processing time of at most Cj − Sj. If no feasible

olution is obtained we try ready scheduling. Both of these heuristics

roduce solutions that are not necessarily feasible w.r.t. the current

rimal bound, since resource capacities are rounded up. Regardless

f this, if a feasible schedule is found new columns representing that

chedule are added to the master problem, in order to reduce the total

umber of pricing iterations.
Fig. 2. Calendar configurations C1–C3 (top) and C4 and C5 (bottom) used
. Computational study

In this section we compare the outcome of our branch-price-and-

ut algorithm against a preprocessed time-indexed formulation (1)–

7) solved by the MIP solver CPLEX. In particular, we are interested in

he dual bounds that are obtained in the root node by either algorithm

ince these bounds indicate the strength of the polyhedral descrip-

ion. Furthermore, we give experimental evidence that the branching

trategy and on some instances a careful use of precedence inequal-

ties play an important role to efficiently solve a large number of the

enchmark problems.

.1. Benchmark instances

There is no publicly available test set of benchmark instances

eflecting the setup of our problem. The existing instances in the

SPLib (Kolisch & Sprecher, 1996) guided the design of our test

et compilation. We use the same generation scheme as before

n Coughlan et al. (2010), now for larger instances. Our set is com-

osed of two sets of job scenarios, with 50 instances each. Each job

an run in three different modes, using one to three units of its re-

ource, with durations ranging from 5 to 12. The first set, denoted

y N50E70, contains 50 jobs and 70 precedence constraints, whereas

he second set N50E100 contains 50 jobs and 100 precedence con-

traints. The maximal width W of the precedence graph is six, which

s achieved by constructing W chains of length |J |/W, and randomly

hoosing the remaining edges.

There are two different resources which run in five calendar con-

gurations, called C1–C5. These calendars are described schematically

n Fig. 2. In the top row, calendars C1–C3 are shown. In each of these,

he length of the shifts is 60. In C1 and C3 shift breaks are 60 units

ong, in C2 only 20 units long. Both resources are available at the same

ime in C1, while in C3 availability periods are complementary. In C2

he second resource is offset at 40 units. Calendars C4 and C5 show

hifts with length 20 and breaks having length five. In C5 one of the

esources is offset by 10. All scenarios are tested with each of the

ve different calendars. Time horizons were chosen by computing a

inimal and maximal makespan heuristically using an earliest start

ist scheduling policy, and averaging these. The two makespans are

omputed by either scheduling all jobs at their highest resource usage

fastest mode) or by assigning the fewest possible resource usage to

ach job (slowest mode).

.2. Experimental setup

All experiments were done on Intel CoreTM i7-870 PCs

2.93 gigahertz, 8 megabytes cache, 8gigabytes memory) running

inux 2.6.34 (single thread). Each test run had a time limit of 1800 sec-

nds. Our C++ implementation is based on SCIP 2.0.1 (SCIP, 2011) to

erform the branch-price-and-cut process, with custom plug-ins for

ur heuristics, propagation, branching rules, cutting plane separation,

nd column generation. For the standard MIP (1)–(7) we used CPLEX
2.2 on the same machine, with default parameter settings, again

ingle thread. Up to two threads were run in parallel on not entirely

dle machines, so run time differences of 5 percent are regarded as

noise.”
in our test set. Black bars symbolize the temporal location of shifts.
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Fig. 4. Average mean and standard deviation of root dual bound improvement of our

branch-price-and-cut approach as compared to CPLEX in percent. The best bound over

all tolerances has been used. Triangles show the best obtained improvement (e.g., 200

percent in C1) and diamonds show the worst lower bound (e.g., 44 percent worse than

CPLEX in C2).
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Fig. 5. Number of solved instances for N50E70 with cuts already separated in the root

node; each set of bars from left to right corresponds to rows in Table 1. A CPLEX run on

the standard MIP is black; our branch-and-price algorithm without cuts is white; and

the two groups of different shades of grey show runs of the full branch-price-and-cut

algorithm with precedence cuts enabled, with settings τgreedy and τbest, respectively,

with increasing tolerances (lighter grey is larger tolerance).
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Fig. 6. Number of solved instances for N50E100 with cuts already separated in the
5.2.1. Usefulness of the heuristics

Previous results showed that it is important for CPLEX and our

branch-price-and-cut framework to have a good initial solution,

whereas the execution time of the heuristic throughout search is

negligible, see Coughlan et al. (2010).

5.2.2. Separation of cuts

There are m · T, i.e., a pseudo-polynomial number of precedence

cuts (26); these are too many to explicitly add them all to the master

problem, as this would have a negative impact on LP solving times. For

the identification of violated cutting planes, which is called separation,

we pursue two approaches. In our first approach we only check for a

precedence pair (i, j) at point in time τgreedy = �(Ci + Si)/2� whether

Equation (26) holds or is violated by more than a threshold ε. In the

second approach, we find an optimum point τbest such that the left-

hand side of Equation (26) is maximally violated. This can be done by

sorting the summands of Equation (26) for each point in time τ such

that for each value τ the left-hand side can be computed in linear time

(after sorting). This procedure is pseudo-polynomial in the number

of points in time.

5.2.3. Settings

We compare the outcome of a CPLEX run on the standard MIP

model (1)–(7) to different settings of our tailored branch-price-and-

cut approach. In a first experiment, we do not separate cuts, denoted

by “nocuts.” Then, we evaluate different separation strategies. First,

we separate cuts already in the root node, and secondly, after resource

capacity variables are fixed (by branching or propagation). Checking

for violation only at a promising guess as point in time is denoted by

“τgreedy,” searching for the largest violation cuts is denoted by “τbest.”

Furthermore, these cuts are only separated if a certain threshold “tol.”

is exceeded, i.e., if in Equations (26) the sum of the variables ex-

ceeds 1 + tol. We use thresholds 10−4, 0.1, 0.3, 0.5 and 0.8, which

range from a very small violation (gives more cuts) to a very high

violation (gives less cuts).

5.3. Results

We confirm that a Dantzig–Wolfe reformulation can considerably

improve the dual bound as compared to the standard LP relaxation.

As an even stronger statement, we also obtain a dual bound improve-

ment over a state-of-the-art branch-and-cut algorithm. In Fig. 3 we

see that the average improvement per calendar of our configuration

based formulation (8)–(15) over the LP relaxation of (1)–(7) lies be-

tween 20 percent and 65 percent throughout all instances. The dis-

played average deviations and the minimum and maximum values of

that improvement show the strength of our relaxation.
C1 C2 C3 C4 C5

0

100

200

300

400

Fig. 3. Percentage of improvement of the lower bound obtained from our configuration

based formulation (8)–(15) (no additional cutting planes) over the standard LP relax-

ation of (1)–(7) as computed by the state-of-the-art MIP solver CPLEX. The minimum

(diamond), maximum (triangle), mean, and standard deviation of the improvement in

percent of setting “no cuts” is shown.

root node. See Fig. 5 for the meaning of the bars.
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To evaluate the strength of generic cutting planes added in the root

ode of the commercial MIP solver, we compare the root dual bounds

n Fig. 4 after all standard cutting planes have been added by CPLEX
ersus the root node dual bound in our approach. Our improvement

s no longer that dominating as in Fig. 3 but still for several of the hard

nstances in calendar setting C1, there is a 28 percent improvement

n the average of the root dual bound compared to CPLEX.

Next, we compare our branch-price-and-cut framework to a stan-

ard MIP approach in terms of absolute number of solved instances

nd afterward, we discuss the effect of precedence cuts in our model

y evaluating the number of branch-and-bound nodes and the run-

ing time. In Fig. 5 and 6 for each calendar, the first bar (black) gives

he number of solved instances obtained by CPLEX, the second (white)

ar represents this number for our branch-and-price approach with-

ut precedence cuts. The first five grey bars symbolize the results for

etting “τgreedy” in increasing order of tolerances and the last five bars

tand for settings “τ ” in increasing order of tolerances.
best
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Fig. 7. Number of solved instances of test set N50E70 if cuts are separated after re-

source capacity variables are fixed. See Fig. 5 for the meaning of the bars.
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Fig. 8. Number of solved instances of test set N50E100 if cuts are separated after

resource capacity variables are fixed. See Fig. 5 for the meaning of the bars.
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Fig. 5 shows for the instance set N50E70 that the pure branch-

nd-price algorithm without precedence cuts outperforms CPLEX, and

dding precedence cuts seems to be a bad idea. Comparing Fig. 5 and

, the set N50E70 with fewer precedence constraints than N50E100 is

he harder one, as expected. In some cases the pure MIP approach is

ven better than the branch-price-and-cut approach with additional

recedence cuts. The reason is that the time spent for separating new

uts, pricing new variables, and the additional LP iterations lead to

oo many timeouts and is therefore not competitive. Hence, not using

ny precedence cuts at all is, at first sight, a good decision.

Nevertheless, it is possible to increase the root dual bound on

everal instances by using precedence cuts (26). During root solving

ost jobs are able to slide in their time window and the precedence

uts result in more binary configuration variables that are smeared

ver the time horizon. Hence, these cuts should not be used in the root

ode but still might be beneficial to prune certain nodes of the branch-

nd-bound tree. Recall that our branching scheme first branches on

he resource capacities Rk and afterwardon the start and completion

ime variables. Fixed resource capacities in a node already decide on
Table 1

Comparison of tree nodes and running time in seconds for N5

Means are computed over the instances solved by all settings

calendars C1–C5.

C1 C2 C

Tol. Nodes Time Nodes Time N

No cuts 12.0 660.7 10.7 546.3 1

τgreedy 0.0 10.0 667.9 9.5 553.4 1

0.1 10.2 662.7 8.8 518.7 1

0.3 10.6 632.6 9.0 523.4 1

0.5 11.4 661.0 10.5 538.9 1

0.8 11.4 611.5 10.7 560.7 1

τbest 0.0 9.2 704.6 8.3 536.0 1

0.1 8.9 673.1 8.4 559.8 1

0.3 9.2 653.6 8.6 542.7 1

0.5 10.1 660.7 9.8 560.6 1

0.8 11.1 608.4 10.3 528.2 1
lot of structure for the scheduling problem, since several modes of

job may no longer be valid. Thus, this seems to be a good point to

eparate precedence cuts (26). Figs. 7 and 8 show that more instances

han before can be solved using the precedence cuts. In several cases

tolerance of 10−4 belongs to the best choices for the separation

rocedure. Especially, for the harder instances N50E70 some more

nstances of each calendar test set can be solved in the time limit to

roven optimality in contrast to CPLEX or a setting without additional

recedence cuts.

Next, we elaborate on the solution time and on the number of

odes needed to find an optimal solution and prove its optimality.

he results on the total number of solved instances showed that it

s beneficial to separate precedence cuts after resource variables are

xed. Therefore, we will only present the numbers for that case.

Tables 1 and 2 reveal that using additional precedence cuts enables

s to decrease the number of tree nodes by 10 percent to 20 percent

n average. For several hard instances, e.g., in calendar C5 in test set

50E70 a decrease by even 50 percent is possible. Best results in

erms of nodes are obtained when τbest is used for the separation of

uts. Nevertheless, this does not carry over to a reduced running time.

or C1 the running times increase (τbest vs. τgreedy), whereas for C5

t decreases and the running time is about 10 percent faster than if

o precedence cuts are separated. That is, there is the usual trade-off

etween quality and time, and cutting planes may be most interesting

n memory critical applications.

A tolerance between 0.1 and 0.3 gives the overall best results as

igher and lower tolerances usually increase the running times.

Tables 1 and 2 only show a slight improvement considering the

verage running time and the number of nodes needed (in the shifted

eometric mean) if precedence inequalities are separated after re-

ource capacities are fixed. The performance profiles (Dolan & Moré,

002) in Fig. 9 give a more detailed comparison by comparing the

atios of the number of nodes (running time) needed per instance

ersus the best running time by any of the settings listed in the ta-

les. We see that, e.g., for calendar C5 on more than 50 percent of the

nstances the precedence inequalities remarkably reduce the number

f nodes needed. On several instances, the setting without precedence

nequalities needs between 10 and 100 times more nodes than the

est setting with precedence inequalities. But we also see that the re-

uction in terms of running times is much smaller as separating these

uts and computing the new objective coefficients in the pricing prob-

ems is costly, too. Similarly, for calendar C4 we observe a decrease

n the number of nodes needed, whereas the reduction in terms of

unning time is rather modest and can only be seen on less than 20

nstances. We do not elaborate on the results for calendars C1–C3

ere. On calendars C1 and C2, results are similar to C5, whereas on C3

ot much changes, as on these instances the dual bounds have not

een a bottleneck.
0E70—Cuts are only separated after resources are fixed.

, of which there are 27, 14, 48, 26, and 31 instances for

3 C4 C5

odes Time Nodes Time Nodes Time

.0 6.4 11.4 200.5 21.3 356.2

.0 6.4 8.9 201.0 14.3 346.3

.0 6.4 8.3 197.2 16.7 361.8

.0 6.4 10.0 204.2 15.9 338.9

.0 6.4 11.2 216.9 19.1 347.2

.0 6.3 11.1 200.4 19.7 351.5

.0 6.4 7.4 196.4 12.0 353.6

.0 6.4 7.9 202.8 11.6 341.3

.0 6.4 7.7 197.6 10.9 323.3

.0 6.4 9.1 201.1 15.6 337.6

.0 6.3 12.4 212.4 16.6 338.9
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Table 2

Comparison of tree nodes and running time in seconds for N50E100—Cuts are only separated after resources are fixed.

Means are computed over the instances solved by all settings, of which there are 42, 44, 50, 48, and 47 instances for

calendars C1–C5 respectively.

C1 C2 C3 C4 C5

Tol. Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time

No cuts 5.3 31.0 9.8 88.8 1.1 1.0 8.4 18.1 8.2 23.8

τgreedy 0.0 5.4 32.6 8.0 83.6 1.1 1.0 6.3 16.4 7.7 25.5

0.1 4.8 31.1 8.2 86.9 1.1 1.0 6.4 16.5 7.3 24.3

0.3 5.4 30.5 9.1 87.3 1.1 1.0 6.5 16.3 7.7 24.1

0.5 5.1 30.7 9.1 85.5 1.1 1.0 6.8 16.5 8.2 24.0

0.8 5.4 29.7 10.3 88.1 1.1 0.9 7.4 16.4 9.0 23.6

τbest 0.0 4.8 32.3 7.5 88.8 1.1 1.0 5.9 16.5 6.3 23.5

0.1 4.8 32.5 7.2 86.8 1.1 1.0 5.7 16.4 6.2 23.0

0.3 4.7 30.5 7.6 87.3 1.1 1.0 5.8 16.3 6.5 22.9

0.5 5.1 31.4 7.7 83.2 1.1 1.0 6.4 16.5 7.8 24.0

0.8 5.4 29.8 10.0 92.2 1.1 0.9 7.2 16.2 8.5 23.3
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(a) Comparison of the running times for C5.
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(c) Comparison of the running times for C4.
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(d) Comparison of the nodes for C4.

Fig. 9. Performance profiles: Ratios of nodes and running times for all optimally solved instances from N50E70 for calendar C5 on top and for calendar C4 below.
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Table 3 indicates the computational efforts spent in the pricing

problems. For each set, N50E70 and N50E100, and per calendar C1–

C5, we list the average running time (avtime) and number of nodes

(avnodes) per instance. Column “ptime/time” shows that solving the

pricing problem (setting up, solving the MIP, and generating new

columns) takes from 58 percent up to 99 percent of the total solving

time. Hence, the pricing routine determines the overall execution

time. Recall that in each pricing round, a MIP for each shift needs to

be solved. Column “# calls per node” shows how often the pricer is

called on average per node, while the number of variables generated

per call is indicated in the last column. The number of shifts per

instance (which is equal to the number of MIPs to be solved with each

call of the pricing problem) and the number of pricing rounds when

solving a node influence this number.

Table 4 shows for each set and per calendar how often per in-

stance that was not solved to optimality (“nsubopt”) CPLEX hit the

best known primal (“nbestprimal”) and dual (“nbestdual”) bounds.
 s
he succeeding columns show the average gap of the best primal

dual) solution versus the best known solution (dual bound) from all

ur branch-price-and-cut variants, denoted by “avpgap” (“avdgap”).

he last column presents the average gap that CPLEXwas able to arrive

t. From that table we can see that for set N50E70, the primal gap is

he hardest for CPLEX, 13 to 23 percent. In contrast, for set N50E100

he average dual gap is much bigger than the average primal gap.

ere, the average dual gap compared to all settings using branch-

rice-and-cut ranges from 13 percent to 37 percent, while the primal

ap falls between 13 and 17 percent.

. Summary and conclusions

We studied a practically motivated, complex multi-mode project

cheduling problem with the objective to minimize the resource avail-

bility cost. Our aim was to demonstrate how far one can get when in-

isting on optimal solutions. The literature on related problems and in
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Table 3

Share of time spent in the pricing problem (ptime/time), number of calls per node and number of

variables generated per call on average over all instances per set. A call to the pricer triggers the

pricing for each shift.

Set Calendar avtime avnodes ptime/time # calls/node # vars/call

N50E70 C1 1230.69 14.46 0.99 8.67 18.44

C2 1424.49 40.77 0.97 10.08 10.72

C3 51.72 29.76 0.97 5.46 9.01

C4 843.63 313.36 0.88 5.71 6.63

C5 922.76 255.53 0.92 4.30 7.76

N50E100 C1 312.61 276.70 0.76 3.76 5.73

C2 273.46 76.16 0.93 6.65 8.35

C3 3.06 1.13 0.99 6.68 22.84

C4 74.46 491.68 0.64 2.33 7.13

C5 152.70 519.20 0.56 2.70 3.86

Table 4

Evaluation of primal and dual bounds for all instances that could not be solved to optimality by CPLEX.

Set Calendar nsubopt nbestprimal nbestdual avpgap avdgap avcplexgap

N50E70 C1 37 14 17 0.18 0.12 0.34

C2 47 23 28 0.13 0.09 0.31

C3 1 0 0 0.16 0.50 0.56

C4 42 13 16 0.23 0.17 0.34

C5 33 8 19 0.22 0.06 0.27

N50E100 C1 28 14 3 0.13 0.37 0.47

C2 33 14 6 0.17 0.23 0.34

C3 0 0 0 – – –

C4 38 25 2 0.10 0.36 0.42

C5 15 6 6 0.16 0.13 0.24
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articular the PSPLib with up-to-date benchmark results suggest that

ven today instances with only 30 jobs are hard to solve to optimality

hen a “standard” model is used; in our case we compare against an

dapted classical MIP formulation (Pritsker et al., 1969). Our study

emonstrates that it helps to decompose the problem resource-wise

er availability period. Technically, this means applying a Dantzig–

olfe reformulation to the standard formulation (in a non-obvious

ay), even though this is not necessary to understand our approach.

he resulting model is based on variables that represent entire sched-

les for each resource and shift, of which there are exponentially

any. This necessitates a solution approach via a column generation

nd branch-and-price algorithm. A usually complicating feature in

roject scheduling, the resource availability periods (or shift calen-

ars), can even be turned into an advantage in this context, as this

educes the size of the variable-generating subproblems in column

eneration.

In our computational study we showed that the LP relaxations

f the reformulated model are much stronger than that of the stan-

ard approach. The dual bound can even be strengthened by applying

dditional valid inequalities which are known for the standard for-

ulation, and which we translate to our model. We believe that this is

rototypical, and that more inequalities known from the scheduling

iterature could be integrated in our approach. The resulting branch-

rice-and-cut algorithm enables us to solve a large amount of in-

tances with 50 jobs to proven optimality, where state-of-the-art

IP solvers suffer from the size and weak relaxation of the standard

odel.

Our algorithm is generic and components like the pricing problem

ay also be solved via constraint programming algorithms or partially

ith a heuristic. We believe that the general approach is well-suited

or similar problems, in particular, when the objective function is

complicated.” We finally remark that we believe that our ability to

rovide solution algorithms to complex models as ours changes our

ay we model with integer variables. While classical IP modeling

sed variables with “little meaning” our study supports the advise to

mpose more structure on a single variable’s meaning.
ppendix A. Cuts for generalized precedence inequalities

We generalize the precedence inequalities as introduced

n Christofides et al. (1987) where jobs have a fixed processing time

o our master problem also for the case of generalized precedence

elations. This is interesting for modeling multi-resource jobs, among

thers. The cuts of Christofides et al. are given as follows:

(i, j) ∈ E, τ :
∑

t≥τ

xit +
∑

t<τ+pi

xjt ≤ 1. (A.1)

These cuts read as follows: For any point in time τ , in an end-

o-start precedence relation between jobs i and j, either job i starts

he latest in τ or job j starts before τ + pi. Building on these cuts, we

tudy generalized precedence constraints that are of the form start-

o-start (GP1), end-to-start (GP2), start-to-end (GP3) and end-to-end

GP4). Let δij ∈ Z, then we can include these generalized precedence

elations in our master problem by adding the following inequalities

ased on start and completion time variables (Sj, Cj), and also separate

trengthened inequalities, similar to (A.1), based on the configuration

ariables (xξ ).

(i, j) ∈ GP1 ⇔ Si + δij ≤ Sj or:
∑

ξ :Siξ ≥τ

xξ +
∑

ξ :Sjξ <τ+δij

xξ ≤ 1 ∀ τ

(i, j) ∈ GP2 ⇔ Ci + δij ≤ Sj or:
∑

ξ :Ciξ ≥τ

xξ +
∑

ξ :Sjξ <τ+δij

xξ ≤ 1 ∀ τ

(i, j) ∈ GP3 ⇔ Si + δij ≤ Cj or:
∑

ξ :Siξ ≥τ

xξ +
∑

ξ :Cjξ <τ+δij

xξ ≤ 1 ∀ τ

(i, j) ∈ GP4 ⇔ Ci + δij ≤ Cj or:
∑

ξ :Ciξ ≥τ

xξ +
∑

ξ :Cjξ <τ+δij

xξ ≤ 1 ∀ τ
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Using these cuts in our master problem, the nature of the pric-

ing problem (i.e., its constraints) does not change, only the coeffi-

cients of the objective function need to be updated. For each cut

encoded by (τ , (i, j)) ∈ GP� we need to add the value of the dual vari-

able μ�
τ ij

to the objective function, for all types of generalized prece-

dence relations GP�, � = 1, . . . , 4 according to the following rules. The

cost coefficient of variable ximt in the pricing problem is increased

by:

GP1:
∑

(i,j)∈GP1

∑

τ :t≥τ

μ1
τ ij +

∑

(k,i)∈GP1

∑

τ :t<τ+δki

μ1
τki

GP2:
∑

(i,j)∈GP2

∑

τ :t+pim≥τ

μ2
τ ij +

∑

(k,i)∈GP2

∑

τ :t<τ+δki

μ2
τki

GP3:
∑

(i,j)∈GP3

∑

τ :t≥τ

μ3
τ ij +

∑

(k,i)∈GP3

∑

τ :t+pim<τ+δki

μ3
τki

GP4:
∑

(i,j)∈GP4

∑

τ :t+pim≥τ

μ4
τ ij +

∑

(k,i)∈GP4

∑

τ :t+pim<τ+δki

μ4
τki
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