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Abstract

Column generation is an indispensable tool in computational optimization to solve a
mathematical program by iteratively adding the variables of the model. Even though the
method is simple in theory there are many algorithmic choices and we discuss the most
common ones. Particular emphasis in put on the dual interpretation, relating column
generation to Langrangian relaxation and cutting plane algorithms, which revealed several
critical issues like the need for dual variable stabilization techniques. We conclude with
some advise for computer implementations.
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Column generation is a classical technique to solve a mathematical program by iteratively
adding the variables of the model [1]. Typically, only a tiny fraction of the variables is needed
to prove optimality which makes the technique interesting for problems with a huge number
of variables. The method is often said in one sentence with Dantzig-Wolfe decomposition [2]
(see also 1.1.2.3, Dantzig-Wolfe decomposition), as it is particularly effective when the matrix
has a special structure like bordered block-diagonal or staircase forms.

We make one point clear right from the beginning. Even though the method was termed gen-
eralized linear programming in the early days, it never became competitive for solving linear
programs, except for special cases [3]. In addition, tailored implementations were designed to
exploit matrix structures, but they did not perform better than the simplex method [4]. In
contrast, column generation is a real winner in the context of integer programming (see also
1.4.2.4, branch, price, and cut algorithms). This made the powerful method a must-have in
the computational mixed integer programming “bag of tricks.”

We assume the reader to be familiar with basic linear programming duality and the simplex
method (see also 1.1.1, fundamental techniques).

1 Column Generation

We would like to solve a linear program, called the master problem (MP)

v(MP) := min ch)\j
jeJ
subject to Zaj)\j > b (1)
jeJ
)\j > 0, jed

with |J| = n variables and m constraints. In many applications n is exponential in m and
working with (1) explicitly is not an option because of its shear size. Instead, consider the
restricted master problem (RMP) which contains only a subset J' C J of variables. An optimal
solution A* to the RMP needs not be optimal for the master problem, of course. Denote by
7* an optimal dual solution to the RMP. In the pricing step of the simplex method (see
also 1.1.1.3) we look for a non-basic variable of negative reduced cost to enter the basis. To
accomplish this in column generation, one solves the pricing problem (or subproblem) PP

v(PP) := min{c¢; —7*a;|je J} . (2)

When v(PP) < 0, the variable A\; and its coeflicient column (c;,a;) corresponding to a
minimizer j are added to the RMP; this is solved to optimality to obtain optimal dual variable
values, and the process iterates until no further improving variable is found. In this case, A*
optimally solves the master problem (1) as well. In particular, column generation inherits
finiteness and correctness from the simplex method, when cycling is taken care of.

It seems not clear why (2) should be of any help when |.J] is large. However, in almost every
application, indices in J enumerate entities which can be well described as the feasible domain
X of an optimization problem

min{c(x) — 7" a(x)} , 3)



where ¢; = ¢(x;) and a; = a(x;), and x; € X corresponds one-to-one to j € J. That
is, instead of explicitly pricing all candidate variables, we solve a typically well-structured
optimization problem, making the search for a variable of negative reduced cost implicit.
Technically, our notation suggests that X be finite, but this needs not be the case.

Consider the one-dimensional cutting stock problem, the classical example in column genera-
tion introduced in [5]. We are given paper rolls of width W, and m demands b;, i = 1,...,m,
for orders of width w;. The goal is to minimize the number of rolls to be cut into orders, such
that the demand is satisfied. A standard formulation is

min{1A | AA >b, Az} | (4)

where A encodes the set of |J| feasible cutting patterns, i.e., a;; € Z; denotes how often
order ¢ is obtained when cutting a roll according to j € J. From the definition of feasible
patterns, the condition ", a;jw; < W must hold for every j € J, and A; determines how
often the cutting pattern j € J is used. The linear relaxation of (4) is then solved via column
generation, where the pricing problem is a knapsack problem.

Dual Bounds

During column generation we have access to a dual bound on v(MP) so that we can terminate
the algorithm when a desired solution quality is reached. Let v(RMP) denote the optimum
of the current RMP. When we know that > jes Aj <k for an optimal solution of the MP, one
cannot improve v(RMP) by more than x times the smallest reduced cost v(PP), hence

v(RMP) + k- v(PP) < o(MP) . (5)

An important special case is kK = 1 when a convexity constraint is present, see Sect. 1.1. This
bound is tight as v(PP) = 0 when column generation terminates. Note that v(PP) is not
available when the pricing problem is solved heuristically. When the objective function is a
sum of all variables, i.e., ¢ = 1, we use k = v(MP) and obtain v(RMP)/(1—v(PP)) < v(MP).
There are other proposals, e.g. [6], and also tailored bounds for special problems, e.g. [7]. In
general, the dual bound is not monotone over the iterations (yo-yo effect).

1.1 Dantzig-Wolfe Decomposition

The classical scenery of column generation is set in the context of Dantzig-Wolfe decomposi-
tion [2] in which a special structure of the typically very sparse coefficient matrix is exploited
(see also 1.1.2.3, Dantzig-Wolfe decomposition). Consider a linear program, called the original
formulation in this context

min c¢x
subject to Ax > b (6)
Dx > d
x > 0.

Let X = {x € Q7 | Dx > d}. By the representation theorems for convex polyhedra by
Minkowski and Weyl [8] we can write each x € X as finite convex combination of extreme



points {x,},cp plus finite non-negative combination of extreme rays {x,},cr of X, i.e.,
P|+|R
x=3 %M+ D XA, Y A=1 aeqfFH (7)
peEP reR peEP

Substituting for x in (6), thereby eliminating constraints Dx > d, and letting ¢; = cx; and
a; = Ax;, j € PU R, we obtain an equivalent extended formulation

min Z CpAp + Z Cr Ay

peEP reR
subject to Zap)‘P+ZaT)‘T > b
peP reR (8)
D =1
peEP
A > 0,

which is solved by column generation. Let 7*, 7§ denote a dual optimal solution to the RMP
obtained from (8), where variable 7y corresponds to the convexity constraint Zpe pAp = L
The subproblem (3) is to check whether minjepur{c; — w*a; — 75} < 0. By our previous
linear transformation this results in solving the linear program

min{(c —w*A)x — 7y | Dx >d,x >0} . 9)

When the minimum is negative and finite, an optimal solution to (9) is an extreme point x,,
of X, and we add a variable with coefficient column [cx,, (Ax,),1] to the RMP. When the
minimum is minus infinity, we obtain an extreme ray x, of X as a homogeneous solution to
(9), and we add the column [cx,, (Ax;,), 0] to the RMP. It is particularly interesting that the
master problem stays a linear program even when the subproblem is non-linear.

The usefulness of Dantzig-Wolfe decomposition becomes more apparent in the practically
relevant case that D has block diagonal structure, i.e.,

D! d!
D? d?
D= . d=| . (10)
| DX &K )

Each X* = {DFxF > d* x* >0}, k=1,... K, gives rise to a representation as in (7). The
decomposition yields K subproblems, each with its own convexity constraint and associated
dual variable 71'(’)“:

min{(c*® — wA")x* —xf | x* € X*}, k=1,... K, (11)

where c¢¥ and A* correspond to variables x*. An optimal solution to the RMP is found when
no minimum in (11) is negative. The dual bound (5) can be adapted.

There are other special matrix structures which can be exploited, e.g., the so-called staircase
form of matrices which arises in multi-period or multi-stage planning problems, in particular
in stochastic programming. In the easiest case, the matrix of the pricing problem has bor-
dered block-diagonal structure again, and the Dantzig-Wolfe decomposition can be iteratively
applied (also known as nested column generation).



1.2 Lagrangian Relaxation

In particular for a bordered block-diagonal matrix, Dantzig-Wolfe decomposition can be inter-
preted as keeping complicating constraints in the master problem while exploiting a particular
structure in the subproblems. Lagrangian relaxation [9] proceeds the other way round: The
complicating constraints Ax > b are relaxed and their violation is penalized in the objective
function via multipliers 7w > 0 (see also 1.1.2.4, Lagrangian optimization for LP). This results
in the Lagrangian subproblem

L(w) :==min cx—w(Ax —Db) , (12)

xeX
which gives a lower bound on the optimum in (6) for any w > 0. We obtain the best such
bound by solving the Lagrangian dual problem
L . 13
max L(r) (13)
The Lagrangian function L(7r) is piecewise linear, concave, and sub-differentiable (but not dif-
ferentiable). The most popular, since very easy to implement, choice to obtain optimal or near
optimal multipliers are subgradient algorithms (see also 1.2.3.4, subgradient optimization).
By duality, in the optimum v(RMP) = 7b, and (12) can be written as
L(w) =wb + mi)l}(c —mwA)x = v(RMP) +v(PP) ,
xXE

that is, the dual bound in Dantzig-Wolfe decomposition and the Lagrangian bound coincide
(see also 1.1.2.5, relationship among Benders, Dantzig-Wolfe, and Lagrangian optimization).

1.3 Row and Column Generation

Linear programs may not only have a large number of variables but also (too) many rows,
e.g., when constraints are formulated on all subsets of a given ground set (like subtour elim-
ination constraints for the TSP). In such cases one iteratively adds only those constraints
which are violated by the current solution. The identification of a violated constraint (or the
detection that none exists) is called separation. Embedded in a branch-and-bound algorithm,
cutting plane methods became instrumental (and thus the standard) in solving mixed integer
programs. Now, row and column generation obviously cannot be viewed independently. Even
though some general ideas exist on how the pricing problem needs to be modified in order
to cope with the dual variables from the additional rows, such approaches are still mainly
problem specific (see also 1.4.2.4, branch, price, and cut algorithms).

1.4 Mixed Integer Programs

When solving a mixed integer program by branch-and-bound, the (linear) relaxation serves
the purpose of providing a dual bound on the optimal objective function value. When the
relaxation is solved by column generation in each node one speaks of branch-and-price (see also
1.4.2.4, branch, price, and cut algorithms). We cannot overstress the fact that the primary
use of column generation is in this context, and it is becoming increasingly popular as column
generation re-formulations often give much stronger bounds than the original LP relaxation.
Many people actually refer to branch-and-price when they speak of column generation.



The Dantzig-Wolfe decomposition principle can be generalized to mixed integer programs in
several ways. However, the basic column generation procedure to solve the linear relaxation
remains the same. One drawback, the slow convergence, see Sect. 3, may even become smaller.
When a dual bound LB is available, and the objective function coefficients are all integers,
ie., ¢;j € Z, j € J, column generation can be stopped as soon as [LB]| = [Z]. When one is
aiming for quick integer solutions one may even terminate prematurely, and take a branching
decision as soon as column generation starts tailing off. In this case the node’s dual bound
is not valid, so it is set to that of the father node, and this early termination even is exact in
principle.

2 Algorithmic Issues

The dual of the RMP is the dual of the master problem with rows omitted, hence a relaxation.
Therefore, the pricing problem is a separation problem for the dual; column generation is a
cutting plane method to solve the Lagrangian dual (13). This explains why many researchers
relate it to the Kelley [10] and Cheney-Goldstein [11] cutting plane methods known from
maximizing a concave continuous function. The dual point of view, see [12] for a more
detailed discussion, revealed central algorithmic issues in column generation. In particular,
one should re-read this section after having read Sect. 3 on dual variable stabilization.

Note that there is a theoretical consequence from the equivalence of separation and optimiza-
tion [13]. Even exponential size RMPs (linear programs) are solvable in polynomial time (in
theory by the Ellipsoid method) when the pricing problem is.

2.1 Master Problem: Computing Primal and Dual Solutions

The purpose of the RMP is to provide dual variable values: To communicate with the pricing
problem which primal variables are needed to come closer to dual feasibility, and thus primal
optimality. Note that we never need a primal feasible solution before optimality is reached, not
even to calculate dual bounds. That is, the RMP serves the same purpose as e.g., subgradient
methods in Lagrangian relaxation, and this connection can be exploited.

2.1.1 Initialization, Infeasibility, and Farkas Pricing

Even when the master problem has a feasible solution, there are two important situations when
the RMP is not feasible: In the beginning when no variables have been generated yet, and
after branching when solving an integer program. In the traditional “phase I” approach [14]
artificial variables with a “big M” penalty cost are introduced. A smaller M gives a tighter
upper bound on the respective dual variables, and may reduce the heading-in effect [15] of
initially producing irrelevant columns. Heuristic estimates of the optimal dual variable values
can be used for this purpose [16]. Furthermore, one may warm-start from a previous similar
run [17] or use a primal heuristic to produce an initial solution.

Column generation provides another way of turning an infeasible RMP feasible via the well-
known fact that the dual of an infeasible linear program is unbounded (if not infeasible). This
is formalized in Farkas’ Lemma which states that either Ax = b, x > 0 is feasible or there is
a vector 7 with mA < 0 and wb > 0. Such a vector 7r, which is interpreted as a ray in the



dual, proves the infeasibility of the first system as wAx = wb cannot be fulfilled. The idea is
now to add a variable to A with coefficient column a with ra > 0 which thus destroys this
proof of infeasibility. Such a variable can be found (or concluded that none exists) by solving

* = min{—7" 14
max{ra(x)} = mip{-ma(x)} (14)
which is nothing else but the standard pricing problem (3) with cost coefficients ¢(x) = 0.
The dual ray 7* is typically provided by the LP solver in the case of an infeasible linear
program. While this method appears to belong to the folklore, the name Farkas pricing has
been introduced only recently in [18] within the SCIP framework (see Sect. 4).

2.1.2 Algorithms: Pivots, Subgradients, Bundles, and Volumes

As for any linear program, it is not a priori clear which method to solve the RMP will perform
“best.” This may depend on the problem and the available solvers. Traditionally, primal or
dual simplex methods are used (see [19] for general comments on their suitability), but there
are many alternatives. The sifting method [20], which is some sort of static column generation,
can be a reasonable complement for large scale RMPs [17, 21]. Interior point methods like the
barrier method can prove effective, although there is no warm start (yet). Also the analytic
center cutting plane method [22] is advantageous as it produces interior point dual solutions.
In addition to these general purpose methods, one may stronger exploit duality.

As stressed before, the RMP should furnish dual multipliers. After some initial iterations, a
simplex method may produce relevant dual solutions which lead to progress, but then switch-
ing to a subgradient or more elaborate method to improve the dual solution may produce
better dual bounds, and thus faster termination [23, 24, 25]. This can be cheaper and more
stable, see Sect. 3, and may considerably reduce computation times. As the literature an La-
grangian relaxation is rich, there are many proposals for multiplier adjustment in subgradient
methods which can be adapted to the column generation context. The RMP may itself be
solved by subgradient algorithms by relaxing all its constraints in the objective function. This
can be used as a primal heuristic as well, as proposed for set covering applications [26, 27, 28].

Subgradient algorithms suffer from a very restricted information; only the current subgradient
is available. Bundle methods [29, 30] therefore work with a set of subgradients, the bundle,
from which the methods borrow their name. It is true that a simplex method maintains a
kind of bundle as well (the variables in the basis) but bundle methods may be more flexible.
Bundle methods apply the proximal point idea of (quadratically) penalizing a deviation of
the next iterate from the currently best one in terms of the dual bound. This makes them
attractive in the context of Sect. 3 and explains their use in column generation [31]. It usually
only takes a few iterations to produce an approximately optimal primal-dual pair.

The volume algorithm [32] is another extension of subgradient algorithms which also rapidly
produces good approximations. It is named after a new way of looking at linear program-
ming duality, using volumes below the active faces to compute the dual variable values and
the direction of movement. The pricing subproblem is called with a dual solution “in a neigh-
borhood” of an optimal dual solution. One can compute the probability that a particular
column (which induces a face of the dual polyhedron) is generated. A modified subgradient
method furnishes estimates of these probabilities, i.e., approximate primal solutions. Primal
feasibility may be mildly violated.



When used in alternation with the simplex method, the volume algorithm produces dual solu-
tions with a large number of non-zero variables [17] which may accelerate column generation.
Promising computational experience is given [23, 33] for various combinatorial optimization
problems. Advantages of the volume algorithm are a straight forward implementation with
small memory requirements, numerical stability, and fast convergence.

2.1.3 Row Aggregation for Set Partitioning Problems

Primal degeneracy is an efficiency issue also in column generation, e.g., for large-scale set
partitioning problems. Because of the degenerate pivots, dual variables yield less reliable
information for the pricing problem. A possible remedy is to group similar constraints and
aggregate them into one [34], thus working with an RMP with much less rows. The intuition
is that in applications like vehicle routing and crew scheduling, some activity sequences are
more likely to occur than others: In airline crew scheduling a pilot usually stays on the same
aircraft for several flight legs. Since aircraft itineraries are known prior to solving the crew
pairing problem, it is natural to “guess” some aggregation of the flights to cover.

The method is not particular to column generation but can be used in this context. Most
importantly, an aggregated RMP gives aggregated dual variables which need to be disaggre-
gated. This should (and can) be done carefully so that the disaggregated dual solution fulfills
many of the dual constraints already. To ensure proper convergence and optimality, the ag-
gregation is dynamically updated throughout the solution process. Tests conducted on the
linear relaxation of the simultaneous vehicle and bus driver scheduling problem in urban mass
transit show that this solution approach significantly reduces the size of the master problem,
the degeneracy, and the solution times, especially for larger problems: For an instance with
1600 set partitioning constraints, the RMP solution time is reduced by a factor of eight. A
partial pricing strategy, dubbed multi-phase dynamic constraint aggregation [35], gives further
significant speedup.

2.2 The Pricing Problem

The pricing problem provides a column that prices out profitably or proves that none exists.
Any variable with negative reduced cost will do, be it obtained by an exact, approximate or
heuristic algorithm (the latter are first choice in terms of speed). One may even add positive
reduced cost variables (possibly to a pool first). Sometimes relaxations of the pricing problem
are solved, at the expense of a weaker dual bound, like for vehicle routing problems [36].
Highly complex pricing problems (like in staff and duty scheduling) may be better solved by
constraint programming as this offers a strong expressiveness of the model [37].

2.2.1 Pricing Schemes and Pricing Rules

For the simplex method many proposals have been made as to which columns to consider
and according to which rule to choose when selecting a variable to enter the basis. Schemes
like full, partial, or cyclic pricing find their analogs in column generation pricing. When there
are many subproblems it may be sensible to use partial/cyclic pricing in order to avoid the
generation of many similar columns [38], but the number of iterations may increase. Dantzig’s
classical most-negative reduced cost pricing rule is not the only choice. The Devex rule [39]



(a practical variant of steepest-edge [40, 41]) is reported to perform particularly well for set
partitioning RMPs [42]. The dual analog, the deepest-cut rule [43] tries to cut away as much
of the dual space as possible. It can be implemented heuristically and is reported to offer
some speedup [44].

While steepest-edge is inherently based on the simplex method, deepest-cut is more indepen-
dent from a particular solution method. This leads to the lambda pricing rule [20]. Assume
that ¢; > 0, j € J. Clearly, the reduced cost ¢; — w*a; are non-negative for all j € J iff

.y
min{ —— |w*a; >0p >1. (15)
jeJ | w*a;

At first glance, this is just a reformulation. However, (15) takes advantage of structural prop-
erties of (particular) set partitioning problems: Picking columns with a small ratio accounts
for smaller cost coefficients as well as for more non-zero entries in a;.

It is common in cutting plane algorithms to fill a cut pool first and select a good subset of
cuts from it according to criteria like efficiency, orthogonality, sparsity, etc. [18]. Defining and
applying such criteria to selecting good columns remains to be seen. Attempts to characterize
dual facets [42] do not appear to have any practical impact so far. It would be interesting to
see other pricing rules particular to column generation, e.g., with the aim of stabilization.

2.2.2 Pricing Problems when solving Integer Programs

When the subproblem’s domain X in (3) is a mixed integer set, e.g., when a Dantzig-Wolfe
type decomposition is applied to a mixed integer original problem (6), pricing problems be-
come mixed integer programs themselves (see also 1.4.2.4, branch, price, and cut algorithms).
It is well-known [9] that the dual bound from the RMP can be stronger than the LP relax-
ation only when the subproblem does not possess the integrality property. That is, the linear
relaxation of the pricing problem should not give an integer solution. The tradeoff in choosing
a decomposition is between a strong dual bound (by adding also complicating constraints to
the subproblem) and the manageability of the subproblem (by avoiding this). Sometimes a
combinatorial algorithm is available for the pricing problem and a faster alternative to an
integer program; often this is a dynamic program (like for resource constrained shortest path
problems in routing applications) which has the advantage of providing more than one so-
lution to the pricing problem. The latter can be achieved with integer programs as well by
using the solution pool that state-of-the-art solvers offer.

In particular with the help of pricing heuristics, one often generates columns which resemble
a good integer solution rather than an optimal fractional one (which may be much harder to
characterize). One should keep in mind that what helps the integer program need not help
the linear program. Still, e.g., for set partitioning RMPs a reasonable strategy is to generate
columns of a rich diversity [45] (complementary columns).

3 Stabilization of Dual Variables

Column generation is known to suffer from tailing off [46], i.e., there is only incremental
progress per iteration the closer we get to the optimum, in particular for large and degenerate



problems. There are several partial explanations (see [47] for a summary), but a main reason
lies in the unstable behavior of the dual variables. A dual solution may be far apart from the
previous one (bang-bang effect, in [12] an example by A. Nemirovskii is cited which drastically
shows this behavior). Stabilization of the dual variables tries to reduce this effect. The
principles are well-established in the non-linear programming world; choosing good separation
points in cutting plane algorithms is the analogous concept [48].

It should be noted that in the case that stabilization is successful, regardless of what method is
employed, one typically observes a reduction in the number of column generation iterations.
At the downside of it, the pricing problems become harder to solve on average. However,
among more sophisticated implementation techniques, stabilization may promise the largest
performance gains [15].

3.1 Interior Point Stabilization

Solving the RMP by a simplex method gives an extreme point of the optimal face of the dual
polyhedron. When this face has a large dimension, e.g., when the primal is highly degenerate,
there may be many extreme points, and the one obtained is essentially a “random choice” [20].
This extreme point is cut off in the next iteration, however, one would rather like to cut of the
whole optimal face. In that sense, a simplex method may yield a “bad representative” of the
optimal face. An immediate remedy to this can be to use an interior point method instead as
one would cut off an interior point of the optimal face. Particular proposals have been using
analytic centers [49], volumetric centers, and central paths [50], among others. Such concepts
have been discussed for cutting plane algorithms as well, see [48].

A simplex method based approach to obtain a solution in the interior of the dual optimal face
is taken in [51]. It works in two steps and exploits the extremity of basic solutions. First,
the RMP is solved and the objective function value is fixed to the optimum via adding an
additional constraint. Then, several random objective functions ¢ are chosen (and also the
opposite direction —c), each of which produces an extreme point of the optimal face. The
final dual solution is a convex combination of all extreme points obtained. This approach is
computationally expensive but easy to implement.

3.2 Boxstep Method

Instead of producing rather arbitrary interior points, one may introduce a control of the dual
solution’s trajectory. By imposing lower and upper bounds, dual variables are constrained to
lie “in a box around” the previous dual solution 7w*. The such restricted RMP is re-optimized.
If the new dual optimum is attained on the boundary of the box, we have a direction towards
which the box should be relocated. Otherwise, the optimum is attained in the box’s interior,
producing the sought global optimum. This is the principle of the Boxtep method [52, 53|
and the basic idea of using a stability center, i.e., our current best guess of an optimal dual
solution which is in some sense “more reliable” than other dual solutions. This is well-known,
e.g., in trust-region methods, and it is the underlying mechanism of all what follows.

10



3.3 Polyhedral Penalty Terms

A hard-coded box is not very flexible. Instead, stabilized column generation [54] automates
the re-centering of the box to the current dual solution. Consider the following linear program

min cA\ — 5_y_ + 6+y+

subject to AAN—y_+y+ = b
y- < e_ (16)
y+ = €4
)‘a Y- ¥+ > 0
and its dual
max wb—e_w_ —eyjwy
subject to TA < ¢
—T—-w_ < —4_ (17)
T—wy < 04
W_, Wi > 0.

Surplus and slack variables y_ and y, respectively, perturb b by € € [—e_, e ], which helps
to reduce degeneracy. The interpretation of (17) is more interesting. The dual variables m
are restricted to the interval [0_ —w_, d4 +w_], that is, deviation of 7r from the soft interval
[6_,684] is allowed but penalized by an amount of €_, e per unit, respectively. From (16)
we obtain an optimal solution to the unperturbed problem min{cA | AX = b, XA > 0} when
e_=¢e;y=0o0rd_ <@ < dy, where 7 is an optimal solution to (17). Therefore the stopping
criteria of a column generation algorithm become v(PP) =0 and y_ =y = 0.

This approach may need some parameter tuning, but it offers considerably speedup for some
problems [54]. The change to the RMP requires adding upper bounded artificial variables only,
which does not increase the size of the basis. It can be easily generalized to piecewise linear
penalty functions with more pieces, where five pieces appear to give a good compromise [55],
with a stronger penalty further away from the stability center. Note that (16) is a relaxation
of the unperturbed RMP, and it may be faster computed.

3.4 Bundle Methods: Quadratic Penalty Term

The aim of the penalty terms is to encourage a dual solution to stay close to the stability
center; so the penalty is larger the further away we go. Pictorially, a quadratic penalty
function can achieve this goal better than a piecewise linear penalty, and bundle methods do
precisely this: penalizing the Euclidean distance to the stability center. There is an extensive
comparison between bundle methods and “classical” stabilization techniques in [12], and the
current conclusion is that there is no clear winner. The situation may change in favor of bundle
methods when future developments bring improvements e.g., in quadratic programming.

3.5 Convex Combinations with Previous Dual Solutions

A different approach to avoid (too) large steps in the dual space does not need any modification
to the RMP at all, but convex combines the current dual solution 7v* with a previous one 7,
i.e., the pricing problem is called with a@w + (1 — a)7* for 0 < o < 1. When a column is
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found it is added to the RMP only when it has negative reduced cost with respect to w*. The
dual bound is updated whenever L(a7 + (1 — a)7*) > L(7). An interesting property is that
even in the case that no column was added to the RMP (a misprice) it holds that the dual
bound improves to at least L(#) + a(v(RMP) — L(#)) [56]. As a consequence the duality gap
v(RMP) — L(#) is reduced at least by a factor (1 —a)~!, i.e., the method not only converges
but also with a proven rate. Only a single parameter has to be calibrated, however, because
of this static choice of «, the stability center moves with less flexibility than in the previous
proposals.

The convex combination with a dual solution which produced the current best dual bound is a
re-discovery of the weighted Dantzig- Wolfe decomposition method [57], in which « is updated
in each iteration. The stability center 7« becomes more reliable (larger «) the more often it
leads to an improvement of the dual bound.

3.6 Valid Inequalities in the Dual Space

A complementary stabilization technique is to add valid inequalities to the dual. A simple
proposal is the relaxation of RMP equalities to inequalities (when possible) which imposes
sign constraints to the dual variables [5]. The concept of dual-optimal inequalities [58, 59] is
more refined. One adds contraints wFE < e which are valid for the optimal face of the dual
polyhedron. The consequence in the primal is that additional variables are introduced, and
the RMP becomes min{cA+ey | AA+Ey > b, A,y > 0}. Deep dual-optimal inequalities [59]
may even cut away dual optimal solutions except at least one.

As an example consider the one-dimensional cutting stock problem (4). It can be easily shown
that if the orders are ranked such that w; < wg < -+ < w,, then the dual variables satisfy
the ranking constraints m < mg < --- < . These m — 1 dual constraints can be generalized
to larger sets [58, 59]. Let S; = {s | ws < w;}. Then

Zwsgwi = Zwsgm, Scs;, (18)

seS seS

which significantly reduces the number of iterations on difficult instances [59].

As dual inequalities relax the primal RMP one has to ensure primal feasibility of the final
A*, which can be done by slightly perturbing the RMP [59]. The usefulness of adding valid
dual inequalities has been demonstrated by constraining the dual variables to a small interval
around their optimal values [55, 59] (or a heuristic good guess). Such perfect dual information
is available e.g., for the cutting stock triplet-problems, where each roll is cut into exactly three
orders without any waste, where m; = w; /W, i =1,...,m is dual optimal. It is further known
that restricting the dual space can reduce primal degeneracy [58].

4 Acceleration Techniques and Implementation Issues

Column generation is easily understood in theory but an implementation may suddenly reveal
that there are many small pieces which need to fit together. In the sequel, we hint at some.
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4.1 Libraries, Frameworks, Modeling Languages

Most people who implement a column generation code will at least rely on some package which
provides an efficient simplex algorithm. There are plenty available, both commercial and
open-source, like CLP [60], GLPK [61], and SOPLEX [62]. As noted above, there are alternatives
(at least complements) to the simplex method, like the bundle method [63]. When we only
do column generation, the main loop is quickly written. The major implementation effort
then probably remains for the pricing problem. The situation is a little different when doing
branch-and-price, but there are several frameworks which support its implementation (and
thus in particular column generation) like ABACUS [64], BCP [65], SCIP [18], and SYMPHONY [66].

Frameworks have the advantage that they may automatically take care of features like using a
column pool which contains variables from previous pricing rounds, or lazy constraints which
are separated only when needed. This can be useful for constraints which are unlikely to be
tight at optimality [67]. A main benefit from a framework is that it manages the branch-and-
price tree, and that standard branching schemes etc. are available.

It is a little less known that column generation can be implemented also within several model-
ing languages like GAMS [68] or OPL [69]; but a true branch-and-price is usually not supported.
Since the user does not have access to all the internals, this option is probably not quite suited
for exactly solving very difficult problems, but it can be useful for practitioners working with
the modeling language anyway.

4.2 Suboptimal Solutions

Column generation and branch-and-price are exact methods, i.e., in theory we obtain an
optimal solution. The crux is that in practice, this may happen after a too long computation
time, and one may wish to resort to a suboptimal solution. Fortunately, the dual bound gives
a guarantee on its quality at any time. Heuristics should be used to construct or improve
primal and dual solutions as often as it seems useful. This point cannot be overestimated.

Numerical computations on a computer are in limited precision and there are several toler-
ances to be thought of: What is negative reduced cost? When comparing against 0.0, one
easily ends up in an infinite loop because of numerical inaccuracies. When does the primal
bound match the dual bound closely enough? When an explicit perturbation of the right
hand sides is used, of what magnitude will it be? Typically, for each of these tolerances one
chooses some small value in the order of 1072 to 107%. One can access the topic a bit more
rigorously using the notion of e-optimality [12]. An alternative is to resort to exact (rational)
arithmetic; but due to performance reasons this is only advisable for mission critical linear
and integer programs.

Practitioners interested in primal solutions (found quickly) may choose some sort of price-
and-branch, i.e., pre-generate a reasonable set of variables in several rounds, and then solve
the resulting program with standard branch-and-bound.

4.3 Some Simple Ideas which often Work

Again: Think of heuristics everywhere. Preprocess your problem well, in particular when
solving integer programs. For many problems on networks, the graph can be significantly
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reduced. Use a profiler to identify which part of the algorithm is the bottleneck. Typically, this
will be the pricing problem but sometimes re-optimizing the RMP can be extremely time-con-
suming as well. Try solving the RMP only approximately and improve the dual solution with
some iterations with a method from the Lagrangian world. Try dual variable stabilization, cf.
Sect. 3. Try to avoid solving the pricing problem to optimality too often. Again, use heuristics
first, maybe even a cascade of heuristics of increasing complexity. Relaxations serve the same
purpose. Experiment with different parameters, in particular how many columns you add
to the RMP in each iteration; too few do not yield enough progress, too many slow down
computations (a combinatorial algorithm, or the solution pool of your solver can return more
than one column). For large-scale problems, it can pay to remove columns which were non-
basic for too many iterations.

Many acceleration techniques are problem dependent, but can often be adapted. The sur-
vey [70] in the context of vehicle routing and crew scheduling is very helpful in this respect.
Re-read about the algorithmic alternatives in Sect. 2, all of which can be (and have been)
modified and combined (see also 1.1.3, non-simplex algorithms for LP). When everything
fails, you need to research your problem (more thoroughly)! A proof that an optimal primal
(or dual) solution you are looking for has a particular structure may restrict the search a lot.

5 Conclusions

Despite the obvious similarity to cutting plane techniques—both methods dynamically extend
the model—column generation has significant differences. While cutting planes can optionally
be added to the (already optimally solved) linear relaxation in order to strengthen it, one has
to add negative reduced cost variables for otherwise one does not obtain a valid dual bound.
This makes the competition a bit unfair but we believe that the future will lie in integrating
the two methods into one anyway.

Even though column generation was incepted more than half a century ago, the last decade was
the most active in research and implementation. The availability of powerful computers and
electronic large-scale data of hard practical problems challenged the community. The influence
of non-differential convex analysis, in particular the idea of dual variable stabilization, was
beneficial for the field. Still, column generation and branch-and-price are available as generic
implementations, and we are eager to see this change.

Until this happens, there are very elaborate suggestions for tailoring the method to particular
problems, sometimes even particular problem instances. While this is questionable in terms of
general purpose applicability, it is the driving force for pushing the border. Many interesting
developments will certainly follow.

Column generation is clearly a success story in large-scale integer programming. The dual
bound bound obtained from an extended reformulation is often stronger, the tailing off effect
can be lessened, and the knowledge of the original formulation provides us with a guide for
branching and cutting decisions in the search tree. Today we are in a position that branch-and-
price codes solve many large-scale problems of “industrial difficulty,” no standard commercial
solver could cope with.
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6

Further Reading

Previous general reviews on column generation include [71, 72, 73, 74]. This article is based
on [47]. The literature on applications of branch-and-price and column generation grew so
quickly in recent years (see the book [75]) that it is likely that someone already proposed at
least a partial solution to the application you have in mind. Go on reading on branch-and-
price in [76] and 1.4.2.4, branch, price, and cut algorithms.
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