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Abstract. Applying a Dantzig-Wolfe decomposition to a mixed-integer
program (MIP) aims at exploiting an embedded model structure and
can lead to significantly stronger reformulations of the MIP. Recently,
automating the process and embedding it in standard MIP solvers have
been proposed, with the detection of a decomposable model structure as
key element. If the detected structure reflects the (usually unknown)
actual structure of the MIP well, the solver may be much faster on
the reformulated model than on the original. Otherwise, the solver may
completely fail. We propose a supervised learning approach to decide
whether or not a reformulation should be applied, and which decomposi-
tion to choose when several are possible. Preliminary experiments with a
MIP solver equipped with this knowledge show a significant performance
improvement on structured instances, with little deterioration on others.

Keywords: Mixed-integer programming · Branch-and-price · Column
generation · Automatic Dantzig-Wolfe decomposition · Supervised
learning

1 Setting and Approach

Dantzig-Wolfe (DW) reformulation of a mixed-integer program (MIP) became
an indispensable tool in the computational mathematical programming bag of
tricks. On the one hand, it may be the key to solving specially structured MIPs.
On the other hand, successfully applying the technique may require a solid back-
ground, experience, and a non-negligible implementation effort.

In order to make DW reformulation more accessible also to non-specialists,
general solvers were developed that make use of the method. One such solver is
GCG [4], an extension to the well-established MIP solver SCIP [1]. Several detectors
first look for possible DW reformulations of the original MIP model. Different
types of reformulations are used by practitioners, and even if most MIPs can
be forced into each of these types [2], their relevance highly depends on the
model structure. For instance, staircase forms suit well to temporal knapsack
problems [3] while bordered block diagonal forms work well on vehicle rout-
ing problems. As in general solvers, we do not know a priori the structure of
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the original model, and many decompositions of each type are detected. These
decompositions are then evaluated: if they are of “good quality,” the MIP is
reformulated according to a “best suited” decomposition.

If one finds and selects a decomposition (DEC) that captures a structure
underlying the original model, the reformulated model may be solved much faster
than the original one. However, from the many different decompositions, we may
select one that does not reflect the actual underlying model structure; and in this
case the solver may completely fail. We currently do not have any consistently
reliable a priori measure to distinguish between these cases, except heuristic
proxies, see e.g., [2]. What is more, the latter case is not uncommon, and GCG,
presented with an arbitrary MIP, successfully detects a decomposition that leads
to an improved performance over SCIP on the original model only in a small
fraction of cases. This is to be expected, but will not render GCG (in its present
form) a competitive general MIP solver. Our work thus aims at providing a
mean to decide whether it pays to DW reformulates a given MIP model or not.
Figure 1 illustrates how the result may look like.

MIP Detection DEC DW? Select GCG

SCIP
no

yes

Fig. 1. Multiple detectors DW solver GCG with “SCIP exit strategy”

Literature. Decomposable model structure may be detected directly from the
MIP, see e.g., [2,12] and the references therein. Machine learning techniques have
been recently used in computational mathematical optimization, e.g., automated
MIP solver configuration [13], load balancing in parallel branch-and-bound [10],
or variable selection in branching decisions [6,9]. We are not aware of works that
try to learn MIP model structure to be exploited in decompositions.

Our Supervised Learning Approach. We would like to learn an answer to the
question: Given a MIP P, a DW decomposition D, and a time limit τ , will GCG
using D optimally solve P faster than SCIP (or have a smaller optimality gap at
time τ)? We define a mapping φ that transforms a tuple (P,D, τ) into a vector
of sufficient statistics or features φ(P,D, τ) ∈ R

d. Thanks to this mapping φ, the
question above becomes a standard binary classification problem on R

d. We can
therefore train a standard classifier f : Rd → {0, 1} to solve this problem. Given
an instance (P,D, τ), the quantity f ◦φ(P,D, τ) is equal to one iff the predicted
answer to the question above is positive. Practically, we have built a database of
SCIP and GCG runs for tuples (P,D, τ), a mapping φ, and have trained classifiers
f from the scikit-learn library [11] on the instances φ(P,D, τ). Answers to
the probabilistic versions g : Rd → [0, 1] of these classifiers can be interpreted as
the probability that GCG using D outperforms SCIP if the time limit is τ .
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GCG starts by detecting decompositions D1, . . . ,Dk for P. This detection takes
time τdet. We then decide how to make use of the remaining time τ − τdet:

Continue GCG if max
i=1,...,k

g ◦ φ(P,Di, τ − τdet) ≥ α. Otherwise run SCIP. (1)

The threshold α reflects our level of conservatism towards solving P using a
DW reformulation. If we decide to continue the run with GCG, we

use decomposition D with maximum g ◦ φ(P,D, τ − τdec), (2)

that is, one with largest predicted probability that GCG beats SCIP.
There are three key elements for such an approach to perform well: First,

the features must catch relevant information, see Sect. 2.2. Second, for training
a classifier we need to present it data, i.e., tuples (P,D, τ) in the learning phase
that are similar to those we expect to see later when using the classifier. Our
learning dataset contains instances from a wide range of families of structured
and non-structured models. Third, an appropriate binary classifier must be used.
It is our working hypothesis that a decomposition is likely to work if a similar
decomposition works on a similar model. We thus tested classifiers whose answer
depends only on the distance of the feature vector of the instance considered
to those of the instances in the training set: nearest neighbors, support vector
machines with an RBF kernel because such a kernel is stationary [5], and random
forests because they can be seen as a weighted nearest neighbor scheme [8].

2 Decompositions and Features

2.1 Bird’s View on Dantzig-Wolfe Reformulation

We would like to solve what we call the original MIP

min
{
ctx, Ax ≥ b, x ∈ Z

n
+ × Q

q
+

}
. (3)

Today, the classical approach to solve (3) is branch-and-cut, implemented e.g.,
in the SCIP solver [1]. Without going into much detail, the data in (3) can
sometimes be re-arranged such that a particular structure in the model becomes
visible. Among several others, one such structure is the so-called arrowhead or
double-bordered block diagonal form. It consists of partitioning the variables
x = [x1, . . . , xκ, x�]t and right hand sides b = [b1, . . . , bκ, b�]t to obtain

min ctx

s.t.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

D1 F 1

D2 F 2

. . .
...

Dκ Fκ

A1 A2 · · · Aκ G

⎤

⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

...
xκ

x�

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≥

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1

b2

...
bκ

b�

⎤

⎥
⎥
⎥
⎥
⎥
⎦

x ∈ Z
n
+ × Q

q
+.

(4)



Learning When to Use a Decomposition 205

with sub-matrices of appropriate dimensions. Such a re-arrangement is called a
decomposition of (3) and finding it is called detection. Matrices Di are called
blocks, variables x� are linking variables and (A1 · · · Aκ G)x ≥ b� are linking con-
straints. Such forms are interesting because a Dantzig-Wolfe reformulation can
be applied, leading to a solution of the resulting MIP by branch-and-price. Its
characteristic is that the linear relaxations in each node of the search tree are
solved by column generation, an alternation between solving pricing problems,
i.e., integer programs over Dixi ≥ bi, and a linear program (the so-called master
problem) involving exponentially many variables and constraints systematically
derived from the linking constrains. See [4] for details (which are not necessary
for the following). The algorithmic burden is considerable but may pay off if the
pricing problems capture a well solvable sub-structure of the model (3). In such
a case we call the decomposition good. When we know some good decomposi-
tion of a MIP model we call the model structured, if we do not know a good
one the model is “non-structured.” Automatic detection of decompositions, DW
reformulation, and branch-and-price is implemented in the GCG solver [4].

2.2 Features Considered

We now give an idea of the feature map φ that turns a MIP, decomposition,
and time limit into a vector φ(P,D, τ) ∈ R

d that we give as input to supervised
learning classifiers. We define a large number of features (more than 100) to
catch as much information as possible, and then use a regularization approach
to avoid overfitting. We only sketch the main types, without being exhaustive.

Our first features are instance statistics, like the number of variables, con-
straints, and non-zeros, the proportion of binary, integer, and continuous vari-
ables, or of certain types of constraints, such as knapsack or set covering. We
collect decomposition based statistics like the number κ of blocks, or the propor-
tion of non-zeros or variable/constraint types per block. As the dimension d of
φ is fixed and κ varies across decompositions, we consider block statistics via
their average, variance, and quantiles. A small number of linking constraints and
variables is empirically considered good on “non-structured” MIPs [2].

Richer decomposition based features come from adjacencies, e.g., from the
bipartite graph with a vertex for each row i of A and each column j of A, and
an edge (i, j) iff aij �= 0. Blocks can be seen as clusters of vertices in this graph.
We can then build features inspired from graph clustering.

Many features can be obtained from the detectors themselves. The simplest
is the detector indicator feature 1t(D), which is a binary feature equal to one
iff decomposition D was found by detector t (“D is of type t”). Some detectors
use metrics to evaluate the quality of their decomposition, for instance, whether
blocks are “equal.” These metrics can occur in φ. Some features mentioned above
play different roles in different types of decompositions. Type specific behavior
can be captured by products of detector indicators 1t with other features.

Finally, as the detection time varies from one instance to another, an impor-
tant feature is the time remaining τ −τdec after detection. Functions of this time
feature can be used within products with other features.
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3 Preliminary Computational Results

3.1 Experimental Setup

As Dantzig-Wolfe decomposition leverages embedded structure in MIP instances,
we want to learn from a wide range of model structures. At the same time,
using a non-appropriate decomposition (i.e., assuming a “wrong” structure)
almost certainly leads to poor solver performance. It is therefore most impor-
tant to detect the “absence” of structure (or structure currently not exploitable
by GCG). We have therefore built a dataset of 300 “structured” (instances for
which an intuitive decomposition is known, e.g. from literature) and 100 “non-
structured” instances. We underline the fact that the information whether an
instance contains structure or not is not part of the input features. We considered
the following families of structured instances: vertex coloring (clr), set covering
(stcv), capacitated p-median (cpmp), survivable fixed telecommunication net-
work design (sdlb), cutting stock (ctst), generalized assignment (gap), network
design (ntlb), lot sizing (ltsz), bin packing (bp), resource allocation (rap), sta-
ble set (stbl), and capacitated vehicle routing (cvrp) problems. The instances
assumed “non-structured” are randomly chosen from MIPLIB 2010 [7]. GCG
detected decompositions for each instance, leading to a total of 1619 decomposi-
tions. We launched SCIP and GCG with a time limit of two hours on each. Table 1
provides the number of instances per family and their difficulty, for which we use
as proxy the solution status of SCIP after 2 h. All experiments were performed
on a i7-2600 3.4 GHz PC, 8 MB cache, and 16 GB RAM, running OpenSuSE
Linux 13.1. We used the binary classifiers of the python scikit-learn library
[11], SCIP in version 3.2.1 [1], and GCG in version 2.1.1 [4].

Table 1. Number of instances listed per problem class and solution status of SCIP

All clr stcv cpmp sdlb ctst gap ntlb ltsz bp rap stbl cvrp miplib

Instances 400 25 25 25 25 25 25 25 25 25 25 25 25 100

Opt. sol. 65.5% 19 3 18 10 25 23 25 25 6 12 22 6 68

Feas. sol. 31.5% 6 21 7 11 – 2 – – 19 12 3 19 26

No sol. 3.0% – 1 – 4 – – – – – 1 – – 6

3.2 Overall Computational Summary of Our Experiment

We have randomly split our dataset into a training set containing 3/5 of the
instances and a test set containing the remaining. Table 2 aggregates the overall
results of our experiments when using a k-nearest neighbors (KNN) classifier. We
report statistics for four solvers: the standard branch-and-cut MIP solver SCIP;
GCG that tries to detect a decomposition and perform a DW reformulation accord-
ingly; columns SL correspond to GCG with the learned classifiers (1) and (2) built
in (i.e., the proposal of this paper); and finally, columns OPT list the results we
would obtain if we always selected the best solver. The rows show, for the sets of
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all, structured, and non-structured instances, the number of instances that could
not be solved to optimality, the total time needed on the respective entire test set,
and the geometric mean of the CPU times per instance. As defined in (1) and (2)
the detection time is included in the timelimit for GCG, SL and OPT.

Table 2. Aggregated statistics on a test set of 131 instances, 99 structured and 32
non-structured. Overall GCG achieves a better performance than SCIP in 34 cases.

Instances All Structured Non-structured

Solver SCIP GCG SL OPT SCIP GCG SL OPT SCIP GCG SL OPT

No opt. sol. 52 66 44 39 39 37 31 26 13 29 14 13

CPU time (h) 111.3 142.6 93.1 85.7 83.5 82.2 65.9 58.5 27.8 56.8 29.2 27.2

Geo. mean (s) 127.1 370.4 78.6 67.8 73.4 146.9 39.2 32.2 672.9 5145.0 766.0 646.5

The OPT columns show that there is potential in applying a DW reformu-
lation on structured instances. However, we see that always using the current
default GCG as a standalone solver is not an option. It needs to be complemented
with an option to run SCIP in the case that a DW reformulation does not appear
to be promising. This is what we do with our supervised learning approach.
The resulting solver SL performs better than SCIP on structured instances with
only little performance deterioration on “non-structured” instances. This trend
should be confirmed on a larger test set. The performance of SL relies on the
quality of the decisions taken by classifiers (1) and (2), that we now explain
in detail.

3.3 Deciding Whether to Continue Running GCG or to Start SCIP

Table 3 shows the ability of classifier (1) to choose between SCIP and GCG given
the decompositions provided by GCG’s detectors and a time limit. The first row
lists the share of instances where GCG and SCIP are respectively the best options.
The 2 × 2 cells below give the confusion matrix, based on the prediction of the
respective classifiers on the left side (rows) and on the true classes on the top
(columns). The diagonal of each cell corresponds to cases where the classifier
has predicted the right answer. The top right corner of each cell corresponds to
false negatives (GCG is better, but we predict SCIP) and the bottom left to false
positives (SCIP is better but we predict GCG). As GCG may perform very poorly
when not a “right” structure is detected we try to keep the false positives low,
even if this implies accepting more false negatives and thus not exploiting the
full potential of GCG. The confidence threshold α in (1) was set to 0.5 here.

Even if the size of the test set is too small to arrive at final conclusions,
we identify some trends. The support vector machine with radial basis function
(RBF) classifier shows a highly risk-averse behaviour with predicting GCG only
in 7.6% of all cases. Only half of its predictions are correct, which is a poor
performance. KNN and random forrests (RF) classifiers are willing to take more
risk and predict that GCG is the best option in 20.6% to 29.0% of all instances.
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Table 3. Accuracy of solver selection, i.e., classifier (1)

All instances Structured Non-structured

SCIP GCG SCIP GCG SCIP GCG

Classifier Pred 74.0% 26.0% 68.7% 31.3% 90.6% 9.4%

RBF SCIP 73.3% 19.1% 66.7% 23.2% 93.8% 6.3%

Unbal. GCG 3.8% 3.8% 5.1% 5.1% 0.0% 0.0%

KNN SCIP 69.5% 9.9% 64.6% 11.1% 84.4% 6.3%

distance GCG 6.9% 13.7% 7.1% 17.2% 6.3% 3.1%

RF SCIP 63.4% 11.5% 55.6% 13.1% 87.5% 6.3%

Unbal. GCG 10.7% 14.5% 13.1% 18.2% 3.1% 3.1%

RF SCIP 60.3% 10.7% 50.5% 11.1% 90.6% 9.4%

Bal GCG 13.7% 15.3% 18.2% 20.2% 0.0% 0.0%

With a true predictions over all GCG predictions ratio of around 2/3, KNN shows
the best precision. This explains that our SL scheme with KNN catches roughly
2/3 of the improvement potential of OPT with respect to SCIP in Table 2.

3.4 Selecting a Best Decomposition in GCG

Table 4 shows the percentage of instances on which classifier (2) predicts the right
decomposition on the entire test set, on the subset of instances for which GCG
is selected by classifier (1), and on the subset of instances such that GCG on the
best decomposition actually outperforms SCIP. The classifier predicts the right
answer only on about half of the instances. However, in practice, this classifier
is called only if GCG has been selected by classifier (1). And on these instances,
the right answer is predicted on around 80% of the cases. This difference of
performance can be explained by the fact that there is no information on the
relative performance of GCG on instances where SCIP performs better than GCG on
all decompositions in the training dataset. A direction to include this information
and improve the performance is to use a one-versus-one approach, where binary
classifiers take two decompositions in input and predict which one is better,
instead of using our “one-versus-SCIP” approach.

Table 4. Accuracy of best decomposition selection, i.e., classifier (2)

Classifier All instances GCG predicted by (1) GCG better

RBF 42.7% 80.0% 76.7%

KNN 58.8% 88.9% 77.4%

RF unbalanced 51.1% 72.7% 76.5%

RF balanced 64.9% 71.1% 79.4%
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4 Discussion and Future Work

It is our understanding that DW reformulation will be successful in terms of
solver performance only on a small fraction of MIPs. It is therefore crucial to reli-
ably decide whether a reformulation will pay off on a given input, or not. Several
factors influence the success of the reformulation, among them the strength of
the relaxation, an acceptable computational burden of repeatedly solving many
subproblems, etc. An experienced modeler may have a sense for such factors, and
this work aims equipping the GCG solver with a sort of such a sense. Our prelim-
inary computational experience suggests that a supervised learning approach be
promising. There are three immediate next steps.

1. We are currently completely re-designing the detection loop in GCG, lead-
ing to many more potential decompositions, and thus a much richer training
set for our learning algorithms. 2. Detection can be very time consuming. One
should predict before detection if the decomposition detected will be worth being
used. This may save detection time in particular on “non-structured” instances
where GCG is currently unable to find a good decomposition. 3. The quality of
the features given as input to a machine learning classifier determines its perfor-
mance. A direction to improve feature quality is to use run time, i.e., a posteriori
information about a decomposition. One could run column generation on each
decomposition for a limited amount of time in order to collect solution time and
integrality gap of pricing problems, degeneracy of and dual bound provided by
the master problem, etc. Figure 2 illustrates such a “strong detection” solution
scheme. Reporting about this ongoing work is postponed to the full version of
this short paper and will be implemented in a near future release of GCG.

MIP

Dec?

Detection DEC

DW?
yes

timelimit Status

yes
Cont?

GCG

SCIP
no no

yes

no

Fig. 2. Three decisions taken along a “strong detection” solution scheme
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