
An Image-based Approach to Detecting Structural
Similarity Among Mixed Integer Programs

Zachary Steever (corresponding author)
Ph.D. Candidate

Department of Industrial and Systems Engineering
University at Bu↵alo, The State University of New York

Phone: +1-716-698-4410
zjsteeve@bu↵alo.edu

Dr. Chase Murray
Assistant Professor

Department of Industrial and Systems Engineering
University at Bu↵alo, The State University of New York

Phone: +1-716-645-4716
cmurray3@bu↵alo.edu

Dr. Junsong Yuan
Associate Professor

Department of Computer Science and Engineering
University at Bu↵alo, The State University of New York

Phone: +1-716-645-0562
jsyuan@bu↵alo.edu

Dr. Mark Karwan
Praxair Professor in Operations Research

Department of Industrial and Systems Engineering
University at Bu↵alo, The State University of New York

Phone: +1-716-645-2422
mkarwan@bu↵alo.edu

Dr. Marco Lübbecke
Professor and Head of Group
RWTH Aachen University
Phone: +49-241-80-93362

marco.luebbecke@rwth-aachen.de

Steever, Zachary and Murray, Chase and Yuan, Junsong and Karwan, Mark and Lübbecke, Marco.
An Image-based Approach to Detecting Structural Similarity Among Mixed Integer Programs
(April 20, 2020). Available at SSRN: https://ssrn.com/abstract=3437981

An Image-based Approach to Detecting Structural

Similarity Among Mixed Integer Programs

Abstract: Operations researchers have long drawn insight from the structure of constraint coef-

ficient matrices (CCMs) for mixed integer programs (MIPs). We propose a new question: Can

pictorial representations of CCM structure be used to identify similar MIP models and instances?

In this paper, CCM structure is visualized using digital images, and computer vision techniques

are employed to detect latent structural features therein. The resulting feature vectors are used to

measure similarity between images and, consequently, MIPs. An introductory analysis examines a

subset of the instances from strIPlib and MIPLIB 2017, two online repositories for MIP instances.

Results indicate that structure-based comparisons may allow for relationships to be identified be-

tween MIPs from disparate application areas. Additionally, image-based comparisons reveal that

ostensibly similar variations of an MIP model may yield instances with markedly di↵erent mathe-

matical structures.

Keywords: matrix structure, instance comparison, model comparison, computer vision, feature

engineering

1 Introduction

The field of operations research is rooted in the process of defining, analyzing, and comparing

alternatives. In this paper, we consider comparisons among mixed-integer programming

(MIP) models and instances. Traditionally, similarity between MIPs has been defined based

on specific model characteristics. Kendall’s queueing notation (Kendall 1951) is a well known

example of a model ontology. Similar “M/M/1”-style descriptors exist for models from

machine and project scheduling (Brucker et al. 1999), warehouse management (van den

Berg and Zijm 1999), multi-objective optimization (Marler and Arora 2004), pickup and

delivery (Berbeglia et al. 2007), facility location (Hamacher and Nickel 1998, Farahani and

Hekmatfar 2009), vehicle routing (Eksioglu et al. 2009), and game theory (Liang and Xiao

2013). Unfortunately, these comparative methods are siloed based on specific problem types

1

and application areas. As a result, they do not allow for connections to be drawn between

models from di↵erent fields of research.

More recently, a new approach has emerged, whereby MIP similarity is measured ac-

cording to the properties of individual instances. This approach was introduced by Gleixner

et al. (2019a), who define an MIP similarity metric based on instance statistics (e.g., the

proportion of decision variables which are binary). In line with the second approach, this

paper presents a methodology for comparing MIPs based on the structure of the constraint

coe�cient matrices (CCMs) for one or more instances of a model. The CCM is the matrix

A in an integer program of the form

max{cx : Ax b,x 2 Zn
+}. (1)

Operations researchers have long understood the importance of CCM structure in the

context of solution techniques. Dantzig-Wolfe decomposition is widely used when a CCM

contains both block-diagonals and coupling constraints (Dantzig and Wolfe 1960). Similarly,

a CCM may present blocks of constraints which are connected by a subset of complicating

variables (variables which, when assigned a constant value, leave behind a much simpler

decision problem). Benders’ decomposition exploits this CCM structure by generating two

sub-problems – one with the complicating variables and another without – each of which is

more tractable than the original problem (Benders 1962). Network flow problems, in particu-

lar, benefit from the decomposition of such block structures (Glockner and Nemhauser 2000,

Jones et al. 1993). CCM structure has also been exploited to derive cutting planes (Marc-

hand et al. 2002), and to identify total unimodularity - a property which guarantees that the

linear programming relaxation of an MIP instance will yield integer solutions (Commoner

1973).

Although CCM structure has been leveraged extensively for solving individual MIP in-

stances, it has not been well exploited as a basis for MIP comparison. The ability to compare

and relate MIPs in this way bears a number of useful applications. Problems with similar

CCM structures may benefit from similar solution approaches. Modelers may also wish

2

to modify constraints in their MIP based on a modeling technique which made a related

problem easier to solve. This type of comparison may even help in identifying the types

of structures that make certain problems “hard” to solve. Moreover, a comparison based

on CCM structure is agnostic to instance application, allowing for connections to be drawn

between problems which may otherwise be viewed as unrelated. As a result, an approach for

comparing MIPs based on CCM structure addresses the shortcomings of comparison based

on either problem di�culty or model characteristics.

The proposed image-based approach for identifying structural similarity among MIPs is

comprised of three key steps.

1. Generate images: Computers represent black and white images as m⇥ n matrices,

where each matrix entry (or pixel) contains a value of either 0 (black) or 255 (white).

By setting all nonzero coe�cient values equal to 255, a CCM can be treated as a

digital image. Figure 1 contains several examples of images rendered from CCMs in

this manner. The rows and columns of each pixelated image represent the constraints

and decision variables in an MIP instance, respectively, and each white pixel (i, j)

implies a nonzero coe�cient for variable j in constraint i.

(a) P-n19-k2 cvrp: Capacitated vehi-
cle routing problem.

(b) BR6 19-hifi: Container loading
problem.

(c) d1000 09 alternative: Map la-
beling problem.

Figure 1: Image representations of the CCM structure for three MIP instances contained in
strIPlib (Bastubbe et al. 2020).

2. Encode: The second step is to encode CCM images into feature vectors. A feature

vector contains measurements of the quantifiable attributes, or features, of an object.

3

Encoding an image into a feature vector serves two purposes. First, comparing images

according to feature-vector encodings (rather than directly comparing pixel values)

replaces element-wise errors with feature-wise errors. These feature-wise errors are

less variant with respect to image transformations such as translation, rotation, and

reflection (Larsen et al. 2015). Additionally, a feature vector provides a common-sized

representation for images of varying shapes and sizes. In this paper, feature vectors

are extracted from an autoencoder (a form of neural network) which has been trained

on a set of CCM images.

3. Compare: Finally, an image-based structural similarity (ISS) metric is used to quan-

tify the resemblance between pairs of images. This metric (defined formally by Equa-

tion (2) in Section 3.3) returns the Euclidean distance between a pair of feature vectors.

A pair of images which are structurally identical will have an ISS value of zero.

Collectively, we refer to this process as image-based comparison of integer programs

(ICIP). The purpose of this paper is to formally define ICIP, and to provide examples of the

types of relationships it is capable of identifying. In the future, these relationships may be

leveraged when studying and solving new problems. To demonstrate the utility of the pro-

posed approach, we analyzed a subset of instances from two online MIP instance repositories.

The library of structured integer programs (strIPlib) is a collection of more than 10,000 MIP

instances (Bastubbe et al. 2020). These instances come from “pure” problems (e.g., the bin

packing problem, the cutting stock problem), which are known to have clear and exploitable

structures (namely for the application of column generation and other decomposition tech-

niques). The relationships between some of these pure problems are known a priori. These

relationships provide a “ground truth,” and allow for validation of the proposed comparison

approach. New relationships between problems are also revealed through these comparisons.

The second repository considered in our analysis is the mixed integer programming library

(MIPLIB 2017), a result of collaborative e↵orts by more than 20 researchers (Gleixner et al.

2019b). Now in its sixth edition, MIPLIB 2017 o↵ers a collection of 1,065 MIP instances. A

4

subset of these instances contain information about the submitting author and descriptions

of the instance application are provided. Many of these instances come from complex, real-

world settings, as opposed to clearly defined theoretical problem definitions. These instances,

which we refer to as “blended,” are compared to the strIPlib problems.

The remainder of this paper is organized as follows. Section 2 continues the discussion

on the only other quantifiable comparison of MIP instances (from Gleixner et al. (2019a)

and MIPLIB 2017). Details of ICIP are described in Section 3, while data collection and

model training procedures are discussed in Section 4. The e↵ectiveness of this approach

is assessed in Section 5 through an analysis of strIPlib and MIPLIB 2017. Although paper

length restrictions limit the scope of these analyses, additional results are available on a com-

panion website (https://icip.optimatorlab.org). Finally, Section 6 provides a summary

discussion and outlines opportunities for future research.

2 Instance comparison in MIPLIB 2017

Details of the instance comparison method used in MIPLIB 2017 (referred to simply as

MIPLIB for the remainder of this paper) are presented in Gleixner et al. (2019a). To the

best of our knowledge, this is the only other documented method for quantifying the simi-

larity between MIP instances. Note that this is unique from published works which provide

descriptive or performance-based comparisons for a small number of related MIPs (e.g.,

Croxton et al. 2003, Ostrowski et al. 2011, Ku and Beck 2016). This section is, therefore,

devoted to a summary of the instance comparison scheme employed by MIPLIB. Following

this discussion, the novel features of ICIP are highlighted.

2.1 Comparison using instance statistics as features

In MIPLIB, instances are compared according to feature vectors containing 110 scaled in-

stance statistics. For a given instance, these statistics describe properties of the CCM,

5

decision variables, objective function coe�cients, and right-hand-side vector (A, x, c, and b

in Definition (1), respectively). The similarity between two MIP instances is measured as the

Euclidean distance between their feature vectors. Each instance in MIPLIB is accompanied

by a list of the five most similar remaining instances according to this metric.

In Gleixner et al. (2019a), the collection of 110 instance statistics is divided into 11

feature groups. Some of the CCM-related feature groups include size (describing the

number of rows, columns, and nonzero entries in the CCM), matrix coefficients (con-

taining the mean, minimum, and other measurements of the coe�cient values), and row

dynamism (which describes the variance of coe�cient values within an average constraint).

The constraint classification and decomposition feature groups, however, serve the

express purpose of identifying structures in the model. They are, therefore, of particular

interest in this paper.

2.1.1 Constraint classification features

The constraint classification feature group contains the percentages of constraints in

an MIP instance which belong to each of 17 uniquely defined constraint classes. Definitions

for these constraint classes are provided in Table 1. The notion of constraint classification was

originally introduced by Nemhauser et al. (1992), although this early constraint classification

scheme was not employed to compare MIP instances. Rather, this approach was used to

inform preprocessing, constraint generation, branching, and other components of the solution

process.

Both constraint classification schemes share an important property: The set of constraint

classes is hierarchical, such that a constraint is assigned only to the lowest class in the hi-

erarchy that contains it. This presents two particular challenges with respect to instance

comparison. First, assigning a constraint to a single class does not account for hierarchical

relationships between constraint classes. For example, all invariant knapsack constraints

are also knapsack constraints, as defined in Table 1. The MIPLIB’s comparison scheme, how-

6

ever, will identify no constraint-based similarities between an instance with only invariant

knapsack constraints and another with only knapsack constraints. Second, the upper-most

constraint class acts as a catchall. This class, called general linear in Gleixner et al.

(2019a), provides no information regarding the structure of a constraint, but is used as a

point of comparison between MIP instances. Over 9% of the constraints across all instances

in MIPLIB are classified as general linear (i.e., none of the other defined constraint forms

apply).

Table 1: Constraint classes defined by Gleixner et al. (2019a).

Abbr. Type Linear constraints ...

GEN general linear with no special structure

MIX mixed binary of the form
X

akxk +
X

pjsj{,=} b, xi 2 {0, 1} 8 i, sj cont. 8 j

INT integer knapsack of the form
X

akxk b, xi 2 Z 8 i, b 2 N

KPS knapsack of the form
X

akxk b, xi 2 {0, 1} 8 i, b 2 N � 2

BIN binpacking of the form
X

aixi + ax a, x, xi 2 {0, 1} 8 i, a 2 N � 2

EQK equation knapsack of the form
X

aixi = b, xi 2 {0, 1} 8 i, b 2 N � 2

INV invariant knapsack of the form
X

xi b, xi 2 {0, 1} 8 i, b 2 N � 2

CAR cardinality of the form
X

xi = k, xi 2 {0, 1} 8 i, k � 2

COV set covering of the form
X

xi � 1, xi 2 {0, 1} 8 i

PAC set packing of the form
X

xi 1, xi 2 {0, 1} 8 i

PAR set partitioning of the form
X

xi = 1, xi 2 {0, 1} 8 i

VAR variable bound of the form ax+ by c, x 2 {0, 1}
PRE precedence of the type ax� ay b where x and y must have the same type

AGG aggregation of the type ax+ by = c

SIN singleton with a single variable

FRE free with no finite side

EMP empty with no variables

2.1.2 Decomposition features

The decomposition feature group includes 10 statistics related to CCM structure. These

statistics are extracted using Generic Column Generation, or GCG (Gamrath and Lübbecke

7

2010). GCG is a decomposition-focused solver based on optimization software, SCIP (Gleixner

et al. 2018). Specifically, (Gleixner et al. 2018) use GCG in version 3.0.0, based on SCIP ver-

sion 6.0.0. For a system of linear equations or inequalities, any permutation of the rows and

columns will yield a mathematically identical representation of the underlying instance. GCG

employs a number of “structure detectors” to identify row and column permutations that

may be suitable for the application of Dantzig-Wolfe or Benders’ decomposition (Gleixner

et al. 2018). Figure 2 contains images of an example CCM before and after the application

of GCG’s structure detection algorithm.

(a) Raw CCM image for 10teams (b) Decomposed CCM image for 10teams

Figure 2: Visualizing the CCM structure for 10teams, one of the MIP instances in MIPLIB.
Figure 2a represents this CCM in its raw form; the row and column sequencing corresponds
to the order in which constraints and variables, respectively, were defined by the modeler.
In Figure 2b, the rows and columns of this CCM have been permuted by GCG such that
nonzero coe�cients (in the context of an image, white pixels) are clustered. The manner in
which these specific images were generated is discussed in Section 3.1.

GCG returns a number of candidate decompositions for each instance. For each decompo-

sition, GCG also provides a number of related statistics which constitute the decomposition

feature group. As an example, the maximum white area (maxwhite) score describes the frac-

tion of contiguous zero-valued entries within a CCM.

2.2 Gaps addressed by image-based comparison

The instance comparison approach employed by MIPLIB is rigorous in its description of MIP

instances, with over 100 uniquely defined features. The resulting feature vector encompasses

8

each term in Definition (1) of an MIP instance (A, x, c, and b). This is an advantage

over the approach presented in this paper, which considers only the matrix A in Definition

(1). Additionally, the Gleixner et al. (2019a) approach is less reliant than our image-based

approach on GCG’s structure detection procedure. Specifically, decomposition is used only to

generate a select few features in the Gleixner et al. (2019a) method. As outlined in Section 3,

our image-based approach relies on the assumption that the decomposition with the greatest

maxwhite score best reflects the underlying structure of the corresponding instance. More

broadly, the heuristic nature of GCG’s structure detection algorithm implies that ICIP will

not be invariant to row and column permutations. However, matrix seriation (re-ordering)

algorithms comprise an entire field of study on their own, and are outside the scope of this

paper.

Despite its strengths, there are several challenges faced by MIPLIB’s instance comparison

approach which are mitigated by ICIP. First, the proposed approach avoids the di�culties

associated with making comparisons based on constraint classes (e.g., representing hierarchi-

cal relationships, or including a catchall class which provides no descriptive information). In

fact, the proposed approach does not rely on manually-defined features of any kind. Instead,

computer vision and deep learning techniques are employed to extract feature vectors auto-

matically. This has two e↵ects, the first of which is a reduction in the amount of human bias

involved in the comparison procedure. Additionally, computers are capable of identifying

image characteristics which are highly discriminative, and which a human may not think

to use (or even perceive) as a feature. While the feature vectors extracted through deep

learning are di�cult to interpret, they may be better at capturing CCM structure (and do

so more reliably) than the decomposition-related features (e.g., density of nonzero entries,

maxwhite score) defined by Gleixner et al. (2019a).

Finally, it is impossible to define whether the relationships uncovered by this method

are “better” than those revealed by the approach used in MIPLIB. Instead, we propose that

ICIP is valuable as a supplement to MIPLIB’s methodology, o↵ering an alternate view of

9

what it means for MIPs to be similar.

3 Methodology

This section provides a detailed discussion of the proposed process for representing CCM

structure using images, automating the construction of feature vectors for those images,

and comparing images according to their feature vectors. This discussion necessitates an

overview of deep learning techniques as they relate to computer vision, which is provided in

Section 3.2.

3.1 Step 1 – Generate images

The first step in the proposed approach is to represent CCM structure using images. Pixel

values in a black and white image are either equal to 0 (black) or 255 (white). By casting all

nonzero CCM entries to 255 and leaving all zero-valued coe�cients alone, the corresponding

structure can be rendered as an image. This process is depicted in Figure 3.

(a) Linear equations (b) CCM

0

255

255

255

255

255

255

255

0

(c) Casting (d) Image

Figure 3: The stages of representing a CCM as a digital image.

3.1.1 Matrix decomposition

The initial (raw) ordering of rows and columns for a CCM is determined by the order in

which constraints and decision variables, respectively, were defined by the instance author.

For many of the instances examined in this paper, defined CCM structures were not readily

10

apparent in this raw form; this is especially true for the blended MIPLIB instances. This

motivated the use of GCG 3.0 for CCM decomposition prior to image generation. MIP

instances were stored and loaded into GCG as Mathematical Programming System (MPS)

files (IBM 1969). The MPS file format is used to store and load linear and mixed integer pro-

gramming instances, and is recognized by every major optimization software. Once loaded,

GCG’s default structure detection procedure was applied. For this paper, the decomposition

with the greatest maxwhite score was selected for each instance.

3.1.2 Rendering CCMs as images

In conjunction with the command-line graphing tool gnuplot (Racine 2006), GCG can also

help to visualize CCM structure. For a given decomposition, the “write” function in GCG

will generate a gnuplot (GP) script. This script contains the code necessary for gnuplot to

graph the corresponding CCM structure. There are several important things to note about

these images, however.

• The images rendered by GCG’s GP files contain margins, axes, and shaded blue boxes

around detected block structures (e.g., Figure 4a). These elements, which do not

relate to CCM structure, introduce unnecessary visual elements to the CCM images.

Therefore, the GP files were edited to remove all such non-structural information.

• The color-mapping in the images produced by GCG is inverted, by default. That

is, nonzero CCM entries are represented as black pixels against a white background

(e.g., Figure 4b). While this is perhaps a more intuitive way for humans to view

patterns, it is an inaccurate representation of the structure of nonzero coe�cients

in a CCM (recall that black pixels in a digital image are zero-valued). This color

mapping is reverted by setting all zero-valued pixels equal to 255, and vice versa

(CCMij = 255� CCMij, 8 i, j), as in Figure 4c.

• The GP scripts generated by GCG yield images of a standard size (640⇥480 pixels),

11

regardless of the number of rows and columns in the corresponding CCM. GCG’s com-

pression algorithm employs binary max pooling. That is, if any pixel in a macro region

contains a nonzero element, the compressed, single-pixel representation of that region

contains a value of 255 (and zero otherwise). It is true that a grayscale or full-color

representation of coe�cient values could retain more detail from the CCM. However,

GCG’s structure detection procedure is a critical component of this methodology. As

such, we opted to work with the restriction that decomposed images will be black-and-

white.

(a) GCG-generated gnuplot (b) CCM image after axes and
shading have been stripped

(c) CCM image after pixel val-
ues have been inverted

Figure 4: GCG’s gnuplots include axes, as well as shading to highlight block structures which
have been identified, as in Figure 4a. In Figure 4b, these elements are removed such that
only the true structural information remains. Finally, in Figure 4c, the color mapping has
been inverted.

3.2 Step 2 – Encode

In the second step, images are encoded as feature vectors using techniques from deep learning.

There are many di↵erent methods defined within the field of computer vision for extracting

features from images. Fisher Vector Encoding and Bag-of-Words models are two commonly

used approaches which were considered for this application. However, these approaches are

based on locally invariant visual features, which are best extracted from a rich local structure

(Sánchez et al. 2013, Zhang et al. 2010). CCM images are black and white, as well as highly

sparse, meaning that they lack such richness. Therefore, these methods are not well suited

12

for this application.

Deep learning methods also automate the feature engineering process, making them

highly e↵ective for perceptual tasks (Elsken et al. 2019). Convolutional neural networks

(CNNs) are deep learning models which have been well studied (Liu et al. 2017). A wide

range of optimization problems have benefited from the application of CNNs, from wave-

form optimization in audio enchancement tasks (Fu et al. 2018) to the design of optimal

computational strategies for 3D topology models.

CNNs have also been used to study optimization models within the field of operations

research. Several early works employed CNNs to develop optimal (or near optimal) solutions

for integer programming formulations (Simon 1988, Ohlsson et al. 1993, Tsuchiya et al.

1996). More recently, CNNs have been applied to the optimization process, itself. Bengio

et al. (2018) use CNNs to generate improved cutting planes (and hence, tighter bounds),

while Gasse et al. (2019) employ CNNs to improve the variable selection process during

branch-and-bound. A key di↵erence between these applications and the one presented in

this paper is that we use CNNs to study optimization problems, rather than to help solve

them.

One type of CNN, referred to as an autoencoder, which is particularly well suited for

image comparison applications like the one presented in this paper. As described by Liu

et al. (2017), autoencoders are trained to encode an input into an abstract representation,

and then use that representation to reconstruct the input as closely as possible.

The general structure of an autoencoder is represented in Figure 5. The inner-most

layer (labeled “Coded” in Figure 5) contains values for the latent features which have been

detected. Once an autoencoder is su�ciently trained (i.e., it is able to decompose and

reconstruct input data with a high degree of accuracy), the values in the “Coded” layer

may be extracted for use as a feature vector for the corresponding input data. The use of

autoencoders to extract feature vectors from images is well documented in fields such as

medical image analysis (Camlica et al. 2015, Sharma et al. 2016, Chen et al. 2017, Li et al.

13

2018, Cheng et al. 2018) and image retrieval (Sklan et al. 2015, Zhou et al. 2017, Rahim

et al. 2018, Qin et al. 2018, Chen et al. 2018), among others. Although CCM images di↵er

from “traditional” images (in that they do not depict tangible objects), they are fundamen-

tally comprised of the same image primatives (e.g., oriented edges, corners). As such, an

autoencoder may still be reasonably employed for feature extraction in this application.

Figure 5: The general structure of an autoencoder (Derdat 2013).

One property of CNNs which make them well suited for image-based feature extraction

is their robustness to certain image transformations. In the context of decomposed CCM

images, specifically, there are three primary transformations which the autoencoder is tasked

with recognizing. The first of these transformations is referred to as “shading.” An example

of this transformation can be seen in Figure 6, which contains the CCM images for three

instances from strIPlib of the container loading problem. All three images contain the same

curved structure, but the shading inside that structure varies from one image to the next.

(a) BR6 5-hifi (b) BR6 19-hifi (c) BR6 40-hifi

Figure 6: An example of shading invariance in CCM images.

14

The second transformation of interest is referred to as “pattern density.” Figure 7 depicts

three instances of the capacitated vehicle routing problem, also from strIPlib. Each of

these images contains the same pattern – a staircaise structure underscored by a solid main

diagonal – in varying frequencies. For example, there are nine “steps” in the staircase shown

in Figure 7a, as opposed to only five in Figure 7c.

(a) E031-09h.cvrp (b) E026-08m.cvrp (c) E023-05s.cvrp

Figure 7: An example of pattern density invariance in CCM images.

Finally, instances from a common model may exhibit transformations with respect to

“proportionality.” Figure 8 contains the CCM images for three instances of the bin packing

problem, selected from strIPlib. These images are comprised of two components. The first

component is a series of nearly vertical parallel lines, and the second is a block-diagonal

structure. For each image, however, these components exist in di↵erent proportions. Ro-

bustness to this type of transformation is reminiscent of shift-invariance, which CNNs are

known to capture (Hyvärinen and Hoyer 2000).

(a) N1C3W2 M.BPPeq (b) N1W2B3R5.BPPeq (c) N3W4B2R8.BPPeq

Figure 8: An example of proportionality invariance in CCM images.

15

3.2.1 Autoencoder architecture

Table 2 contains a description of the autoencoder architecture used for this paper. The

following principles were considered when developing this architecture.

Convolution: Convolutional layers are employed to aid in the extraction of image features.

A CNN slides a number of templates (called convolutional kernels) across a digital image.

The recommended size for a convolutional kernel is 3⇥3 (much smaller than the image itself);

this kernel size was adopted here. The number of kernels in a convolutional layer represents

the number of templates being checked (powers of two are recommended). Each convolutional

layer in Table 2 contains either 8 or 16 kernels. The output from a convolutional layer will

be an m⇥ n⇥ k tensor, or multi-dimensional array. In this notation, m⇥ n is the shape of

the current image representation (either the original image or some compressed form), and

k is the number of kernels being used to inspect that image (the values of m, n, and k are

provided for each layer of our autoencoder architecture in Table 2). Each entry (m,n, k) in

an output tensor represents the degree to which the kth kernel (or template) is represented

in pixel (m,n) of the current image.

Pooling: To obtain a compressed feature vector representation of an image, an autoencoder

must reduce the size of the input data. The process of pooling does this by dividing a matrix

into a number of disjoint sub-regions (pools). The values in each pool are then transformed

according to a pooling function (in this case, max-pooling) into a single, representative

value. Max-pooling was selected to retain as much structural information as possible through

each stage of the compression process. Pooling occurs on the tensor that is output by a

convolutional layer, and is applied to each of the k kernel dimensions separately. Using a

large pool size will compress tensors too quickly, resulting in a greater loss of detail. As

such, it is recommended to use a pool size of 2⇥2 and compress iteratively (by including

more layers in the autoencoder).

16

Activation: The process of scaling kernel outputs in a CNN is known as activation. One of

the most commonly used activation functions is known as the ReLU function. This function

“shuts o↵” insignificant kernel outputs by casting values below a given threshold to zero,

while leaving all other outputs as they are (e.g., Figure 9a). Given that all pixel values will

be strictly positive, use of the ReLU activation function here is in line with the autoencoder’s

goal of reconstructing the inputs. Note that the ReLU function is di↵erentiable at all points

other than x = 0. After accounting for this singular discontinuity, di↵erentiation of the

ReLU function can be done quickly. It is therefore well suited for backpropogation, the

procedure by which the network’s weight structure is updated during training.

�0.5 0 0.5 1 1.5
�1

0

1

2

x

R
eL

U
(x

)

(a) ReLU

Figure 9: A graph of the ReLU activation function.

For the analyses in this paper, feature vectors were obtained by passing images as inputs

to a trained autoencoder of the form defined in Table 2 and extracting the coded represen-

tation from Layer 12. It is standard procedure to normalize input data prior to training.

In this setting, the pixel values in each image were scaled to between 0 and 1. Given that

the images are purely black and white, this process yields binary input vectors. As such,

training loss was measured using the binary crossentropy function native to TensorFlow.

3.3 Step 3 – Compare

Finally, similarity between images is measured according to the ISS metric. Let ↵ and �

be two images, and let v↵ and v� denote their corresponding feature vector representations

17

Table 2: Autoencoder architecture. Images are encoded in Layers 1–12, and decoded in
Layers 13–22. Layer 12 contains the most densely encoded representation of the input data.
Values are extracted from this layer for use as feature vectors.

Layer Type Filters Kernel Size Output Size (m,n, k) Activation

1 Input - - (480, 640, 1) -
2 Conv2D 16 (3, 3) (480, 640, 16) ReLU
3 MaxPooling2D - (2, 2) (240, 320, 16) -
4 Conv2D 8 (3, 3) (240, 320, 8) ReLU
5 MaxPooling2D - (2, 2) (120, 160, 8) -
6 Conv2D 8 (3, 3) (120, 160, 8) ReLU
7 MaxPooling2D - (2, 2) (60, 80, 8) -
8 Conv2D 8 (3, 3) (60, 80, 8) ReLU
9 MaxPooling2D - (2, 2) (30, 40, 8) -
10 Conv2D 8 (3, 3) (30, 40, 8) ReLU
11 MaxPooling2D - (2, 2) (15, 20, 8) -
12 Conv2D 8 (3, 3) (15, 20, 8) ReLU
13 UpSampling2D - (2, 2) (30, 40, 8) -
14 Conv2D 8 (3, 3) (30, 40, 8) ReLU
15 UpSampling2D - (2, 2) (60, 80, 8) -
16 Conv2D 8 (3, 3) (60, 80, 8) ReLU
17 UpSampling2D - (2, 2) (120, 160, 8) -
18 Conv2D 8 (3, 3) (120, 160, 8) ReLU
19 UpSampling2D - (2, 2) (240, 320, 8) -
20 Conv2D 16 (3, 3) (240, 320, 16) ReLU
21 UpSampling2D - (2, 2) (480, 640, 16) -
22 Conv2D 1 (3, 3) (480, 640, 1) ReLU

(extracted from a trained autoencoder). The ISS between these two images may be then

defined as

ISS↵� = k(v↵ � v�)k2 . (2)

Equation (2) returns the Euclidean distance, or L2 norm, between v↵ and v�. These values

are nonnegative and tend toward zero as the similarity between ↵ and � increases. As

discussed in Section 1, feature-wise comparisons such as these are less susceptible to image

transformations than pixel-wise comparisons (Larsen et al. 2015).

18

bpp

bison

eq

gq

orlibrary

eq

gq

(a) Bin packing prob-
lem

bif

ceselli

chain

natural

(b) Bin packing problem
with item fragmenta-
tion

clp

chen

chen

fasano

fasano

hifi

hifi

junqueira

junqueira

paquay

paquay

tsai

tsai

(c) Container loading problem

Figure 10: Example directory structures for three problem types in strIPlib, the bin packing
problem (bpp), the bin packing problem with item fragmentation (bif), and the container
loading problem (clp).

4 Data preparation and model training

There are more than 10,000 total instances contained in strIPlib. At the outer-most level,

these instances are organized by their associated problem type (e.g., instances of the bin

packing problem vs. instances of the cutting stock problem). Within each problem type,

instances are further categorized. First, instances are separated by the author (or library)

from which they originated. Then, some authors have defined additional categories by which

to sort their instances. Figure 10 depicts the directory structures for three di↵erent problem

types in strIPlib. For the remainder of this paper, each leaf node in a directory structure

(highlighted in gray in Figure 10) is referred to as a “source.” Instances were collected from

64 unique sources for this paper. The paths to these sources in strIPlib are provided in Table

10 in the Appendix.

19

For this paper, a set of training images were generated from a subset of instances con-

tained in strIPlib. To ensure equal representation of each problem type in our training set,

50 instances were selected from each problem type. There were exactly 19 problem types

which contained at least 50 total instances across all sources for that problem type (all other

problem types were excluded from our study). These problem types, and the total number

of sources for each type, are listed in Table 3. At least one instance was selected from each

source for all 19 problem types. In addition, no instance was downloaded if its file size

exceeded 1MB. This restriction was meant to alleviate the computational expense of GCG’s

structure detection procedure.

Table 3: Descriptive information for the 19 problem types included in this study. All of this
information comes directly from Bastubbe et al. (2020).

Abbr. Full name Problem description Sources

bpp bpp Bin packing problem 4
bp2 bpp2 Two-dimensional bin packing problem 1
bif bppif Bin packing problem with item fragmentation 2
clp clp Container loading problem 6
col coloring Vertex coloring problem 8
cpm cpmp Capacitated p-median problem 5
cut cuttingstock Cutting stock problem 8
cvr cvrp Capacitated vehicle routing problem 5
cwl cwlp-ss Capacitated warehouse (facility) location problem 1
gap gatp-tmp Generalized assignment problem 4
inr inr International nurse rostering problem 1
kps kps Knapsack problem with setups 1
lot lotsizing Lot sizing problem 6
map maplabeling Map labeling problem 2
pcp pcp Graph partition coloring problem 1
rel relaxedClique Relaxed clique covering problem 6
sch scheduling Scheduling problem 1
tup tup Traveling umpire problem 1
vrp vrptw Vehicle routing problem with time windows 1

In accordance with the aforementioned selection criteria, a collection of 950 MIP instances

were selected at random and downloaded from strIPlib in the MPS file format. The image

generation defined in Section 3.1 was then applied to generate 950 CCM images, which were

20

used to train the autoencoder. The trained autoencoder was employed to generate feature

vectors for these images, which were used for subsequent ISS calculations.

4.1 Training statistics

The autoencoder architecture defined in Table 2 was constructed using TensorFlow version

2.1.0 (Chollet 2015) in Python 3.5.2. This architecture yielded a total of 6,721 trainable

parameters. Three training epochs were conducted using a stochastic gradient descent (SGD)

optimizer with Nesterov momentum, a batch size of 32 instances, and a learning rate of

0.01 (as recommended by Géron 2017). Several other optimizers (Adam, AdaGrad, and

RMSProp) were also tested. These optimizers performed identically to SGD with respect to

accuracy, but yielded higher average training losses. Recall that training loss was measured

using TensorFlow’s binary crossentropy function.

All training and testing was completed on a Dell OptiPlex 3046 running Linux Mint

version 18.3, with an Intel Core i7-6700 processor and 16 GB of RAM. A summary of relevant

training statistics is provided in Table 4. Note that both the training loss and training

accuracy have converged within three training epochs, and that the entire training procedure

was completed in just over 7 minutes. This speed results from the relative simplicity of the

CCM images, which are both binary and highly sparse.

Table 4: Statistics from the autoencoder training procedure.

Epoch Time (min:sec) Loss Accuracy

1 02:34 8.2837 0.4277
2 02:15 0.3852 0.9750
3 02:14 0.3852 0.9750

5 Results and analysis

In this section, the proposed MIP comparison approach is evaluated through a series of

analyses. Recall that each of the instances in our collection belongs to a single source, which

21

in turn belongs to a specific problem type. In Section 5.1, similarity is examined at the

problem-level. These comparisons serve primarily to validate the performance of our image-

based comparison approach, as the relationships between some of these problems are known

a priori.

However, the results of Section 5.1 also raise questions about the purity of some problem

types. Subsequently, Section 5.2 presents an analysis of similarity at the source level. Finally,

a subset of instances from MIPLIB are introduced in Section 5.3. Comparisons between these

blended instances and the pure strIPlib problems serve to highlight potential areas for future

research. All results can also be found at https://icip.optimatorlab.org.

5.1 Analysis of strIPlib problem types

Problem-level feature vectors were constructed by averaging the feature vectors for all 50

instances of a given problem type. ISS values were then computed between pairs of problem-

level feature vectors. The average ISS value between a pair of strIPlib problems is 5.81,

with a standard deviation of 2.38. All ISS values were stored in a 19⇥19 matrix, which can

be viewed as a distance matrix (recall that an ISS value is the Euclidean distance between

two feature vectors in feature space). The ISS matrix was provided as input to the qgraph

function in R (Epskamp et al. 2012), which takes an n ⇥ n distance matrix as input, and

generates a set of coordinates in two dimensions for the n entities. More specifically, this

two dimensional mapping seeks to (approximately) preserve the distance between each pair

of entities as defined in the distance matrix.

Using the qgraph function, coordinates in 2D were generated for each of the 19 strIPlib

problem types, as shown in Figure 11. In Figure 11a, edges are drawn between each pair of

problems sharing an ISS value below 2.00. The ISS threshold is increased to 4.00 in Figure

11b. As the ISS threshold is increased, the graph becomes more connected, albeit by weaker

relationships.

Figure 11 reveals a number of interesting relationships between problem types from

22

(a) ISS below 2.00

(b) ISS below 4.00

Figure 11: strIPlib problem types plotted in 2D. ISS values between pairs of problems are
approximately preserved by the distance between those two problems in the plot. Edges are
drawn between pairs of problems who share an ISS value below a defined threshold.

23

strIPlib. Consider the two initial groupings which appear in Figure 11a. In the upper

right-hand portion of Figure 11a, a second cluster is formed by the cwl and cpm problem

types. Recall from Table 3 that cwl and cpm represent the capacitated warehouse location

problem and the capacitated p-median problem, respectively. These titles are often used

interchangeably in the literature to describe the same conceptual problem (Stefanello et al.

2015, Fleszar and Hindi 2008, Maniezzo et al. 1998). These two problems share an ISS value

of 0.45 – the lowest between any pair of strIPlib problems – further demonstrating the ability

of ICIP to identify known relationships.

When the ISS threshold is increased in Figure 11b, both the bpp and cut problem types

connect to cwl and cpm. In Figure 12, composite images for all four of these problem types

are shown. A composite image is generated by “stacking” each of the CCM images for

that problem type on top of one another. Composite images were not used to train the

autoencoder; they serve purely as a visual aid. The ISS values between these problem types

are also presented in Figure 12e.

(a) cwl (b) cpm

(c) bpp (d) cut

cwl cpm bpp cut

cwl 0.00 - - -
cpm 0.45 0.00 - -
bpp 2.37 2.20 0.00 -
cut 3.18 3.42 4.51 0.00

(e) Problem-level ISS values for cwl,
cpm, bpp, and cut.

Figure 12: Composite images for the cwl, cpm, bpp, and cut problem types are depicted in
Figures 12a-12d. The ISS values between these problem types are presented in Figure 12e.

It can be inferred from Figures 12c and 12d that instances from the bpp and cut problem

24

types exhibited proportionality transformations, as defined in Section 3.2. There appears

to be more variance in the proportionality of the cut instances than for the bpp instances,

which is reflected in the higher ISS values for cut. However, the autoencoder was still able

to identify that all four problem types share the same general structure.

Table 5, which contains the average constraint composition for each of the four problem

types, indicates that identifying similarities among these problems may be di�cult when

only constraint classes are considered. The cwl, cpm, and bpp problem types are comprised

primarily of PAR and BIN constraints. Both cpm and bpp, however, contain a large percentage

of COV constraints as well. Approximately 88% of constraints in the cut instances were

classified as GEN, the catchall constraint class. This is an example of a problem for which

more information is provided by ICIP than through constraint classification.

Table 5: Average constraint compositions for instances of the cwl, cpm, bpp, and cut problem
types.

Problem PAR COV CAR BIN INT MIX GEN

cwl 0.50 0.00 0.00 0.50 0.00 0.00 0.00
cpm 0.29 0.21 0.01 0.50 0.00 0.00 0.00
bpp 0.29 0.31 0.00 0.33 0.00 0.08 0.00
cut 0.00 0.00 0.00 0.00 0.12 0.00 0.88

The second cluster in Figure 11a contains the pcp, col, vrp, bp2, kps, and map problem

types. For the sake of brevity, we will examine the first three of these problem types – pcp,

col, and vrp – more closely. The composite images for these problem are shown in Figure

13. Each of these images reveals a strong main-diagonal with few nonzero entries elsewhere

in the CCM.

The strongest connection in this group exists between the graph partition coloring prob-

lem (pcp) and the vertex coloring problem (col). These two problems share an ISS value

of 0.49, the second lowest between any pair of strIPlib problem types. It is well estab-

lished in the literature that the graph partition coloring problem is a generalization of the

vertex coloring problem (Furini et al. 2018, Frota et al. 2010). Each of these problems, in

turn, share an ISS value of 1.01 with vrp (the vehicle routing problem with time windows).

25

(a) pcp (b) col (c) vrp

Figure 13: Composite images for the pcp, col, and vrp problem classes.

Heuristics such as iterated local search (Xie et al. 2017), two-stage hybrid local search (Bent

and Van Hentenryck 2004), ant colony optimization (Reimann et al. 2002), and simulated

annealing (Chiang and Russell 1996) have all been applied to this problem with the explicit

justification that they were e↵ective at solving graph coloring problems.

Even after the ISS threshold has been increased in Figure 11b, the tup, inr, and clp

problem types have no connections. Their composite images are shown in Figure 14. Unlike

the other problem types in this analysis, both tup and inr originate from highly complex,

real-world applications – the scheduling of umpire crews for Major League Baseball (Xue

et al. 2015, Trick et al. 2012), and the International Nurse Rostering Competition (Ceschia

et al. 2019, Haspeslagh et al. 2014), respectively. The complex nature of their applications

necessitates the use of many di↵erent constraint types, as can be seen in Table 6, making

these problems particularly unique. In a sense, then, it is a positive result that they do not

resemble the other problem types included in this study.

(a) tup (b) inr (c) clp

Figure 14: Composite images for the tup, inr, and clp problem types.

Finally, consider the composite image for the clp problem type shown in Figure 14c.

26

Table 6: Average constraint compositions for the tup and inr problem types. An ✏ indicates
a nonzero value less than 0.01.

Problem EMP SIN AGG PRE VAR PAR PAC COV CAR INV BIN MIX GEN

inr 0.00 0.01 ✏ ✏ 0.078 0.09 0.34 0.02 0.11 0.23 0.00 0.02 0.11
tup ✏ 0.00 ✏ 0.00 ✏ 0.03 0.75 0.01 0.19 0.00 0.01 0.00 0.00

This image does not reveal a singular, clear structure. Instead, it appears as though several

di↵erent structures are layered atop one another. This result led us to examine the purity

of each problem type more closely. Theoretically, two instances of the same problem should

contain the same types of constraints (although they may exist in di↵erent proportions). A

simple measure of impurity, then, is the number of constraint classes which are present in

one instance but not in another. The average constraint composition was calculated for each

source using SCIP’s linear constraint classifier, after which an impurity index was calculated

for each problem type. This index is simply the total number of constraint types which are

present in some, but not all, sources of a given problem type. As SCIP uses the 17 constraint

classes defined in Table 1, the maximum possible impurity index is 17.

Table 7 contains the impurity index (Impurity) for all 19 problem types, along with two

additional measures. Values in the “Mean ISS” column represents the average ISS value

between two instances of a given problem type. As a reference, the global average ISS

value between individual instances of any problem type is 7.45, with a standard deviation

of 3.41. Next, we identified the 49 most similar instances to each individual instance in our

collection. This number is based on the fact that, for a given instance, up to the first 49 most

similar instances may belong to the same problem type. For each instance, a match rate was

calculated as the percentage of the 49 most similar instance from a matching problem type.

Values in the “%-Match” column of Table 7 represent the average match rate for instances

of a given problem type.

It can be seen in Table 7 that 9 of the 19 problem types in this analysis have a nonzero

impurity index. The various sources for any such problem type have modeled that problem

using di↵erent formulations. Table 7 further reveals that problems with high impurity indices

27

perform poorly on the Mean ISS and %-Match measures. Notably, clp has the highest

impurity index (9 out of 17) and Mean ISS (9.57), as well as the lowest %-Match (16.82%).

These results called for an analysis of problems at the source level.

Table 7: Impurity, mean intra-problem ISS, and average Top-49 match rate for the 19 strIPlib
problem types considered in this analysis.

Problem Impurity Mean ISS % -Match

vrp 0 0.00 100.00%
cwl 0 0.49 100.00%
kps 0 0.80 85.92%
bp2 0 0.79 67.59%
pcp 0 1.43 57.47%
cpm 0 3.95 38.45%
sch 0 4.54 45.59%
gap 0 4.65 48.73%
tup 0 4.71 78.61%
inr 0 7.89 22.37%
map 1 4.79 18.61%
cut 1 6.88 24.20%
cvr 3 5.49 41.51%
bpp 3 6.67 28.24%
col 4 1.62 40.08%
lot 4 3.64 40.16%
bif 4 4.40 35.55%
rel 8 6.21 23.47%
clp 9 9.57 18.98%

5.2 Analysis of strIPlib sources

Source-level feature vectors were constructed by averaging the feature vectors for all instances

from a given source. Source-level comparisons were then made by applying the ISS metric

to these feature vectors. As with our previous analysis, all results can be found on the

companion website for this paper (https://icip.optimatorlab.org). In this section, we

provide an analysis of our results in the form of a case study on the clp problem type.

Separate composite images were generated for each of the six clp sources. These com-

posites, shown in Figure 15, reveal several unique structures. ICIP has, therefore, provided

28

a strong indication that these problem sources are not based on a common formulation for

the container loading problem; this fact which was later corroborated by the maintainers of

strIPlib (Bastubbe et al. 2020). Table 8, which contains the average constraint composition

for each clp source, further supports this claim. It is clear in this table that the constraint

compositions vary greatly across the six sources. As an example, 99% of clpD constraints

are set packing (PAC), while no other clp source has any set packing constraints at all.

(a) clpA (b) clpB (c) clpC

(d) clpD (e) clpE (f) clpF

Figure 15: Composite images for each of the six clp sources.

Table 8: Average constraint composition for clp instances, by source. An ✏ indicates a
nonzero value less than 0.01.

Problem SIN PAR PAC COV INV KPS INT MIX GEN

clpA 0.00 0.01 0.00 0.14 0.00 0.00 ✏ 0.01 0.84
clpB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00
clpC 0.00 0.01 0.00 0.00 0.00 0.12 0.01 0.13 0.74
clpD 0.00 0.00 0.99 0.00 ✏ 0.00 0.00 0.00 0.00
clpE ✏ 0.01 0.00 0.16 0.00 0.00 0.00 ✏ 0.82
clpF 0.00 0.01 0.00 0.12 0.12 0.00 0.01 0.01 0.74

Now consider the results of the aforementioned source-level comparisons. The ISS metric

indicates that the most similar sources to clpD are gapC and gapD – it shares ISS values of

3.34 and 4.56, respectively, with these sources. The composite images for these three sources

reveal a common CCM structure, as can be seen in Figure 16. By considering constraint

29

compositions at the source level, gapC and gapD are identified as having 96% and 97%

set partitioning (PAR) constraints, respectively. Recall that 99% of constraints in the clpD

instances are set packing (PAC) constraints. Moreover, it was the only clp source with more

than 1% PAR or PAC constraints. These two constraint classes di↵er only in their sense; PAC

constraints are inequalities, while PAR constraints are strict equalities.

All of these results point to the fact that the particular model used in clpD resembles that

of a generalized assignment problem. Both the initial discrepancy within the clp problem

type, and the link from clpD to the generalized assignment problem, were identified by the

image-based comparison approach.

(a) clpD (b) gatC (c) gapD

Figure 16: Composite images for the clpD, gapD, and gatC instance sources.

5.3 Comparing MIPLIB instances to strIPlib sources

For this final analysis, a subset of 12 instances, defined in Table 9, were downloaded from

the MIPLIB. These instances are accompanied by clear problem descriptions. CCM images

were generated for these 12 instances, and the pre-trained autoencoder was used to generate

feature vectors for these images.

Feature vectors for the 12 MIPLIB instances and for the 64 strIPlib instance sources

were combined into a single data set. ISS values were computed between each pair of feature

vectors, and 2D coordinates were generated for all 76 vectors. In Figure 17, MIPLIB instances

are depicted as orange nodes, while strIPlib sources appear as gray nodes. In both Figures

17a and 17b, edges are drawn exclusively between MIPLIB instances and strIPlib sources

30

Table 9: MIPLIB Instances

Abbr. Instance name Corresponding problem description

50v 50v-10 Network loading problem.
adu adult-max5features MIP to create optimized data-driven scoring systems.
atm atm20-100 ATM cash management problem.
con control30-5-10-4 Optimal control of a discrete-time switched system

model.
csc csched007 Cumulative scheduling problem.
cvs cvs16r89-60 Capacitated vertex separator problem.
dan danoint Telecommunications application instance.
f2g f2gap801600 Restriction of well-known hard generalized assignment

problem.
fhn fhnw-schedule-paira400 Continuous-time project scheduling and selection prob-

lem.
ger ger50-17-ptp-pop-6t Multi-layer network design problem
uni unitcal 7 California seven day unit commitment problem.
tho thor50dday Steiner tree problem in graphs.

according to the specified ISS thresholds.

As in Section 5.1, some of the results in this section help to validate the e�cacy of ICIP.

For example, f2g is an instance of a restricted generalized assignment problem. In Figure

17a, f2g is connected to two sources from the gap - the generalized assignment problem type

from strIPlib.

Next, consider ger, an instance of a multi-layer network design problem. This instance

shares ISS values of 1.16, 1.18, 1.32, and 1.64 with the cpmC, cwl, cpmE, and bppA sources,

respectively. As an aside, cwl, cpm, and bpp are also the most similar problem types to ger,

in that order. The CCM for ger is presented alongside the composites for its four most

similar sources in Figure 18. Interestingly, multi-layer network design has been studied in

conjunction with both the facility/warehouse location (Shishebori et al. 2018, Contreras et al.

2012) and p-median (Tang et al. 2019, Contreras and Fernández 2012) problems. The design

of airline networks and the location of medical service centers are examples of applications

where these problems intersect.

At this point, it is important to note that the CCM images corresponding to the 12

MIPLIB instances were not included in the training set. The trained autoencoder provides

31

(a) ISS below 2.00

(b) ISS below 4.50

Figure 17: MIPLIB instances and strIPlib sources.

32

(a) ger

(b) cpmC (c) cwl

(d) cpmE (e) bppA

Figure 18: The CCM image for ger, an instance from the MIPLIB, is depicted in Figure
18a. Figures 18b-18e contain composite images for its four most similar strIPlib sources :
cpmC, cwl, cpmE, and bppA.

feature vectors which describe these new CCM images in terms of the features it has learned

from the strIPlib instances. Nonetheless, several clear and explainable relationships have

been identified. This highlights several important results. First, while the exact meanings

of the automatically-learned features are unknown, the e�cacy of these features as a basis

for MIP comparisons has been demonstrated through our analyses. More generally, given

that previously “unseen” instances were e↵ectively described by a previously learned set of

features, it may be the case that all MIPs are definable by a unified set of image primatives.

While the authors are not making this claim explicitly, we certainly hope that this notion

inspires continued research in ICIP.

6 Conclusions and future research

In this paper, CCM structure is explored as a basis for comparing MIP instances and the

problems they model. To this end, we propose a methodology for representing CCMs as

digital images, encoding those images into feature vectors, and quantifying the similarity

33

between feature vectors for di↵erent images. We term this process Imaged-based Comparison

of Integer Programs (ICIP).

The significance of CCM structure in the context of solving MIPs is well established.

However, our analyses indicate that CCM structure is also a powerful indicator of similarity

between MIPs. These analyses reveal that structurally similar MIPs often share a related

underlying problem, even if those problems originate from seemingly disparate applications.

These insights are made possible, in part, by the use of automated feature engineering

through the application of deep learning techniques. This paper represents the first known

use of automated feature engineering to compare MIPs.

Additionally, the results in this paper have raised questions regarding dissimilarity be-

tween instances previously thought to be related. ICIP both identified a collection of in-

stances in strIPlib which came from di↵erent formulations of the same problem, and detected

a new problem type with which those instances shared more in common.

Finally, the methodology defined in this paper is flexible in that it may be used to measure

similarity between individual instances, collections of instances from a common problem, or

combinations of both. In the same vein, this paper presents the first documented analyses

of a quantitative measure for problem-to-problem and instance-to-problem similarity.

One key issue to be explored by future research e↵orts is the rearrangement of CCM

rows and columns. GCG proved to be a useful CCM decomposition tool for the scope of the

analyses in this paper. However, its decomposition approach is heuristic, and the analyses in

this paper operate under the assumption that the decomposition with the greatest maxwhite

score is always best. As a result, no claim can be made that the ICIP is invariant to row and

column permutations. Moving forward, inspiration may be taken from other fields where

matrix row and column permutations are known be an issue (e.g., graph Laplacian matrices).

Another interesting area for future research is in the interpretation of machine-learned

features. Although autoencoders are capable of learning features which are e↵ective in image

comparison applications, they o↵er no explanation of what these features mean. It would

34

be useful to understand how the autoencoder is describing CCM structure, whether this

description is similar to one that a human might o↵er, and what the implications are for

modeling and solving MIPs. An improved understanding of these features may facilitate the

development of a combined feature set, which leverages both machine-learned and human-

defined features to describe problems.

The proposed methodology should also be tested on a larger data set with more problem

types. This will require continued e↵orts by the operations research community to collect

and document MIP instances. Additionally, this method can be validated empirically by

testing di↵erent solution methodologies on related instances.

Other areas for future research include identifying a meaningful ISS threshold, the con-

sideration of additional MIP components (e.g., x, c, and b in Definition (1)), and other

methods for representing model structure. This work provides a foundation for future re-

search in each of these areas, as well as on new methods for comparing and relating works

in operations research.

References

Mathematical Programming System/360 Version 2, Linear and Separable Programming – User’s

Manual. IBM Corporation, White Plains, N.Y., 3 edition, 10 1969. Publication H20–0476–2.

M. Bastubbe, L. Kirchhart, M.E. Lübbecke, N. Rieken, and J.T. Witt. strIPlib: A library of

structured integer programs. striplib.or.rwth-aachen.de, 2020. Accessed April 20, 2019.

J.F. Benders. Partitioning procedures for solving mixed-variables programming problems. Nu-

merische Mathematik, 4(1):238–252, 1962.

Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a method-

ological tour d’horizon. arXiv preprint arXiv:1811.06128, 2018.

R. Bent and P. Van Hentenryck. A two-stage hybrid local search for the vehicle routing problem

with time windows. Transportation Science, 38(4):515–530, 2004.

35

G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte. Static pickup and delivery problems:

a classification scheme and survey. Top, 15(1):1–31, 2007.

P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-constrained project

scheduling: Notation, classification, models, and methods. European Journal of Operational

Research, 112(1):3–41, 1999.

Z. Camlica, H.R. Tizhoosh, and F. Khalvati. Autoencoding the retrieval relevance of medical

images. In 2015 International Conference on Image Processing Theory, Tools and Applications

(IPTA), pages 550–555. IEEE, 2015.

S. Ceschia, N. Dang, P. De Causmaecker, S. Haspeslagh, and A. Schaerf. The second international

nurse rostering competition. Annals of Operations Research, 274(1-2):171–186, 2019.

J. Chen, W.K. Cheung, and A. Wang. Learning deep unsupervised binary codes for image retrieval.

In Proceedings of the 27th International Joint Conference on Artificial Intelligence, pages 613–

619. AAAI Press, 2018.

M. Chen, X. Shi, Y. Zhang, D. Wu, and M. Guizani. Deep features learning for medical image

analysis with convolutional autoencoder neural network. IEEE Transactions on Big Data,

2017.

X. Cheng, L. Zhang, and Y. Zheng. Deep similarity learning for multimodal medical images.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6

(3):248–252, 2018.

W.C. Chiang and R.A. Russell. Simulated annealing metaheuristics for the vehicle routing problem

with time windows. Annals of Operations Research, 63(1):3–27, 1996.

F. Chollet. Keras. https://keras.io, 2015.

F.G. Commoner. A su�cient condition for a matrix to be totally unimodular. Networks, 3(4):

351–365, 1973.

I. Contreras and E. Fernández. General network design: A unified view of combined location and

network design problems. European Journal of Operational Research, 219(3):680–697, 2012.

I. Contreras, E. Fernández, and G. Reinelt. Minimizing the maximum travel time in a combined

model of facility location and network design. Omega, 40(6):847–860, 2012.

36

K.L. Croxton, B. Gendron, and T.L. Magnanti. A comparison of mixed-integer programming

models for nonconvex piecewise linear cost minimization problems. Management Science, 49

(9):1268–1273, 2003.

G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Research, 8

(1):101–111, 1960.

A. Derdat. Applied Deep Learning – Part 3: Autoencoders, 2013. Accessed July 26, 2019.

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798.

B. Eksioglu, A.V. Vural, and A. Reisman. The vehicle routing problem: A taxonomic review.

Computers & Industrial Engineering, 57(4):1472–1483, 2009.

T. Elsken, J.H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine

Learning Research, 20(55):1–21, 2019.

S. Epskamp, A.O.J. Cramer, L.J. Waldorp, V.D. Schmittmann, and D. Borsboom. qgraph: Network

visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4):1–18,

2012. URL http://www.jstatsoft.org/v48/i04/.

R.Z. Farahani and M. Hekmatfar. Facility Location: Concepts, Models, Algorithms and Case

Studies. Springer, 2009.

K. Fleszar and K.S. Hindi. An e↵ective vns for the capacitated p-median problem. European

Journal of Operational Research, 191(3):612–622, 2008.

Y. Frota, N. Maculan, T.F. Noronha, and C.C. Ribeiro. A branch-and-cut algorithm for partition

coloring. Networks: An International Journal, 55(3):194–204, 2010.

S.-W. Fu, T.-W. Wang, Y. Tsao, X. Lu, and H. Kawai. End-to-end waveform utterance en-

hancement for direct evaluation metrics optimization by fully convolutional neural networks.

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(9):1570–1584, 2018.

F. Furini, E. Malaguti, and A. Santini. An exact algorithm for the partition coloring problem.

Computers & Operations Research, 92:170–181, 2018.

G. Gamrath and M.E. Lübbecke. Experiments with a generic Dantzig-Wolfe decomposition for

integer programs. In P. Festa, editor, Experimental Algorithms, volume 6049 of Lecture Notes

37

in Computer Science, pages 239–252, Berlin, 2010. Springer. doi: 10.1007/978-3-642-13193-6

21.

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization with

graph convolutional neural networks. In Advances in Neural Information Processing Systems,

pages 15554–15566, 2019.

A. Géron. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and

techniques to build intelligent systems. O’Reilly Media, Inc., 2017.

A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R.L. Gottwald, G. Hendel, C. Hojny,

T. Koch, M.E. Lübbecke, S.J. Maher, M. Miltenberger, B. Müller, M.E. Pfetsch, C. Puchert,

D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J.M. Viernickel, M. Walter,

F. Wegscheider, J.T. Witt, and J. Witzig. The SCIP Optimization Suite 6.0. Technical

report, Optimization Online, July 2018. URL http://www.optimization-online.org/DB_

HTML/2018/07/6692.html.

A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P. Christophel,

K. Jarck, T. Koch, J. Linderoth, M.E. Lübbecke, H.D. Mittelmann, D. Ozyurt, T.K. Ralphs,

D. Salvagnin, and Y. Shinano. Miplib 2017: Data-driven compilation of the 6th mixed-integer

programming library. July 2019a.

A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P.M. Christophel,

K. Jarck, T. Koch, J. Linderoth, M.E. Lübbecke, H.D. Mittelmann, D. Ozyurt, T. K. Ralphs,

D. Salvagnin, and Y. Shinano. MIPLIB 2017. 2019b. http://miplib.zib.de.

G.D. Glockner and G.L. Nemhauser. A dynamic network flow problem with uncertain arc capacities:

Formulation and problem structure. Operations Research, 48(2):233–242, 2000.

H.W. Hamacher and S. Nickel. Classification of location models. Location Science, 6(1-4):229–242,

1998.

S. Haspeslagh, P. De Causmaecker, A. Schaerf, and M. Stølevik. The first international nurse

rostering competition 2010. Annals of Operations Research, 218(1):221–236, 2014.

A. Hyvärinen and P. Hoyer. Emergence of phase-and shift-invariant features by decomposition

38

of natural images into independent feature subspaces. Neural computation, 12(7):1705–1720,

2000.

K.L. Jones, I.J. Lustig, J.M. Farvolden, and W.B. Powell. Multicommodity network flows: The

impact of formulation on decomposition. Mathematical Programming, 62(1-3):95–117, 1993.

D.G. Kendall. Some problems in the theory of queues. Journal of the Royal Statistical Society:

Series B (Methodological), 13(2):151–173, 1951.

W.-Y. Ku and J.C. Beck. Mixed integer programming models for job shop scheduling: A compu-

tational analysis. Computers & Operations Research, 73:165–173, 2016.

A.B.L. Larsen, S.K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond

pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300, 2015.

https://arxiv.org/abs/1512.09300.

Z. Li, X. Zhang, H. Müller, and S. Zhang. Large-scale retrieval for medical image analytics: A

comprehensive review. Medical Image Analysis, 43:66–84, 2018.

X. Liang and Y. Xiao. Game theory for network security. IEEE Communications Surveys &

Tutorials, 15(1):472–486, 2013.

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi. A survey of deep neural network

architectures and their applications. Neurocomputing, 234:11–26, 2017.

V. Maniezzo, A. Mingozzi, and R. Baldacci. A bionomic approach to the capacitated p-median

problem. Journal of Heuristics, 4(3):263–280, 1998.

H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes in integer and mixed

integer programming. Discrete Applied Mathematics, 123(1-3):397–446, 2002.

R.T. Marler and J.S. Arora. Survey of multi-objective optimization methods for engineering. Struc-

tural and Multidisciplinary Optimization, 26(6):369–395, 2004.

G.L. Nemhauser, M.W.P. Savelsbergh, and G.C. Sigismondi. Constraint classification for mixed

integer programming formulations, volume 20. COAL Bulletin-Committee on Algorithms of

Mathematical Programming Society, 1992.

M. Ohlsson, C. Peterson, and B. Söderberg. Neural networks for optimization problems with

inequality constraints: the knapsack problem. neural computation, 5(2):331–339, 1993.

39

J. Ostrowski, M.F. Anjos, and A. Vannelli. Tight mixed integer linear programming formulations

for the unit commitment problem. IEEE Transactions on Power Systems, 27(1):39–46, 2011.

J. Qin, E. Haihong, M. Song, and Z. Ren. Image retrieval based on a hybrid model of deep

convolutional encoder. In 2018 IEEE International Conference of Intelligent Robotic and

Control Engineering (IRCE), pages 257–262. IEEE, 2018.

J. Racine. gnuplot 4.0: a portable interactive plotting utility. Journal of Applied Econometrics, 21

(1):133–141, 2006.

N. Rahim, J. Ahmad, K. Muhammad, A.K. Sangaiah, and S.W. Baik. Privacy-preserving image

retrieval for mobile devices with deep features on the cloud. Computer Communications, 127:

75–85, 2018.

M. Reimann, K. Doerner, and R.F. Hartl. Insertion based ants for vehicle routing problems with

backhauls and time windows. In International Workshop on Ant Algorithms, pages 135–148.

Springer, 2002.

J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector:

Theory and practice. International journal of computer vision, 105(3):222–245, 2013.

S. Sharma, I. Umar, L. Ospina, D. Wong, and H.R. Tizhoosh. Stacked autoencoders for medical

image search. In International Symposium on Visual Computing, pages 45–54. Springer, 2016.

D. Shishebori, A.Y Babadi, and Z. Noormohammadzadeh. A lagrangian relaxation approach to

fuzzy robust multi-objective facility location network design problem. Scientia Iranica. Trans-

action E, Industrial Engineering, 25(3):1750–1767, 2018.

F.Y.-P. Simon. Integer linear programming neural networks for job-shop scheduling. In IEEE 1988

International Conference on Neural Networks, pages 341–348. IEEE, 1988.

J.E.S. Sklan, A.J. Plassard, D. Fabbri, and B.A. Landman. Toward content-based image retrieval

with deep convolutional neural networks. In Medical Imaging 2015: Biomedical Applications

in Molecular, Structural, and Functional Imaging, volume 9417, page 94172C. International

Society for Optics and Photonics, 2015.

F. Stefanello, O.C.B. de Araújo, and F.M. Müller. Matheuristics for the capacitated p-median

problem. International Transactions in Operational Research, 22(1):149–167, 2015.

40

X. Tang, F. Lehuédé, O. Péton, and L. Pan. Network design of a multi-period collaborative

distribution system. International journal of machine learning and cybernetics, 10(2):279–

290, 2019.

M.A. Trick, H. Yildiz, and T. Yunes. Scheduling major league baseball umpires and the traveling

umpire problem. Interfaces, 42(3):232–244, 2012.

K. Tsuchiya, S. Bharitkar, and Y. Takefuji. A neural network approach to facility layout problems.

European Journal of Operational Research, 89(3):556–563, 1996.

J.P. van den Berg and W.H.M. Zijm. Models for warehouse management: Classification and

examples. International Journal of Production Economics, 59(1-3):519–528, 1999.

F. Xie, C.N. Potts, and T. Bektaş. Iterated local search for workforce scheduling and routing

problems. Journal of Heuristics, 23(6):471–500, 2017.

L. Xue, Z. Luo, and A. Lim. Two exact algorithms for the traveling umpire problem. European

Journal of Operational Research, 243(3):932–943, 2015.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical frame-

work. International Journal of Machine Learning and Cybernetics, 1(1-4):43–52, 2010.

W. Zhou, H. Li, and Q. Tian. Recent advance in content-based image retrieval: A literature survey.

arXiv preprint arXiv:1706.06064, 2017. https://arxiv.org/abs/1706.06064.

Appendix

The analyses presented in this paper examine a collection of 950 MIP instances from strIPlib.

These instances were downloaded from 64 di↵erent strIPlib sources. Table 10 contains the

abbreviations, paths, and number of instances downloaded for each of these sources.

41

Table 10: Abbreviations and directory paths for all 64 sources.

Abbr. Num. Instances Path

bppA 13 bpp/bison/eq
bppB 13 bpp/bison/gq
bppC 12 bpp/orlibrary/eq
bppD 12 bpp/orlibrary/gq
bp2 50 bpp2/orbologna/gq
bifA 25 bppif/ceselli/chain
bifB 25 bppif/ceselli/natural
clpA 9 clp/chen/chen
clpB 9 clp/fasano/fasano
clpC 8 clp/hifi/hifi
clpD 8 clp/junqueira/junqueira
clpE 8 clp/paquay/paquay
clpF 8 clp/tsai/tsai
colA 4 coloring/fixedsets/bigM
colB 2 coloring/fixedsets/disaggregiert
colC 8 coloring/mixed/bigM
colD 8 coloring/mixed/disaggregiert
colE 7 coloring/orlibrary/bigM
colF 7 coloring/orlibrary/disaggregiert
colG 7 coloring/r-set/bigM
colH 7 coloring/r-set/disaggregiert
cpmA 2 cpmp/lorena/eq
cpmB 2 cpmp/lorena/gq
cpmC 15 cpmp/optlab/eq
cpmD 15 cpmp/optlab/gq
cpmE 16 cpmp/orlibrary/eq
cutA 7 cuttingstock/18classes/eq
cutB 7 cuttingstock/18classes/gq
cutC 6 cuttingstock/hard28/eq
cutD 6 cuttingstock/hard28/gq
cutE 6 cuttingstock/schwerin/eq
cutF 6 cuttingstock/schwerin/gq
cutG 6 cuttingstock/waescher/eq
cutH 6 cuttingstock/waescher/gq
cvrA 8 cvrp/asymmetric/default
cvrB 12 cvrp/augerat/default
cvrC 9 cvrp/ce-vrp/default
cvrD 13 cvrp/symmetric/default
cvrE 8 cvrp/tsplib/default
cwl 50 cwlp-ss/sobolev/default
gapA 12 gap-tmp/yagiura/max
gapB 12 gap-tmp/yagiura/min
gapC 13 gap/orlibrary/max
gapD 13 gap/orlibrary/min
inr 50 inr/inrc/default
kps 50 kps/furini/default
lotA 9 lotsizing/derstro↵/default
lotB 9 lotsizing/derstro↵/setups
lotC 8 lotsizing/lotsizelib/default
lotD 8 lotsizing/pimentel/default
lotE 8 lotsizing/surie/default
lotF 8 lotsizing/trigeiro/default
mapA 25 maplabeling/lorena/alternative
mapB 25 maplabeling/lorena/default
pcp 50 pcp/furini/default
relA 9 relaxedClique/gschwind/gamma-quasi-clique covering
relB 9 relaxedClique/gschwind/gamma-quasi-clique partitioning
relC 8 relaxedClique/gschwind/s-clique covering
relD 8 relaxedClique/gschwind/s-club covering
relE 8 relaxedClique/gschwind/s-club partitioning
relF 8 relaxedClique/gschwind/s-plex covering
sch 50 scheduling/orlibrary/default
tup 50 tup/kuleuven/default
vrp 50 vrptw/sourceunknown/default

42

