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Abstract. We consider the design of line plans in public transport at a min-
imal total cost. Both, linear and nonlinear integer programming are adequate
and intuitive modeling approaches for this problem. We present a heuristic
variable fixing procedure which builds on problem knowledge from both
techniques. We derive and compare lower bounds from different lineariza-
tions in order to assess the quality of our solutions. The involved integer
linear programs are strengthened by means of problem specific valid
inequalities. Computational results with practical data from the Dutch
Railways indicate that our algorithm gives excellent solutions within minutes
of computation time.
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1 Introduction

In a public transportation network, we refer to a line as a route, or itin-
erary, together with the specification of how often the route is operated. The
line planning problem is the design of lines which meet several operational
constraints, most notably the passengers’ demand for transportation. The
resulting line plan, or route map, is visually known to anyone who ever
traveled by bus, tram, subway, or train. Two objectives have been consid-
ered in the literature, and these reflect both sides of the story, namely
service versus cost aspects. While travelers demand for convenient, ideally
direct connections [2, 3], transportation companies are forced to make most
efficient use of their resources [2, 6, 8, 11], not least for the reason of market
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deregulations. Minimization of the total cost is the goal of our investigation
as well.

One main issue of our paper is to further the integration of two areas in
mathematical programming all too often regarded separately, viz. nonlinear
and mixed integer optimization. While the latter is a well established tech-
nique in the planning of public rail transportation issues [4], the track
towards the topic via the former is practically unbeaten. In fact, mixed integer
nonlinear models and algorithms appear not to belong to the ““traditional”
operations research active areas. This contrasts the tenor of the OR/MS
Today Special Issue on innovative education: Nonlinear optimization
deserves more emphasis [9].

In the cost optimal line planning context, Goossens et al. [8] demon-
strate how to use lower bounds from a binary linear program [6] in a
branch-and-cut algorithm. While the quality of lower bounds is excellent,
primal solutions of matching quality cannot be found in reasonable time.
In fact, the emphasis of previous exact approaches is on lower bounds.
Most recently, Fischetti and Lodi [7] developed a general strategy for
obtaining feasible solutions to mixed integer programs, and also make
some computational progress on our particular problem. The main pur-
pose of this paper is to justify that an appropriate combination of two
models is suited to yield very high quality solutions within very short
computation time limits. After all, this and only this — is relevant to
practitioners.

Our paper delivers updated material from [2] which has already been built
on by other authors [8]. We contribute linear and nonlinear integer programs,
on which we base our variable fixing algorithm. Our successful use of a
nonlinear model is a new and surprising development in the design of line
plans.

2 Cost optimal line planning

In this section we formally describe the cost optimal line planning problem
and introduce our notation. We do not repeat the practical background, and
we refrain from comparing cost minimization with the direct traveler
approach; see e.g., [3, 6] for details on both issues.

The underlying rail network is represented by a graph G = (V,E). Edges
e € E model physical links which connect stations given by the set V' of
vertices, cf. Figure 1 for an example. Only a predefined subset R of paths,
and sometimes cycles, in G qualifies as possible itineraries along which
trains can be operated. The design of a line / = (r, ) requires the choice of
a route » € R and a frequency ¢ € F C Z,, i.e., the number of times the
route is operated per hour. Unless otherwise stated, we assume that F is an
interval of (small) integers, including zero. The length of route » € R in
kilometers is denoted by km,. A feasible set of lines, or line plan, must also
obey lower and upper bounds F™* and F™* on the line frequency
requirement, i.e., on the total number of trains which traverse a link e € E
per hour. In addition, for each edge e € E we are given its traffic load L.,
that is, the total number of seats per hour which are to be provided on the
link. Our study is driven by the assumption that the cost of a line plan
essentially consist of personnel cost and the cost of rolling stock. This
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Fig. 1. The Netherlands’ InterRegio network with 86 vertices and 113 edges

motivates making the number of coaches of each train a decision variable
for every particular line. This number must range within given bounds ¢
and ¢. It is important to note that we consider a single type of coach only,
with a single seat capacity cap. Therefore, it is more natural to express the
traffic load on an edge in terms of coaches, rather than in terms of of seats.
That is, we define A, := [L./cap], the number of coaches to be provided on
link e.

We denote by C™ and C™, respectively, the hourly fixed capital and
personnel cost incurred per train/per car. The respective operational or var-
iable cost, that is, the per kilometer cost are denoted by C}*" and C}*". The
cost optimal line planning problem is to design a feasible line plan at mini-
mum total cost. This problem is strongly A/P-hard [2].

3 Primal solutions from a nonlinear model

Perhaps the most intuitive model formulation for our problem is a nonlinear
mixed integer program (MINLP). Such a formulation was already given in
Claessens’ master’s thesis [5] but was later dropped for the publication [6]
because all presented results came out of a linearized model. We develop new
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ideas to overcome some of the technical obstacles which motivates us to
revisit the MINLP approach.

Nonlinear mixed integer programming is a comparatively recent area
with the first general purpose algorithms appearing in the early 1990s
(GAMS/DICOPT [10]). Recently, several implementations emerged (branch-
and-bound, outer approximation, extended cutting plane) due to more
stable nonlinear programming codes (FILTERBB, SBB, AlphaRCP,
mittlp, BARON (global), other MINLP solvers embedded in modeling
languages like LINGO and MINOPT!). An increase of interest in MINLP
models and their solution is reflected in the growing number (absolute and
relative) of entries at the NEOS? site. Within six months (09/01-02/02),
their MINLP section got about 2,500 user submissions (private commu-
nication).

Practically relevant nonlinear models have some drawbacks compared
to their linear counterparts: There is practically no proof of global opti-
mality due to the non-convexity of practical models; the starting point is
critical; in order to prevent algorithms from failing, problem specific
knowledge is essential for a good model formulation, and thus, for algo-
rithmic guidance. We have chosen our nonlinear approach in view of these
considerations.

For each route r € R we introduce a variable x, € Z,; which reflects its
frequency and an integer variable ¢ < y, < ¢ for the number of coaches per
train. The requirement that the line plan provide sufficient capacity for each
link in the network then naturally writes down as

Z Xy > Ae Ve € E. (1)

reR,roe

Similar quadratic terms appear in the objective function. However, for the
actual number of trains per hour needed to operate a line at a given fre-
quency we have to count more carefully. It depends on the total duration of
a route, including its minimum turn-around time needed e.g., for cleaning
the train, maintenance, and changing the crew. A division of this duration
in minutes by 60 yields a fractional estimate 7, of the number of trains
needed to operate » € R once per hour. The overall requirement on that
route is then [7,-x,] trains. Although undefined derivatives of such dis-
continuous terms are handled by solvers, modelers are advised against using
them. Instead, defining variables z, € Z,, r € R via

T,-x, <z VreR (2)

we theoretically can get over this problem. Because of our minimization
objective there is no need for an explicit upper bound on these variables. By
means of a translation we eliminate the non-trivial lower bounds on y,. That
is, new variables y, count the number of additional coaches in excess of the
minimal number ¢ on route » € R. The complete MINLP model reads as
follows:

! Solver information available on the web under http: //www. gamsworld. org/minlp/
links.htm, http://at8.abo. fi/~hasku/mittlp/, and http://www.lindo. com/
table/lgosolvet.html

2 URL http: //www-fp.mcs. anl. gov/otc/Guide/ SoftwareGuide/
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minimize Zz, A(C™ 4 (4 y) - C™) ko, - x,- (CFF + (¢ +3y) - CF)
reR

subject to Z X > Femin Ve € E

reR, roe
Z X <FM™ YecE
reR, roe
Z X (c+y)>A Ve€E

reR, roe

(NLP)
T -x <z, VreR

w<c—c VreR
x. € F VreR
V€ Zy VreR
z, €724 VreR

Solving this model leaves us with the dilemma of local versus global opti-
mality. Implementations of global optimization algorithms like BARON do
not find useful bounds and suffer from the same difficulties as linear branch-
and-bound codes for finding integer solutions for real-world sized instances.
Even large scale local optimization solvers perform poorly on these in-
stances. Our first remedy to make this model useful for the cost optimal line
planing problem simplifies the calculation of the number of trains required.
Since

T,-%] < [T] % (3)

holds for x, € Z, we may substitute z, for the right hand side of (3), thereby
getting rid of the additonal variables as well as their defining inequalities. This
modification affects the fixed cost term in the objective function only. For our
data sets, the effect is mild since we are not given a Ctﬁx. Still, the level of error
induced by the overestimation clearly depends on the instance. With hourly
frequencies, i.e., F = {0, 1}, which are common in German and Dutch In-
terCity networks this approach is exact. For our instances, quite a lot of
inequalities (3) are strict, but comparing the exact cost with the modified cost
for all connections in our solutions, we obtain an average relative error of at
most 3%. This is explained by the fact that, in our experiments, the best
found solutions have almost all lines with a frequency of one anyway. Note
that an obvious advantage of this formulation is its small number of vari-
ables.

4 Lower bounds from linearizations

Since (NLP) is a non convex model, the “lower bound” obtained from solving
its continuous relaxation with available local optimization solvers is mathe-
matically useless. As a remedy to this shortcoming we present three lineari-
zations. The first essentially is a proposal by Claessens et al. [6] with an
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enormous number of variables. We introduce two new models which make up
for this defect.

4.1 A binary linear program

The fact that all nonlinear terms in (NLP) are of the form x,y, and all vari-
ables are integer suggests a linearization by considering only the meaningful
values of the respective variable products. More precisely, introduce a binary
variable z,,, which assumes a value of one if and only if route » € R is
operated with frequency ¢ € F usingy € I' := {c, ...,c} coaches [6]. With an
additional constraint which ensures that exactly one combination is selected
we replace x,), by Z(Pef > yer @7 - Zrgy- Note that this substitution even
eliminates the discontinuous term from the objective function. The model
reads

minimize Y Y Y ([T ¢]-(C¥+7-C) +hkmy- 9 (C +7-C)) 21,
reR peF yel’

subject to Z Z Z @ Zrpy > FM0 Yec E

reR,roe peF yel’

ST 0 zpy SFM VecE (BLP)

reR,roe peF yel’

Z ZZ‘P'V'Zr,w,yZAe VecE

reR,rae peF yell

3> zpp<l VreR

peF yell

Zroy €{0,1}VreR,pe F,yell

Model (BLP) is more flexible than (NLP) with respect to important
operational constraints which result in holes in the domains of variables.
For instance, F = {1,2,4} is a reasonable choice where explicitly 3¢ F.
Moreover, a technical particularity of the rolling stock used by the Dutch
Railways does not allow for trains made up of exactly five coaches, while
I'=1{3,4,6,7,...} is allowed. Such restrictions entail additional constraints
in (NLP) but are easily incorporated in (BLP) simply by dropping the
respective variables.

4.2 An integer linear program based on frequencies

A drawback of (BLP) clearly is the comparatively large number of variables.
Using integer variables, we are able to introduce a more compact new for-
mulation. Similar to (NLP) we state the model in the formulation with
additional coaches. Binary variables x, , indicate whether a route/frequency
combination is chosen, and if so, variables y. , reflect the number of coaches
more than c.
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minimize " 3 (7,01 (- O+ (e, + 1) - )
reR peF

0 (i G (€ X + ) - C2)
subject to Z Z QX >F™ YeckE

reR, rse @eF

D D0 X SE™ Veck
reR, rae @eF
S Y0 (et ting) A Ve€E
reR, roe @eF (ILP)
Ve — (E_Q)'xh(p <0 VI”ER,(/) cF

dxp<l VreR

peF
xrp €{0,1} YreR, e F
Vo €Ly YreR,p€F

4.3 A third linearization based on capacities

Similarly, one might be tempted to come up with a third linearization. Here, a
binary variable x,, selects the combination of a route and the corresponding
capacity while an integer variable y,, indicates the frequency of the respective
combination. Even though the constraints of this model are similar to (ILP)
their structure is slightly more simple. Most notably, we can state the bounds
on the line frequency requirement with constraints having 0/1 coefficients
only. This happens at the cost of the discontinuous term reappearing in the
objective function, and the necessary workaround in spirit of Equation (2).
We may drop the ceiling when using this model for the purpose of lower
bounding only.

minimize Z ZfTr o] (CT™ 4y - C™Y o dm, -y, - (CY 4y - )

reR yell '
subject to Z Z Yy 2 F;™ Ve€E
reR,rse yel’

Z Zy,vygFemax VecE

reR,rse yel

> D> v ne=A. VecE (ILP-c)

reR, rse yel’
Yy = Pmax " Xry <0 VreR,yel’
me, <1 VreR
yell
x-, €{0,1} VreR,yel
Ve €F VreR,yel
This model has another interesting property in the case that only one fre-

quency (besides zero) is admissible. Again, we may substitute the discontin-
uous term in the objective function for [7,] - y., but we can also completely
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drop the y,, variables including their defining constraints from the formu-
lation altogether. This is because for F = {0, 1}, i.e., ¢, = 1, together with
Z erXry <1, 7 € R we have y,, <1-x,., anyway and we substltute X, for
Yry. The remaining model is (BLP) with fixed ¢ = 1! The emphasis with
respect to important decisions in this model clearly lies on capacities rather
than on frequencies. In a sense, among the three proposals this is the line-
arization closest to (NLP).

5 Valid inequalities

In strengthening our linearizations by valid inequalities we aim at improving
the quality of lower bounds. We present valid inequalities for (ILP) only. Our
argumentation is based on the problem rather than on models, and all results
of this section immediately carry over to the other linearizations. We prefer
giving the intuition behind our results only. The reason for doing so is to
demonstrate that rather fancy looking cutting planes are nothing more (and
less) but good problem knowledge. Detailed proofs and some advanced
preprocessing techniques can be found in [2].

Let us abbreviate Ag := ), A.. We will now generalize the following
idea. Let e, f € E be the only edges incident to v € V, and let A, < A;. When
no line via f ends in v, the number of coaches running via e is at least A;.

Proposition 1. Let E' CE, f € E\E', af, = |E' N r|, and Ay > Ap. Then,

(Ar=Ap) Do D %ot D dp ¢ (C g ting) A (4)

reR 0‘4 =0,3f @eF reR peF

is a valid inequality for (ILP).

The following two classes are particularly useful in our experiments. A
tentative explanation is that they exploit observations on capacities and fre-
quencies. Consider an edge e € E with ¢ - F min < A, < ¢(F™" +1). Then, the
number of trains via e is at least F] min 4 1 or the number of additional coaches
of lines via e is at least £ := A, — ¢ - Fmln

Proposition 2. For every edge e € E with ¢ - F™" < A, < ¢(F™n 4 1)

D D &0 xp +min{ o} yip > E- (MM +1) (5)

reRse @peF
is a valid inequality for (ILP).

The line frequency requirement impacts the total number of coaches on an
edge due to the lower bound ¢ on the number of coaches per train. Suppose
the line plan contains a line (r, ¢) with e € r. Independently of the particular
demand A, there must be at least ¢(F,"" — ¢) coaches of other lines via e.
This is generalized in the following result which is the most effective in our
experience.

Proposition 3. Let e€ E and R' CR with ecr for all reR and
Y orer! Z(pefxm, <1 in any feasible solution to (ILP). Then,
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S N0 o) 2 A ( zz@

reR\R'roe @€F reR' 9eF

tey D (M =) x (6)

reR' geF
is a valid inequality for (ILP).

Our final proposal involves edges e € E with a large demand A, but with a
small minimum line frequency requirement F, min When the number of trains
via e is close to F™" the number of coaches in the operated lines must be close
to ¢. The followmg is a generalization of this statement. Observe that in our
models we count coaches in addition to c.

Proposition 4. Let e € E and (r*, ¢*) be a line with e € r*. Define { := A,—
¢(F™ —max{l, "™ — F™ + ¢*}) — ¢*c. If { > 0, then

O e — | F = Y 9exy |[Ue7]120 (7)
(r,p)#(r* ,0*) roe

is a valid inequality for (ILP).

We close this section with a few words on separation, i.e., on identifying
valid inequalities which are violated by a given fractional solution to (ILP).
We cannot give a general scheme for separating (4) for all E' C E which
actually is AP-hard [2]. However, our experiments show that inequalities
with |E'| = 1 dominate those with larger |E’|. The number of inequalities (5)
and (7) is polynomial by definition. Also, in (6) we consider the special case of
|R'| = 1 only. Hence, for our instances, we check only a polynomial number
of inequalities. In particular, we separate valid inequalities of Propositions 1—
4 in a cut-and-branch fashion, i.e., in the root node of the branch-and-bound
tree only, see Algorithm 1. In the remainder of this paper, we refer to this
latter model (ILP) augmented by valid inequalities as model (CUT). For a
branch-and-cut approach based on (BLP) see [8].

6 Turning models into an algorithm

We already remarked that optimally solving our nonlinear model is not an
option. Even our simplified version of (NLP) using (3) represents a challenge
to existing MINLP codes. The problem is still far from being trivial. This can
be deduced from the performance of the until recently only method to solve
MINLPs: A linearization at the (local) optimum point of the relaxed MINLP
results in a mixed integer program and is solved as a second step in the outer
approximation algorithm of DICOPT. Solving only the MIP by CPLEX 7.5
takes over four hours.

Lagrangian relaxation yields unsatisfactory results on the original MINLP
model by Claessens [5]. She proposes an iterative rounding heuristic along the
following lines. Promising routes with x,y, larger than a given threshold are
incorporated in the line plan by bounding x, > 1 from below. On the other
hand, routes with small x,y, value are eliminated from further inspection.
When all routes are either deleted or incorporated, all x, variables are
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rounded up to the next integer. The resulting program is an integer linear
program in the y, variables. An alternative to this approach is to fix y,
variables instead. In the resulting integer linear program one has fixed
capacities on each route and sufficient seat capacity needs to be provided for
each link at minimal cost. This problem remains N'P-hard even for
FM = F™ =1, e € E [2]. All these earlier proposals failed in finding good
primal solutions.

For large scale mixed integer programs in general, and for our (integer)
linearizations in particular, we cannot hope for an optimal solution within
practically relevant time bounds. One would terminate a branch-and-bound
algorithm when a predefined computation time limit is reached. A drawback
is the risk of not having found any primal feasible solution at that time.
Modern commercial branch-and-bound codes optionally apply sophisticated
strategies and invest quite some time in the root node in order to come up
with heuristic solutions. Commonly used variable rounding fails for our
instances. The latest CPLEX 8.0 fares better in that it implements various MIP
emphasis preferences to accomodate, among others, a bias towards finding
feasible solutions. Fischetti and Lodi [7] develop a general two-level
branching framework which controls feasibility at a higher “‘strategic” level.
Computationally, this method outperforms CPLEX’ defaults. A considerable
improvement as compared to relying on general strategies is to develop a
problem specific algorithm which exploits the models we introduced earlier.
This is what we do now.

Fixing all lines according to Claessens’ procedure is a too restrictive
measurement, and makes permanent decisions too early. Our idea is to use
model (NLP) to get a hint to promising lines and pass this information to
model (ILP), still leaving enough freedom to work on these. At first, we invest
in a meaningful starting point for (NLP). To this end, we solve the linear
programming relaxation of (ILP). Variables in (NLP) are initialized accord-
ing to their transformed counterparts in the linearized model’s optimal
solution. A warm or hot start with a former good solution is possible as well.
Then, the continuous relaxation of (NLP) is solved. In the solution, a variable
x~ close to zero is interpreted as »* being an unpromising route, and all
variables x,- , or lines involving such a route are eliminated from model (ILP)
by fixing these variables to zero. All other variables are left untouched. We
then succeed in finding an integer solution to the partially fixed (ILP) model
within three minutes.

From this point on, we have a feasible solution and we may invest in either
improving it or assessing its quality. Thus, we add valid inequalities to (ILP)
as discussed at the end of the preceding section. We remove the variable fixing
again, and continue with a standard branch-and-bound on model (ILP). We
summarize the whole procedure, we term (FIX), in Algorithm 1. Note that
the variable fixing is a heuristic, even though for all our instances we quickly
find an integer solution. In one sentence, it is a very careful initialization of
branch-and-bound.

Our richness of models allows for several alternatives. Instead of using
(ILP) we could run (BLP), or combinations of the models. Also, the final
model to be solved need not be a linearization. We could feed our integral
solution obtained from the fixed linearization into model (NLP) as a better
starting point. The subsequent nonlinear programming based branch-and-
bound phase performs as is well-known for linear mixed integer programs,
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except that “bounds” in each node are obtained from the relaxed nonlinear
integer program (NLP).

7 Computational results

We implemented all our models in the GAMS modeling language [1], version
20.6, using the combination of CONOPT2 and SBB for solving the nonlinear
models, and CPLEX 7.5 for the solution of the linear (integer) models. Our
code is publicly available.®> We deem it important that the reader be in a
position to get first-hand experience with our techniques, reproduce our
results, and verify our conclusions. In the operations research community,
usually with reference to proprietary data, these key ingredients of scientific
activity are often regarded as being of secondary importance. In contrast, we
would like to enable the reader to check claims which we do not explicitly
support by numerical results.

Our computational experiments are performed on a 700MHz Linux PC
with an execution time limit of three hours. We are provided with four prac-
tical problem instances from the Dutch Railways (Nederlandse Spoorwegen),
ic97,1c98, ir98, and ar98. The names stem from the underlying network
(InterCity, InterRegio, and AggloRegio) and the year. Variants of these
instances have been circulating in the community for years and, except ir98,
so far withstood a proven optimal solution, even with massive computational
power [2]. Only recently, Bixby optimally solved instance 1c97 in a month’s
computation time using our model (CUT) (private communication), and
weobtained an optimal solution to ic98 using the same model and
comparable computational efforts. Since our comparison is intended to be
qualitative in nature we do not present numerical results but illustrate our
experiments in Figures 2 through 5. Horizontal solid lines indicate the optimal
objective function value, or for ar98, the best known upper and lower
bounds, respectively. All bounds are obtained using model (CUT).

In brief, as expected, there is no consistently best @/l purpose model.
However, when looking at upper and lower bounds separately, the picture
changes. Most strikingly, for three out of four instances our algorithm (FIX)
provides us with our by far best feasible solutions in about five minutes
computation time per instance. There is practically no improvement after
three hours of additional search with either model, (ILP) or (BLP). A bit
surprisingly, the integer solutions found by model (ILP) alone do not benefit
from the smaller model size and the related quicker evaluation of branch-and-
bound nodes compared to (BLP). In what regards lower bounds, model
(CUT) is significantly superior except in one case; we give a cut statistic in
Table 1. (ILP) appears to be next best, again with one exception. Interestingly
enough, this one exception (with (FIX) unsuccessful, (CUT) and (ILP) infe-
rior to (BLP), and the instance being optimally solvable within practical time
bounds) is one and the same instance, namely ir98.

Results for model (ILP-c), both in terms of upper and lower bounds are
poor, and we refrain from plotting them. The structure of this seemingly
intuitive model is too heavily disturbed by the necessity to model the

3 URL http: //www. gamsworld. org/minlp/apps/blllop
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Algorithm 1 Combining our models into the variable fixing procedure (FIX)

Solve the LP relaxation of (ILP)
Let x# /L7 denote an optimal fractional solution
Initialize variables x"-* y¥P of model (NLP)
for all » € R do
P = Z(p fo(f forallre R

QpeF
| X @y P 5
Ve = eeF )
0 otherwise

end for
Solve the continuous relaxation of (NLP)
According to the optimal continuous solution, fix variables in (ILP):
forallr € R, ¢ € F do

if xP < threshold (default: 1075) then

Add constraint x,, = 0 to (ILP)

end if
end for
Integrally solve the fixed (ILP)
Drop again constraints x,., = 0 from (ILP)
Sequentially add valid inequalities:
Add (5) to (ILP)
if (4) violated then

Add (4) to (ILP)
else if (6) violated then

Add (6) to (ILP)
else if (7) violated then

Add (7) to (ILP)
end if
Solve LP relaxation of (ILP), and remove all cuts which are not binding in the optimal solution
Warm start (ILP) with the integral solution found
Integrally solve (ILP) by standard branch-and-bound

discontinuous term in the objective function via (2). Note that these findings
stress the advantage of the other two linearizations. It should be mentioned
that Goossens et al. optimally solve a variant of instance ir98 within three
minutes of computation time using (BLP) as the basic model [8]. The effec-
tiveness of their branch-and-cut approach for (BLP) leads to the question
how well this algorithm performed with (ILP) as basic model. However, as
indicated in [8] the data instances these authors use are slightly different from
ours and serious comparisons cannot be drawn. From their experiments it
appears that problem specific branching rules, like branching on lines or
capacities are not significantly superior over standard variable branching.

We made several experiments in order to identify the most effective
combination of our models for the variable fixing algorithm, cf. Table 2.
Admittedly, the benefit of model (NLP) is marginal in terms of additional
solution quality. Almost equally good solutions are obtained by just solving
e.g., the relaxed (ILP) model, eliminate unpromising lines as above, and solve
the resulting smaller integer program. However, in our opinion, model (NLP)
most naturally reflects the practical background via (1) which may lead to a
slightly better “guidance” of the variable fixing. We consider it very impor-
tant that — with or without (NLP) — we always obtain integer solutions of high
quality; this points to the robustness of both approaches, and we value the
added flexibility of using several models.
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Table 1. Cut statistic and impact of valid inequalities on the linear programming relaxation of
model (ILP). The columns indicate the name of the instance, the respective number of violated
inequalities, and the respective objective function values of the LP relaxation, the LP relaxation
with violated inequalities added, the LP value in the root node of the branch-and-bound tree
(after CPLEX’ preprocessing), and the latter with violated inequalities added, in that order

Instance (4) ) (6) %) plain LP  w/(@)~(7)  (ILP) root  w/(4)~(7)

ic97 15 4 108 24 3845.47 3915.54 3875.45 3922.63
ic98 19 1 134 5 4328.83 4412.83 4376.06 4418.15
ir9g 20 2 47 0 2230.54 2291.07 2286.28 2299.17
ar98 72 15 162 16 5882.90 6009.10 6064.06 6094.40

Table 2. Comparison of different model combinations for our variable fixing strategy. Headings
‘init’, ‘guide’, and ‘fixed’, respectively, refer to the relaxation which is used to find an initial
solution for model (NLP), the relaxation for determining which lines to discard, and the partially
fixed model to find an integer feasible solution. We report the objective function value of the best
integer solution found after three minutes of the ‘fixed’ run. A * indicates an optimal solution of
the ‘fixed” model

init guide Fixed ic97 ic98 ir98 ar98
(ILP) (NLP) (ILP) #4088.52 *4521.67 #2385.84 6336.44
- (ILP) (ILP) *4088.52 4559.90 #2417.97 6368.08
(BLP) (NLP) (BLP) 4371.66 4811.93 *2378.33 6326.64
- (BLP) (BLP) 4476.51 4639.63 038627  *6383.59
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4200 + -
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Fig. 2. Development of bounds for instance ic97
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Fig. 3. Development of bounds for instance ic98

8 Conclusions

Nonlinear integer programming is quite often an adequate and intuitive
modeling approach for combinatorial optimization problems. Recently,
powerful software became available for actually solving these models, and we
have to re-think about such approaches. In this paper we support this claim,
and demonstrate how to combine nonlinear techniques with “classical”
integer linear programming in order to successfully attack a very hard
practical combinatorial optimization problem. The heuristic we present is
robust in that it delivers an excellent integer solution for all our instances.
For better or for worse, the success or failure of an approach is linked to
the dramatic development of commercial solvers. Not seldom we see that we
can learn a lot from a tailored algorithm but an off-the-shelf product is much
superior in terms of computation time, and often quality. This is especially
true for linear and mixed integer programs. Solvers are much more sophis-
ticated than those available when we set out with this research in 1997; in fact,
we experimented, among others, with CPLEX versions 2.0 through 8.0 and it
is not unlikely that future versions are competitive to our success with the
variable fixing algorithm, or put its current usefulness in question altogether.
However, we would like to make the point that these solvers also improve
because of research like ours. Then again, in our opinion, the development of
industry standard mixed integer nonlinear solvers is just at its beginning, and
the headway of using a nonlinear model may even be amplified in the future.
One must critically ask the question whether an intelligent use of different
models and solvers is eligible to be termed an algorithm, even though the
notion is certainly technically appropriate. Our answer is affirmative. The
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outcome in terms of the building blocks model and solver looks simple but
beneath the surface a lot of algorithmic understanding is indispensable. On
the other hand, this simplicity at a higher level enables the practitioner to
obtain reproducible and predictable results in finite time. We would like the
notion of a practical algorithm.

Besides fundamental investigations in the latter direction open research
avenues include the following specific modifications: Lines need not be
operated back and forth. This may lead to concatenations of several lines. An
additional complication in this setting is whether the resulting line plan is
robust as to the subsequent planning stage of train scheduling. Also, rolling
stock does not need to be dedicated to specific lines. Column generation, an
entirely different algorithmic approach, has been suggested for the maximi-
zation of the number of direct travelers in [2]. A continuation of our study
would investigate how suitable this approach is for the minimization of
operational cost. We are confident that further computational and method-
ological progress will eventually lead to an integrated treatment of all the
mentioned networks.
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