
Computational Optimization and Applications, 31, 295–308, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Shunting Minimal Rail Car Allocation

MARCO E. LÜBBECKE m.luebbecke@math.tu-berlin.de
Technische Universität Berlin, Institut für Mathematik, Sekr. MA 6-1, Straße d. 17. Juni 136,
D-10623 Berlin, Germany

UWE T. ZIMMERMANN u.zimmermann@tu-bs.de
Institute of Mathematical Optimization, Braunschweig University of Technology, Pockelsstraße 14, D-38106
Braunschweig, Germany

Received June 23, 2003; Revised July 27, 2004; Accepted September 3, 2004

Abstract. We consider the rail car management at industrial in-plant railroads. Demands for loaded or empty
cars are characterized by a track, a car type, and the desired quantity. If available, we assign cars from the stock,
possibly substituting types, otherwise we rent additional cars. Transportation requests are fulfilled as a short
sequence of pieces of work, the so-called blocks. Their design at a minimal total transportation cost is the planning
task considered in this paper. It decomposes into the rough distribution of cars among regions, and the NP-hard
shunting minimal allocation of cars per region. We present mixed integer programming formulations for the two
problem levels. Our computational experience from practical data encourages an installation in practice.

Keywords: Mixed integer programming, shunting minimization, decomposition, rail transport

MSC (2000): 90C11, 90C27, 90B06

1. Rail car management at in-plant railroads

In-plant railroading is an indispensable mode of freight transport in the industrial sector.
Loaded and empty rail cars enter an industrial plant; appropriate cars are then intermediately
stored and distributed among terminals; shipments and surplus empty cars leave the plant
again. We essentially deal with the problem of which cars to move, where and how. In
contrast to public transport, in-plant railroad service is explicitly and only on demand.
The railroad’s customers, e.g., a production terminal, issue a transportation request which
specifies a track, a type of cargo (for an unloading terminal) or a car type (for a loading
terminal), the tonnage or the number of cars needed, and possibly a delivery time window.
The requested car type may be substituted by similar types. In allocating individual rail cars
to requests, operational goals are (a) little shunting efforts, (b) short transportation times,
and (c) small car rental fees as explained below.

Some special car types serve a single purpose only and are almost always assigned a
particular terminal. Aside from these, we are free to allocate practically any car of appro-
priate type. In practice restrictions apply, of course, in order to avoid excessive shunting,
spare a locomotive, shorten travel distances and the like. However, we are not limited to use
physically present cars, but may assign also those which are known to arrive at the plant

296 LÜBBECKE AND ZIMMERMANN

shortly, or e.g., cars soon to return from maintenance. Occasionally, a request is deferred
e.g., when its immediate service would unduly consume resources. In the case that unsat-
isfied demand remains, additional cars must be rented from other railroads. This is part of
the normal operation, since cars leave the plant regularly, but incurs a rental cost.

In practice, this process currently results in renting cars for a particular request, and
returning the cars upon its completion. In contrast, we allow for re-assigning emptied cars
to further requests. Additional issues include that cars may be available only subject to
certain conditions e.g., in winter; cars should be assigned preferably starting from the head
of a track; there may be priorities of terminals; and there are forbidden follow-up requests.
As an example for the latter consider cars in the chemical industry which may or may
not need cleaning before they can be assigned to the next request. This depends on the
previously transported chemicals. It is now crucial that transportation requests are served as
a sequence of up to three pieces of work, called blocks. A typical example is (a) to make up a
train of cars originating from several tracks, (b) haul the train to a different area of the plant,
and (c) distribute the cars to their final destinations. Blocks are the smallest non-interrupted
tasks assigned to a locomotive. Consecutive blocks may very well be performed with pauses
in between, even on different locomotives. This paper is about the optimal design of such
blocks. Given a list of transportation request, we have to come up with a selection a cars of
appropriate type which together fulfill the total demand, and a proposal about which cars
to group into which blocks.

The current in-plant planning is mostly on a first come first served basis. Software support
is only administrative; all managerial decisions rely on skills and experience of the planner.
The present research serves as the algorithmic basis for a computer aided planning tool. Its
aim is to provide an active proposal for the allocation of cars, thus relieving the planner at
the very least from routine tasks.

Related work

Discrete optimization models have been proposed for several planning tasks in rail freight
transport, three of which are of some relevance to our situation: empty car distribution, rail-
road blocking, and shunting. Note that we are not dealing with scheduling the locomotives;
we refer to our previous work [11] in this context.

The first problem is about relocating empty rail cars over comparatively long distances
of a rail network in order to compensate for geographical imbalances in the demand, see
the reviews [3, 14]. Model formulations on time-expanded networks involve the classical
transportation problem [1] and integer multicommodity flow problems, where commodities
correspond to car types [8, 9, 13]. Models impose capacity constraints on trains, respect
train schedules, and allow for shortage of cars. In contrast, we have to access rail cars
individually, and our model has to reflect this more detailed resolution of the data.

Rail cars originating from different stations usually share pieces of their routes until they
reach their possibly different destinations. To this end, cars are reclassified in stations on
their way. A group of cars with a common (intermediate) origin-destination pair is usually
called a block, this is where we lend our terminology from. Railroad blocking, that is,
assigning each car a sequence of blocks is a major problem in railroad scheduling, and

SHUNTING MINIMAL RAIL CAR ALLOCATION 297

received some attention in the literature, see e.g., [2, 12]. Proposed models are able to
exactly solve problems with thousands of shipments. However, blocking in our situation is
much easier since the eligible combinations of sequences of blocks are much more restricted
due to shorter distances and fewer simultaneous shipments.

A shunting problem in rail yards discussed in [5] deals with regrouping trains according
to a given sequence, using as few additional tracks as possible. In contrast, we only have
to access a certain number of cars of given types, and aim at a selection of cars which
incurs the smallest shunting efforts. On-line and real-time aspects of shunting street cars
are considered in [15].

Except from an aged paper [4] the problems particular to in-plant railroads as a combina-
tion of the above three aspects, have not been mentioned, let alone solved in the operations
research literature.

2. Decomposition into regions

A very natural approach to our problem is suggested by the current planning practice:
A decomposition of the railroad track network into regions. Groups of neighboring tracks
frequently serve a common purpose, e.g., as storage areas or as tracks dedicated to incoming
trains. Each track belongs to a unique region. A block must not contain cars originating from
or destined to different regions. In other words, a block starts and ends in the same region,
or it is a direct connection between two regions. That is, our rail car allocation problem
decomposes in two subproblems: The rough distribution of cars among regions at an upper
level, and the allocation of cars per region at a lower level.

In this section we are concerned with the upper level. Given a set R of transportation
requests, let us denote by Tr the set of car types admissible for request r ∈ R. The net-
work is split into disjoint regions i = 1, . . . , n, for each of which we know its supply
aτ

i ≥ 0 of the respective car type τ . Further, for each r ∈ R, denote by br ≥ 0 its de-
mand, as a number of cars. For each τ , we introduce a super source Sτ which represents
renting at (opportunity or actual) cost Mτ per car of that type. This cost may also depend
on the request r in order to prioritize terminals. Each region is attributed a track, which
is used as reference for distance measures. Then, ci,r ≥ 0 refers to the distance between
region i and the track corresponding to request r . A very rough way to incorporate deadline
information is to symbolically define ci,r = ∞ for requests r which cannot be fulfilled
in time with cars from region i . Other appropriate modifications of the distances enable
us to penalize the substitution of car types. Finally, let the non-negative variable xτ

i,r de-
scribe the amount of cars of type τ assigned from region i to request r . A minimum total
travel distance allocation of cars to requests is then modeled by a classical transportation
problem.

minimize
∑

i,r,τ∈Tr

ci,r · xτ
i,r +

∑

r,τ∈Tr

Mτ · xτ
Sτ ,r (1)

subject to
∑

r :τ∈Tr

xτ
i,r ≤ aτ

i ∀ i, τ (2)

298 LÜBBECKE AND ZIMMERMANN

∑

i,τ∈Tr

xτ
i,r +

∑

τ∈Tr

xτ
Sτ ,r ≥ br ∀ r (3)

xτ
i,r ∈ Z+∀ i, r, τ ∈ Tr (4)

Constraints (2) prevent exceeding supply of any type in any region, while satisfaction of
each demand by an appropriate type, possibly rented, is guaranteed by (3). It is well known
that this problem is solvable in integers x in polynomial time e.g., by means of combinatorial
algorithms [10].

We remark that one should not try to make suggestions on a very high level of detail. It
turns out that such suggestions cannot be implemented in practice. Therefore, our objective
function represents only the unavoidable transportation time plus a penalty on renting cars.
It may happen in our model that a terminal is supplied with many different types of cars or
from many different regions. Forbidding this possibility complicates the problem also from
a computational complexity standpoint.

Lemma 1. It is weakly NP-complete to decide whether a solution to (1)–(4) exists with
1. xτ

Sτ ,r
= 0 for all r, τ (no renting) and

2. for each r ∈ R there is exactly one pair (i, τ) with xτ
i,r > 0.

Proof: Checking a solution for the required structure is immediate. Thus, the problem
is in NP . Consider any collection {b1, . . . , bn} of n integers. We construct an instance
of (1)–(4) where one region supplies a1

1 = 1/2
∑

i bi cars of type 1 and another region
supplies a2

2 = 1/2
∑

i bi cars as well, but of type 2. There are n requests with admissible
types Ti = {1, 2} and demand bi , i = 1, . . . , n, respectively. A solution which satisfies this
demand without using cars from some super source induces a partition of {b1, . . . , bn}, a
problem well known to be weakly NP-complete [6].

From the modeling point of view it is straight forward to enforce usage of few, say W ,
regions or types as supply for each request by introducing additional binary variables wτ

i,r
and adding to (1)–(4)

xτ
i,r ≤ aτ

i · wτ
i,r ∀ i, r, τ ∈ Tr (5)

∑

i,τ∈Tr

wτ
i,r ≤ W ∀ r (6)

wτ
i,r ∈ {0, 1} ∀ i, r, τ ∈ Tr . (7)

On the other hand, theoretically, one easily comes up with instances where this leads to
poor solutions. Practically, cars of the same type are not scattered all over the plant, but
reasonably concentrated in few regions anyway. However, it may happen that terminals
request for several car types at once. Then, all delivered cars should originate from the
same, or again, very few regions. Constraints similar to (5)–(7) and individual constraints
(3) for each type-request pair model this practically important situation. It follows from
Lemma 1 that this problem is NP-hard as well. Also, a single aggregated constraint (6) of

SHUNTING MINIMAL RAIL CAR ALLOCATION 299

the form
∑

i,r,τ∈Tr
wτ

i,r ≤ W can be used to limit the number of simultaneous movements,
e.g., in order to reflect a limited number of locomotives. We remark that each loaded car
is usually destined for a particular terminal, respectively. When there is choice we pick the
loaded cars which are at the plant for the longest in order to return rented cars as quickly as
possible. When loaded and empty cars are to be provided simultaneously the loaded cars
already fix the region from which the empty cars have to be taken.

3. Shunting minimization

In this section we represent car types by colors. Each track is assigned a head, which is
the principal direction from which the cars are accessed even for two-ended tracks. Thus, a
stack is an appropriate concept of describing tracks. Referring to the position of a car on the
track we use the notion of depth, and say a car is deeper in the track when it is further from
the head. Accessing a car of depth d implies pulling out all cars on that track up to depth
d, a fact we will refer to as precedence constraint. We restrict attention to an arbitrary but
fixed region. We denote its number of tracks by T ; the maximal depth, i.e., the maximal
number of cars on a track, is denoted by C .

In each region, when the upper level transportation problem (1)–(4) is solved, the demand
Di ≥ 0 for each color i is fixed. We face the following shunting problem. Each track t is
attributed a cost factor ct ∈ Q+, the cost incurred when pulling any one car out of the track.
An equivalent way of thinking is that the deepest car of each track which is pulled out
sums up the cost of all cars pulled out of that track, even when not all these are needed to
fulfill the demand, see figure 1. The goal is to provide at least Di cars from each color i at
minimal total cost. A practical assumption is that no space limitations apply to intermediate
car storage. Further note that neither pushing surplus cars back onto their tracks give rise to
any cost, nor exists a prescribed sequence of ordering the cars in the resulting train. Once
again, the reasoning is that—unfortunately—a too elaborate scheme cannot be enforced in
practice.

Lemma 2. Deciding whether there exists a feasible solution to the shunting problem at
cost at most K ∈ N is NP-complete in the strong sense.

Figure 1. The colored cars in (a) represent the chosen cars of some solution. The cars which incur a cost in this
choice are marked in (b). They include those cars inevitably pulled out because of them blocking the way of the
demanded cars. The total cost is 3c1 + 1c2 + 3c4 + 1c5.

300 LÜBBECKE AND ZIMMERMANN

Figure 2. Reducing a vertex cover instance to the shunting problem.

Proof: Determining the cost of a given solution is an obvious polynomial time calculation,
and our problem is in NP . Completeness in the strong sense is shown by reduction from
vertex cover [6], which is: Given a graph G = (V, E) and a positive integer K , is there a
subset V ′ ⊆ V of at most K vertices such that every edge in E is incident to (“covered by”)
some vertex in V ′? From G we construct an instance of the shunting problem as follows. For
each vertex i ∈ V with degree δ(i) introduce a track with associated cost ci = 1/|δ(i) + 1|.
Each edge e ∈ E is interpreted as an individual color. We place a car of color e on track i
if and only if edge e is incident to node i . The sequence of placement is of no importance.
Bottommost, i.e., deepest on each track we position one car, respectively, in the |E | + 1st

color, say, black. The demand for this instance is given by De = 1, e ∈ E , and D|E |+1 = K .
See figure 2 for this clearly polynomial construction.

The purpose of the black cars is to guarantee that we have to clear all cars from at least
K tracks. Therefore, a solution of cost at most K will use exactly K whole tracks. Now
observe that the demand vector ensures that we pick each color at least once. In other words,
such a solution induces a vertex cover in G of cardinality K . The reverse direction is now
obvious, and the claim follows.

Shunting minimization remains hard when the maximal depth C of a track is bounded
since vertex cover is hard in graphs with bounded degree � ≥ 4 [6]. The complexity is
open when only the number of colors is bounded. However, since the objective function
value is exactly preserved in our reduction we obtain a non-approximability result.

Corollary 1. For our shunting problem, there is no approximation algorithm with guar-
antee 7/6 − ε for ε > 0, unless P = NP .

Proof: This result is known to hold for vertex cover [7]. Since a factor α approximation
algorithm for our shunting problem implies a factor α approximation for vertex cover, the
corollary follows.

3.1. Naı̈ve approaches

A simple greedy strategy is to pick the cheapest car(s) for each color, respectively. It is
easy to see that the quality of such a proceeding depends on the chosen picking sequence.
Worse, there is no constant factor approximation guarantee for this algorithm. To see this,
consider the following instance. We are given n colors, with demand D1 = 0 and Di = 1,

SHUNTING MINIMAL RAIL CAR ALLOCATION 301

Figure 3. A bad instance for the greedy algorithm.

i = 2, . . . , n. Also, n tracks are available. On the first track, all colors occur in ascending
order, i.e., the topmost, easiest accessible color is 1, say black. The cost of this track is
c1 = 1. All colors i = 2, . . . , n except black further occur exactly once again, each on a
separate track i at cost ci = i − ε, with a small ε > 0, see figure 3.

For each color i with positive demand it is now marginally cheaper to pick the respective
singleton on track i instead of serving the whole demand at once using the cars on track 1.
The latter incurs optimal cost n while the former greedy strategy costs O(n2). This implies
our claim.

Another strategy is to relax the precedence constraints and greedily pick cars (“with a
helicopter”) from track t at cost ct . That is, unused cars possibly in the way are pulled out
for free. Clearly, the accumulated cost H underestimate the optimal cost O PT . Turning
this solution into a feasible one by taking into account also the skipped cars results in a cost
of at most C · H ≤ C · OPT . We have obtained a simple factor C approximation algorithm,
which unfortunately is the trivial approximation factor.

3.2. Exact approaches

First note that one can easily recover a solution to the shunting problem from a vector
(p1, . . . , pT) of positions, the t th component 0 ≤ pt ≤ C of which indicates the depth of the
deepest car picked from track t . This suggests implicitly enumerating all possible solutions
by way of dynamic programming. The state space is the set of all position vectors; the
computational complexity of such an approach is therefore O(T C). Note that in practical
instances obviously T as well as C are bounded.

Actually, we have another practical information on hand, viz. the common consecutive
occurrence of cars of identical color on a track. We say that cars come in groups. It is
reasonable to assume that cars picked from a group appear consecutively as well, starting
at the head end. In a dynamic program, it is not immediate to us how to make use of this
information, and possibly spare states from consideration. Note that C may exceed the
maximal number G of groups by an order of magnitude.

Let us now introduce a mixed integer program for the shunting problem. This formulation
enables us to better account for cars coming in groups. A pair (t, g) refers to the group of
depth 1 ≤ g ≤ G on track 1 ≤ t ≤ T . Unless stated otherwise we simplify our notation and
assume that indices range in their feasible domains. We denote the size of a group, i.e., the
number of cars it is made of, by Qt,g ≥ 1, and its color by color (t, g). The binary variable

302 LÜBBECKE AND ZIMMERMANN

zt,g indicates whether group (t, g) is accessed, and the non-negative variable yt,g expresses
how many cars are taken from that group. We would like to

minimize
∑

t,g

ct · [(Qt,g − yt,g) · zt,g+1 + yt,g] (8)

which counts per group (t, g) all used cars yt,g plus those Qt,g − yt,g unused under the
condition that the next deepest group (t, g + 1) is accessed as well, i.e., zt,g+1 = 1. Un-
fortunately, this intuitive formulation leads us to a nonlinear objective function. Instead,
consider the following program.

minimize
∑

t,g

ct · Qt,g · zt,g (9)

subject to zt,g ≤ zt,g−1 ∀ t, g > 1 (10)

yt,g ≤ Qt,g · zt,g ∀ t, g (11)∑

t,g : color(t,g)=τ

yt,g ≥ Dτ ∀ colors τ (12)

yt,g ≥ 0 ∀ t, g (13)

zt,g ∈ {0, 1} ∀ t, g (14)

The objective function (9) now clearly counts too much, namely all unused cars in the
deepest accessed group of each track, respectively. Nevertheless, we claim that we can
reconstruct an optimal solution to (8) from an optimal solution to (9). To see this, observe
that some cars of each respective deepest accessed group have to be pulled out in order to
fulfill the demand, or else such a group would not have been accessed at all. This implies that
the z variables already encode a cheapest allocation of groups. In order to ensure that the y
variables assume their smallest feasible values we use a simple greedy strategy which picks
the cheapest cars in the chosen groups for each color until the respective demand is satisfied.
We argue below that we may remove the y variables from the formulation altogether. Note
also that (9) tends to result in shorter deepest accessed groups.

Regarding the constraints, (10) encodes the precedence among cars on the same track;
(11) guarantees that the supply of an accessed group is not exceeded; the demand of each
color is fulfilled due to (12). Constraints (13) and (14) restrict the variables to their domains.

3.3. Putting it all together

When both problem levels are solved still some freedom on how to actually serve requests
remains—which is usually considered an advantage by practitioners. In each supplying
region trains are made up out of the cars determined in the shunting subproblem and the
upper level knowledge about what requests are served by which region. Cars with identical
origin and destination regions are transported as one block. In the destination region such
trains are split again and moved to the respective terminals without further (major) shunting.
All timing (“scheduling”) decisions remain up to the planner.

SHUNTING MINIMAL RAIL CAR ALLOCATION 303

4. An integrated model and extensions

Not least for reasons of benchmarking, it is interesting to simultaneously model the hith-
erto separated problem levels, i.e., to capture our problem as a whole. Our mixed integer
programs combine in a natural way: Only the respective actually shunted cars in (12) are
available as supply in (2). Note that we may assume yt,g = Qt,g whenever zt,g = 1.
Therefore, we substitute yt,g = Qt,g · zt,g . Variables z receive a third index i ∈ {1, . . . , n},
indicating the respective region.

minimize
∑

i,r,τ∈Tr

ci,r · xτ
i,r +

∑

r,τ∈Tr

Mτ · xτ
Sτ ,r +

n∑

i=1

∑

t,g

ct · Qi,t,g · zi,t,g (15)

subject to
∑

r :τ∈Tr

xτ
i,r ≤

∑

t,g : color (i,t,g)=τ

Qi,t,g · zi,t,g ∀ i, τ (16)

∑

i,τ∈Tr

xτ
i,r +

∑

τ∈Tr

xτ
Sτ ,r ≥ br ∀ r (17)

zi,t,g ≤ zi,t,g−1 ∀ i, t, g > 1 (18)

xτ
i,r ≥ 0 ∀ i, r, τ ∈ Tr (19)

zi,t,g ∈ {0, 1} ∀ i, t, g (20)

Note that any feasible binary solution in terms of the z variables leaves a transportation
problem and we still do not need to require integrality of the x variables. The meaning of the
constraints is already clear from the above, except the coupling constraints (16) which relate
the otherwise separated mixed integer programs for each region. In fact, (16) combines (12)
and (2). A practical objection against the integrated model may be that the current (and
accustomed) structure of solutions is much better reflected by the decomposition approach.
This has to be decided by planners. Note that constraints (5)–(7) can be immediately used
in this integrated model as well.

One would handle the rejection of expensive requests as follows. First calculate for each
request the cheapest way to fulfill it, using our models. This relaxation gives a lower bound.
In the case that the demand for some type exceeds the corresponding supply, we reject
requests according to non-increasing order of their cost lower bounds. This is particularly
easy when the planning is request by request.

Notice that modeling the upper level by a transportation problem only allows for at most
three consecutive blocks per transportation request. In particular, cars must travel from their
origin region immediately to their destination region, without a possible transshipment in
another region. Allowing for the latter would result in a multicommodity flow problem. In
solving this problem one should exploit that flow is sent only along very short paths, i.e., up
to three arcs. This problem is interesting from a theoretical point of view, but is not further
considered here. An alternative is to use a practical locomotive scheduling approach, where
only pre-defined combinations of blocks are allowed [11].

We do not take into account the availability of locomotives since this is a subsequent
planning stage. However, we can easily respect the locomotives’ capacities capi in terms
of the number of cars which can be handled per region i (given the planning horizon).

304 LÜBBECKE AND ZIMMERMANN

Obviously, adding the following constraints to our models suffice.

∑

τ

∑

r :τ∈Tr

xτ
i,r ≤ capi ∀ i (21)

Also, by adding constraints similar to (5)–(7) one could limit the total number of regions
accessed. This could reflect the number of available locomotives. Both modifications destroy
the transportation problem substructure of the model, and integrality of the x variables has
to be required explicitly.

Our approach is static, i.e., it does not respect changes over time. If this was demanded
in practice we would base the transportation problem on a time-expanded network, using
a time discretization of, say, 5 minutes. This is certainly accurate enough and does not
dramatically increase the problem size. In the integrated model this issue could become a
computational challenge.

5. Computational experience and conclusions

Our practical data come from a small German in-plant railroad which operates at a steel
mill. 683 tracks and 168 terminals are organized in 42 regions in which a total of about
1500 cars of 126 possible types are located. One shift of eight hours length comprises 18
transportation requests, a second 49. These instances are named ‘de1’ and ‘de2,’ respectively.
From these, we deduce three more instances: All cars from both shifts, possibly duplicated,
are available in instance ‘dens’ in order to provoke larger shunting efforts; all requests from
both shifts have to be served in instance ‘load’ in order to allow for a better combination of
many requests. In instance ‘perm’ the cars are randomly permuted on the tracks in order to
destroy the manual preordering by the planner.

Using CPLEX 8.0 we are able to solve each presented mixed integer program on a
standard PC running Linux in two seconds of computation time which is also true for the
integrated approach (15)–(20). Tables 1–5 summarize our results. The headings have the
following meaning: ‘Req’ is the number of requests, ‘dem’ is the total number of requested
cars, ‘cars’ is the total number of cars, ‘subst’ is the number of substituted cars, ‘reg’ is
the number of regions used to supply, and ‘bloc’ is the number of positive x variables in
the upper level transportation problem (1)–(4), used as an indicator for how many blocks

Table 1. Data specification and characteristics of an optimal solution to the decomposed model.

Instance Req Dem Cars Subst Reg Bloc Rent Upper Lower LLower

de1 18 113 1575 31 6 28 21 62821 7693 5073

de2 49 324 1458 11 12 56 103 131988 11613 9973

dens 18 113 3033 42 6 27 17 56100 7808 6236

load 68 438 1575 31 11 82 154 179595 13493 12804

perm 18 113 1575 29 11 32 33 56347 12555 9315

SHUNTING MINIMAL RAIL CAR ALLOCATION 305

Table 2. Results for a simulated manual (FIFO) planning.

Instance Subst Reg Bloc Rent Upper Lower

de1 36 6 28 21 67945 9093

de2 11 12 58 104 138830 15408

dens 30 6 28 17 64852 11836

load 41 11 84 159 204800 19806

perm 33 11 30 36 54381 14804

Table 3. Effect of not using the extended car substitution.

Instance Subst Reg Bloc Rent Upper Lower

de1 5 5 23 44 55691 6769

de2 0 12 54 106 131112 12117

dens 2 6 25 29 58409 7092

load 0 10 72 185 162161 12457

perm 1 10 26 58 42087 10987

Table 4. Effect of limiting the number of supplying regions per request via constraints (5)–(7).

W = 1 in (6) W = 2 in (6)

Instance Subst Reg Bloc Rent Upper Lower Subst Reg Bloc Rent Upper Lower

de1 28 5 18 24 70078 7017 32 6 24 21 63583 7693
de2 14 11 41 112 115709 10417 10 12 54 106 124080 11613
dens 41 6 18 18 68999 7976 42 6 24 17 57164 8144
load 31 9 57 165 174860 13286 34 11 76 157 172675 13969
perm 27 7 16 41 57233 11680 29 9 26 36 53552 12044

Table 5. Quality of and savings from using the integrated IP (15)–(20).

Instance de1 de2 dens load perm

Total savings 2453 1068 1031 620 3152

Fractional variables % 18.69 5.71 29.72 4.74 0.83

Root node gap % 0.0043 0.0017 0.0217 0.0001 0.00

Root node gap (abs) 90.93 181.50 371.34 28.00 0.00

CPU seconds (decomposed) 1.32 1.47 1.34 1.53 1.56

CPU seconds (integrated) 0.06 0.16 0.36 0.34 0.16

306 LÜBBECKE AND ZIMMERMANN

are created. ‘Rent’ is the number of rented cars, ‘upper’ is the objective function value of
model (1)–(4), and ’lower’ is the objective function value of model (9)–(14) summed over
all regions. We also compute a lower bound ‘llower’ on the shunting effort at the lower
levels. To this end we set the transportation cost to zero and solve the integrated model
(15)–(20).

The cost are scaled such that the order of decreasing importance is rental cost,
transportation cost, and shunting cost. Interestingly, when the relative importance of trans-
portation and shunting is reversed or both are equally important, the shunting effort remains
almost unchanged. Table 1 lists the basic data specifications for all instances and optimal
costs with the decomposed model (1)–(4), (9)–(14). As was to be expected we see a synergy
in terms of shunting efforts when more requests are scheduled simultaneously, see the re-
sults for instance ‘load.’ The transportation effort roughly adds up. In Table 2 we emulate a
manual, that is, first come first served (FIFO) planning. Each request is scheduled optimally,
but one by one separately. We first note that this does not increase the number of blocks, nor
the number of rented cars. On average, the transportation cost go up by 10%, and shunting
efforts increase by one third. Since we cannot expect to simultaneously plan all requests in
a shift, and in manual planning also some requests are sometimes planned simultaneously,
we obtain an interval of possible savings.

The original data explicitly lists allowed car substitutions for every type, also depending
on the region. We extend this list in a transitive way, thus building classes of similar car
types. This is closer to reality, but doing so, we cannot yet compete with the planner’s
intuition about and experience with substitution, since in the original data no cars had to be
rented. In Table 2, where we use the original lists, we can see that gathering this information
is worthwhile. The fact that there are more rented cars in instance ‘perm’ than there are in
‘de1’ is internally due to this lack of information as well.

We test the effect of constraints (5)–(7), i.e., to limit the number W of regions which
can be used to fulfill the demand per request, c.f. Table 4. When each request has to be
supplied from one region only, either car rental or transportation cost increase significantly.
However, already W = 2 results in almost the same results as when we do not limit W at
all. That is, when we use the basic model the number of supplying regions per request is
small anyway.

We finally evaluate the integrated model (15)–(20) in Table 5. The ‘total savings’ in
absolute values have to be interpreted with care since the numbers are relative to our
scaling of costs. On the other hand, we save almost the whole difference between the
shunting cost ‘lower’ and their lower bound ‘llower’ in Table 1. Of course, nothing can be
saved at the upper level since the transportation problem is already solved optimally in the
decomposed model. Once again, considerable improvement is due to the possibility of a
more coordinated way of shunting decisions. As we see from the ‘root node gap’ the linear
programming relaxation gives an excellent lower bound on the optimal integral objective
function value, and can be used as an estimate of the quality of some given solution. The
integrated model solves even faster than the decomposed one which is largely because
of an overhead in the coordination of the two levels. A practical advantage of using the
decomposed model is that it can be implemented without the use of a commercial MIP
solver.

SHUNTING MINIMAL RAIL CAR ALLOCATION 307

Concerning the size of our instances we currently do not expect much larger instances
even for larger railroads since the amount of work per planner does not significantly increase.
Of course, this may change when all the planning would be supported by our tool in a co-
ordinated way. Experimental runs of our models with much more requests completed in a
few seconds, so we feel prepared.

Our models enable the planner not only to recognize unrealizable requests in time, but
also to make optimal use of all available information, in contrast to the current request-by-
request planning. Our results suggest that largest savings are to be expected for the shunting
cost. One step further would be an optimal shunting also of incoming trains, according
to known or expected demand for the respective cars. This could be used to reduce the
transportation cost between regions.

Acknowledgments

This research was funded by the German Federal Ministry of Education and Research
(BMBF) under grant no. 03-ZIM2BS. Hans-Joachim Lucke and Ulf Hutschenreiter from
CSC Ploenzke AG, Dresden, and Wilfried Nittka from Dortmunder Eisenbahn GmbH and
CSC Ploenzke AG provided us with valuable insight into the railroad background and
with practical data. We thank Cornelia Dangelmayr for stimulating discussions, and an
anonymous referee for pointing us to the integrality of x in (19).

References

1. W.P. Allman, “An optimization approach to freight car allocation under time-mileage per diem rental rates,”
Management Sci., vol. 18, no. 10, pp. B-567–B-574, 1972.

2. C. Barnhart, H. Jin, and P.H. Vance, “Railroad blocking: A network design application,” Oper. Res., vol. 48,
no. 4, pp. 603–614, 2000.

3. N.J. Bojović, “Application of optimization techniques to the railroad empty car distribution process: A survey,”
Yugoslav J. Oper. Res., vol. 10, no. 1, pp. 63–74, 2000.

4. A. Charnes and M.H. Miller, “A model for the optimal programming of railway freight train movements,”
Management Sci., vol. 3, pp. 74–92, 1956.

5. E. Dahlhaus, P. Horak, M. Miller, and J.F. Ryan, “The train marshalling problem,” Discrete Appl. Math.,
vol. 103, nos. 1–3, pp. 41–54, 2000.

6. M.R. Garey and D.S. Johnson, “Computers and intractability—a guide to the theory of NP-completeness,”
W.H. Freeman and Company: San Francisco, 1979.

7. J. Håstad, “Some optimal inapproximability results,” in Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, 1997. ACM Press: El Paso, Texas, pp. 1–10.

8. K. Holmberg, M. Joborn, and J.T. Lundgren, “Computational experiments with an empty freight car distri-
bution model,” in Computers in Railways V, J. Allan, C.A. Brebbia, R.J. Hill, G. Sciutto, and S. Sone (Ed.),
Computational Mechanics Publications: Southampton, UK, 1996, pp. 511–520.

9. K. Holmberg, M. Joborn, and J.T. Lundgren, “Improved empty freight car distribution,” Transportation Sci.,
vol. 32, no. 2, pp. 163–173, 1998.

10. E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Dower: Mineola, New York, 2001,
Unabrigded reprint of the 1976 edition.

11. M.E. Lübbecke and U.T. Zimmermann, “Engine routing and scheduling at industrial in-plant railroads,”
Transportation Sci., vol. 37, no. 2, pp. 183–197, 2003.

12. H.N. Newton, C. Barnhart, and P.H. Vance, “Constructing railroad blocking plans to minimize handling costs,”
Transportation Sci., vol. 32, no. 4, pp. 330–345, 1998.

308 LÜBBECKE AND ZIMMERMANN

13. Y.-S. Shan, “A dynamic multicommodity network flow model for real time optimal rail freight car manage-
ment,” PhD Thesis, Princeton Unviersity, Princeton, NJ, 1985.

14. H.D. Sherali and A.B. Suharko, “A tactical decision support system for empty railcar management,” Trans-
portation Sci., vol. 32, no. 4, pp. 306–329, 1998.

15. T. Winter and U.T. Zimmermann, “Real-time dispatch of trams in storage yards,” Ann. Oper. Res., vol. 96,
pp. 287–315, 2000.

