
Chapter 1

A PRIMER IN COLUMN GENERATION

Jacques Desrosiers
Marco E. Lübbecke

Abstract We give a didactic introduction to the use of the column generation technique in
linear and in particular in integer programming. We touch on both, the relevant
basic theory and more advanced ideas which help in solving large scale practical
problems. Our discussion includes embedding Dantzig-Wolfe decomposition and
Lagrangian relaxation within a branch-and-bound framework, deriving natural
branching and cutting rules by means of a so-called compact formulation, and
understanding and influencing the behavior of the dual variables during column
generation. Most concepts are illustrated via a small example. We close with a
discussion of the classical cutting stock problem and some suggestions for further
reading.

1. Hands-On Experience
Let us start right away by solving a constrained shortest path problem. Con-

sider the network depicted in Figure 1.1. Besides a cost cij there is a resource
consumption tij attributed to each arc (i, j) ∈ A, say a traversal time. Our goal
is to find a shortest path from node 1 to node 6 such that the total traversal time
of the path does not exceed 14 time units.
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Figure 1.1. Time constrained shortest path problem, Ahuja et al., 1993, p. 599
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One way to state this particular network flow problem is as the integer pro-
gram (1.1)–(1.6). One unit of flow has to leave the source (1.2) and has to enter
the sink (1.4), while flow conservation (1.3) holds at all other nodes. The time
resource constraint appears as (1.5).

z? := min
∑

(i,j)∈A

cijxij (1.1)

subject to
∑

j:(1,j)∈A

x1j = 1 (1.2)

∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = 0 i = 2, 3, 4, 5 (1.3)

∑

i:(i,6)∈A

xi6 = 1 (1.4)

∑

(i,j)∈A

tijxij ≤ 14 (1.5)

xij = 0 or 1 (i, j) ∈ A (1.6)

An inspection shows that there are nine possible paths, three of which consume
too much time. The optimal integer solution is path 13246 of cost 13 with a
traversal time of 13. How would we find this out? First note that the resource
constraint (1.5) prevents us from solving our problem with a classical shortest
path algorithm. In fact, no polynomial time algorithm is likely to exist since
the resource constrained shortest path problem is NP-hard. However, since
the problem is almost a shortest path problem, we would like to exploit this
embedded well-studied structure algorithmically.

1.1 An Equivalent Reformulation: Arcs vs. Paths
If we ignore the complicating constraint (1.5), the easily tractable remainder

is X = {xij = 0 or 1 | (1.2)–(1.4)}. It is a well-known result in network
flow theory that an extreme point xp = (xpij) of the polytope defined by the
convex hull of X corresponds to a path p ∈ P in the network. This enables us
to express any arc flow as a convex combination of path flows:

xij =
∑

p∈P

xpijλp (i, j) ∈ A (1.7)

∑

p∈P

λp = 1 (1.8)

λp ≥ 0 p ∈ P. (1.9)
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If we substitute for x in (1.1) and (1.5) we obtain the so-called master problem:

z? = min
∑

p∈P

(
∑

(i,j)∈A

cijxpij)λp (1.10)

subject to
∑

p∈P

(
∑

(i,j)∈A

tijxpij)λp ≤ 14 (1.11)

∑

p∈P

λp = 1 (1.12)

λp ≥ 0 p ∈ P (1.13)
∑

p∈P

xpijλp = xij (i, j) ∈ A (1.14)

xij = 0 or 1 (i, j) ∈ A . (1.15)

Loosely speaking, the structural information X that we are looking for a path
is hidden in “p ∈ P .” The cost coefficient of λp is the cost of path p and its
coefficient in (1.11) is path p’s duration. Via (1.14) and (1.15) we explicitly
preserve the linking of variables (1.7) in the formulation, and we may recover a
solution x to our original problem (1.1)–(1.6) from a master problem’s solution.
Always remember that integrality must hold for the original x variables.

1.2 The Linear Relaxation of the Master Problem
One starts with solving the linear programming (LP) relaxation of the master

problem. If we relax (1.15), there is no longer a need to link the x and λ

variables, and we may drop (1.14) as well. There remains a problem with
nine path variables and two constraints. Associate with (1.11) and (1.12) dual
variables π1 and π0, respectively. For large networks, the cardinality of P
becomes prohibitive, and we cannot even explicitly state all the variables of the
master problem. The appealing idea of column generation is to work only with
a sufficiently meaningful subset of variables, forming the so-called restricted
master problem (RMP). More variables are added only when needed: like in
the simplex method we have to find in every iteration a promising variable to
enter the basis. In column generation an iteration consists (a) of optimizing the
restricted master problem in order to determine the current optimal objective
function value z̄ and dual multipliers π, and (b) of finding, if there still is one,
a variable λp with negative reduced cost

c̄p =
∑

(i,j)∈A

cijxpij − π1(
∑

(i,j)∈A

tijxpij) − π0 < 0. (1.16)

The implicit search for a minimum reduced cost variable amounts to optimizing
a subproblem, precisely in our case: a shortest path problem in the network of
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Figure 1.1 with a modified cost structure:

c̄? = min
(1.2)–(1.4), (1.6)

∑

(i,j)∈A

(cij − π1tij)xij − π0. (1.17)

Clearly, if c̄? ≥ 0 there is no improving variable and we are done with the linear
relaxation of the master problem. Otherwise, the variable found is added to the
RMP and we repeat.

In order to obtain integer solutions to our original problem, we have to embed
column generation within a branch-and-bound framework. We now give full
numerical details of the solution of our particular instance. We denote by BBn.i
iteration number i at node number n (n = 0 represents the root node). The
summary in Table 1.1 for the LP relaxation of the master problem also lists the
cost cp and duration tp of path p, respectively, and the solution in terms of the
value of the original variables x.

Table 1.1. BB0: The linear programming relaxation of the master problem

Iteration Master Solution z̄ π0 π1 c̄? p cp tp

BB0.1 y0 = 1 100.0 100.00 0.00 −97.0 1246 3 18
BB0.2 y0 = 0.22, λ1246 = 0.78 24.6 100.00 −5.39 −32.9 1356 24 8
BB0.3 λ1246 = 0.6, λ1356 = 0.4 11.4 40.80 −2.10 −4.8 13256 15 10
BB0.4 λ1246 = λ13256 = 0.5 9.0 30.00 −1.50 −2.5 1256 5 15
BB0.5 λ13256 = 0.2, λ1256 = 0.8 7.0 35.00 −2.00 0
Arc flows: x12 = 0.8, x13 = x32 = 0.2, x25 = x56 = 1

Since we have no feasible initial solution at iteration BB0.1, we adopt a big-
M approach and introduce an artificial variable y0 with a large cost, say 100, for
the convexity constraint. We do not have any path variables yet and the RMP
contains two constraints and the artificial variable. This problem is solved by
inspection: y0 = 1, z̄ = 100, and the dual variables are π0 = 100 and π1 = 0.
The subproblem (1.17) returns path 1246 at reduced cost c̄? = −97, cost 3 and
duration 18. In iteration BB0.2, the RMP contains two variables: y0 and λ1246.
An optimal solution with z̄ = 24.6 is y0 = 0.22 and λ1246 = 0.78, which is
still infeasible. The dual variables assume values π0 = 100 and π1 = −5.39.
Solving the subproblem gives the feasible path 1356 of reduced cost −32.9,
cost 24, and duration 8.

In total, four path variables are generated during the column generation
process. In iteration BB0.5, we use 0.2 times the feasible path 13256 and
0.8 times the infeasible path 1256. The optimal objective function value is 7,
with π0 = 35 and π1 = −2. The arc flow values provided at the bottom of
Table 1.1 are identical to those found when solving the LP relaxation of the
original problem.
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1.3 Branch-and-Bound: The Reformulation Repeats
Except for the integrality requirement (1.6) (or 1.15) all constraints of the

original (and of the master) problem are satisfied, and a subsequent branch-and-
bound process is used to compute an optimal integer solution. Even though it
cannot happen for our example problem, in general the generated set of columns
may not contain an integer feasible solution. To proceed, we have to start the
reformulation and column generation again in each node.

Let us first explore some “standard” ways of branching on fractional vari-
ables, e.g., branching on x12 = 0.8. For x12 = 0, the impact on the RMP is that
we have to remove path variables λ1246 and λ1256, that is, those paths which
contain arc (1, 2). In the subproblem, this arc is removed from the network.
When the RMP is re-optimized, the artificial variable assumes a positive value,
and we would have to generate new λ variables. On branch x12 = 1, arcs
(1, 3) and (3, 2) cannot be used. Generated paths which contain these arcs are
discarded from the RMP, and both arcs are removed from the subproblem.

There are also many strategies involving more than a single arc flow variable.
One is to branch on the sum of all flow variables which currently is 3.2. Since
the solution is a path, an integer number of arcs has to be used, in fact, at
least three and at most five in our example. Our freedom of making branching
decisions is a powerful tool when properly applied.

Alternatively, we branch on x13 + x32 = 0.4. On branch x13 + x32 = 0,
we simultaneously treat two flow variables; impacts on the RMP and the sub-
problem are similar to those described above. On branch x13 + x32 ≥ 1, this
constraint is first added to the original formulation. We exploit again the path
substructure X , go through the reformulation process via (1.7), and obtain a
new RMP to work with. Details of the search tree are summarized in Table 1.2.

At node BB1, we set x13 + x32 = 0. In iteration BB1.1, paths 1356 and
13256 are discarded from the RMP, and arcs (1, 3) and (3, 2) are removed from
the subproblem. The resulting RMP with y0 = 0.067 and λ1256 = 0.933 is
infeasible. The objective function assumes a value z̄ = 11.3, and π0 = 100 and
π1 = −6.33. Given these dual multipliers, no column with negative reduced
cost can be generated!

Here we face a drawback of the big-M approach. Path 12456 is feasible,
its duration is 14, but its cost of 14 is larger than the current objective function
value, computed as 0.067M + 0.933 × 5. The constant M = 100 is too small,
and we have to increase it, say to 1000. (A different phase I approach, that is,
minimizing the artificial variable y0, would have easily prevented this.) Re-
optimizing the RMP in iteration BB1.2 now results in z̄ = 71.3, y0 = 0.067,
λ1256 = 0.933, π0 = 1000, and π1 = −66.33. The subproblem returns path
12456 with a reduced cost of −57.3. In iteration BB1.3, the new RMP has
an integer solution λ12456 = 1, with z̄ = 14, an upper bound on the optimal
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Table 1.2. Details of the branch-and-bound decisions

Iteration Master Solution z̄ π0 π1 π2 c̄? p cp tp

BB1: BB0 and x13 + x32 = 0
BB1.1 y0 = 0.067, λ1256 = 0.933 11.3 100 −6.33 – 0
BB1.2 Big-M increased to 1000

y0 = 0.067, λ1256 = 0.933 71.3 1000 −66.33 – −57.3 12456 14 14
BB1.3 λ12456 = 1 14 1000 −70.43 – 0

BB2: BB0 and x13 + x32 ≥ 1
BB2.1 λ1246 = λ13256 = 0.5 9 15 −0.67 3.33 0
Arc flows: x12 = x13 = x24 = x25 = x32 = x46 = x56 = 0.5

BB3: BB2 and x12 = 0
BB3.1 λ13256 = 1 15 15 0 0 -2 13246 13 13
BB3.2 λ13246 = 1 13 13 0 0 0

BB4: BB2 and x12 = 1
BB4.1 y0 = 0.067, λ1256 = 0.933 111.3 100 −6.33 100 0
Infeasible arc flows

path cost. The dual multipliers are π0 = 1000 and π1 = −70.43, and no new
variable is generated.

At node BB2, we impose x13+x32 ≥ 1 to the original formulation, and again,
we reformulate these x variables in terms of the λ variables. The resulting new
constraint (with dual multiplier π2) in the RMP is

∑

p∈P (xp13 + xp32)λp ≥ 1.

From the value of (xp13 + xp32) we learn how often arcs (1, 3) and (3, 2) are
used in path p. The current problem at node BB2.1 is the following:

min 100y0 + 3λ1246 + 24λ1356 + 15λ13256 + 5λ1256

subject to: 18λ1246 + 8λ1356 + 10λ13256 + 15λ1256 ≤ 14 [π1]
λ1356 + 2λ13256 ≥ 1 [π2]

y0 + λ1246 + λ1356 + λ13256 + λ1256 = 1 [π0]
y0, λ1246, λ1356, λ13256, λ1256 ≥ 0

From solving this linear program we obtain an increase in the objective
function z̄ from 7 to 9 with variables λ1246 = λ13256 = 0.5, and dual multipliers
π0 = 15, π1 = −0.67, and π2 = 3.33. The new subproblem is given by

c̄? = min
(1.2)–(1.4), (1.6)

∑

(i,j)∈A

(cij − π1tij)xij − π0 − π2(x13 + x32). (1.18)

For these multipliers no path of negative reduced cost exists. The solution of
the flow variables is x12 = x13 = x24 = x25 = x32 = x46 = x56 = 0.5.

Next, we arbitrarily choose variable x12 = 0.5 to branch on. Two iterations
are needed when x12 is set to zero. In iteration BB3.1, path variables λ1246
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and λ1256 are discarded from the RMP and arc (1, 2) is removed from the
subproblem. The RMP is integer feasible with λ13256 = 1 at cost 15. Dual
multipliers are π0 = 15, π1 = 0, and π2 = 0. Path 13246 of reduced cost
−2, cost 13 and duration 13 is generated and used in the next iteration BB3.2.
Again the RMP is integer feasible with path variable λ13246 = 1 and a new best
integer solution at cost 13, with dual multipliers π0 = 15, π1 = 0, and π2 = 0
for which no path of negative reduced cost exists.

On the alternative branch x12 = 1 the RMP is optimal after a single iteration.
In iteration BB4.1, variable x13 can be set to zero and variables λ1356, λ13256,
and λ13246 are discarded from the current RMP. After the introduction of an
artificial variable y2 in the second row, the RMP is infeasible since y0 > 0 (as
can be seen also from the large objective function value z̄ = 111.3). Given the
dual multipliers, no columns of negative reduced cost can be generated, and
the RMP remains infeasible. The optimal solution (found at node BB3) is path
13246 of cost 13 with a duration of 13 as well.

2. Some Theoretical Background
In the previous example we already saw all the necessary building blocks

for a column generation based solution approach to integer programs: (1) an
original formulation to solve which acts as the control center to facilitate the
design of natural branching rules and cutting planes; (2) a master problem to
determine the currently optimal dual multipliers and to provide a lower bound
at each node of the branch-and-bound tree; (3) a pricing subproblem which
explicitly reflects an embedded structure we wish to exploit. In this section we
detail the underlying theory.

2.1 Column Generation
Let us call the following linear program the master problem (MP).

z?
MP := min

∑

j∈J

cjλj

subject to
∑

j∈J

ajλj ≥ b

λj ≥ 0, j ∈ J.

(1.19)

In each iteration of the simplex method we look for a non-basic variable to price
out and enter the basis. That is, given the non-negative vector π of dual variables
we wish to find a j ∈ J which minimizes c̄j := cj −π

taj . This explicit pricing
is a too costly operation when |J | is huge. Instead, we work with a reasonably
small subset J ′ ⊆ J of columns—the restricted master problem (RMP)—and
evaluate reduced costs only by implicit enumeration. Let λ and π assume
primal and dual optimal solutions of the current RMP, respectively. When



8

columns aj , j ∈ J , are given as elements of a set A, and the cost coefficient cj

can be computed from aj via a function c then the subproblem

c̄? := min
{

c(a) − π
ta | a ∈ A

}

(1.20)

performs the pricing. If c̄? ≥ 0, there is no negative c̄j , j ∈ J , and the solution
λ to the restricted master problem optimally solves the master problem as well.
Otherwise, we add to the RMP the column derived from the optimal subproblem
solution, and repeat with re-optimizing the RMP. The process is initialized with
an artificial, a heuristic, or a previous (“warm start”) solution. In what regards
convergence, note that each a ∈ A is generated at most once since no variable
in an optimal RMP has negative reduced cost. When dealing with some finite
set A (as is practically always true), the column generation algorithm is exact.
In addition, we can make use of bounds. Let z̄ denote the optimal objective
function value to the RMP. When an upper bound κ ≥

∑

j∈J λj holds for the
optimal solution of the master problem, we have not only an upper bound z̄ on
z?
MP in each iteration, but also a lower bound: we cannot reduce z̄ by more

than κ times the smallest reduced cost c̄?:

z̄ + κc̄? ≤ z?
MP ≤ z̄. (1.21)

Thus, we may verify the solution quality at any time. In the optimum of (1.19),
c̄? = 0 for the basic variables, and z̄ = z?

MP .

2.2 Dantzig-Wolfe Decomposition for Integer Programs
In many applications we are interested in optimizing over a discrete set X .

For X = {x ∈ Z
n
+ | Dx ≥ d} 6= ∅ we have the special case of integer linear

programming. Consider the following (original or compact) program:

z? := min ctx

subject to Ax ≥ b

x ∈ X.
(1.22)

Replacing X by conv(X) in (1.22) does not change z? which we assume to
be finite. The Minkowski and Weyl theorems (see Schrijver, 1986) enable us
to represent each x ∈ X as a convex combination of extreme points {xp}p∈P

plus a non-negative combination of extreme rays {xr}r∈R of conv(X), i.e.,

x =
∑

p∈P

xpλp +
∑

r∈R

xrλr,
∑

p∈P

λp = 1, λ ∈ R
|P |+|R|
+ (1.23)

where the index sets P and R are finite. Substituting for x in (1.22) and applying
the linear transformations cj = ctxj and aj = Axj , j ∈ P ∪ R we obtain an
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equivalent extensive formulation

z? := min
∑

p∈P

cpλp +
∑

r∈R

crλr (1.24)

subject to
∑

p∈P

apλp +
∑

r∈R

arλr ≥ b (1.25)

∑

p∈P

λp = 1 (1.26)

λ ≥ 0 (1.27)
∑

p∈P

xpλp +
∑

r∈R

xrλr = x (1.28)

x ∈ Z
n
+. (1.29)

Equation (1.26) is referred to as the convexity constraint. When we relax the
integrality of x, there is no need to link x and λ, and we may also relax (1.28).
The columns of this special master problem are defined by the extreme points
and extreme rays of conv(X). We solve the master by column generation to
get its optimal objective function value z?

MP . Given an optimal dual solution
π and π0 to the current RMP, where variable π0 corresponds to the convex-
ity constraint, the subproblem is to determine minj∈P{cj − π

taj − π0} and
minj∈R{cj − π

taj}. By our previous linear transformation and since π0 is a
constant, this results in

c̄? := min
{

(ct − π
tA)x − π0 | x ∈ X

}

. (1.30)

This subproblem is an integer linear program. When c̄? ≥ 0, there is no negative
reduced cost column, and the algorithm terminates. When c̄? < 0 and finite, an
optimal solution to (1.30) is an extreme point xp of conv(X), and we add the
column [ctxp, (Axp)

t, 1]t to the RMP. When c̄? = −∞ we identify an extreme
ray xr of conv(X) as a solution x ∈ X to (ct − π

tA)x = 0, and add the
column [ctxr, (Axr)

t, 0]t to the RMP.
From (1.21) together with the convexity constraint we obtain in each iteration

z̄ + c̄? ≤ z?
MP ≤ z̄, (1.31)

where z̄ = π
tb + π0 is again the optimal objective function value of the RMP.

Since z?
MP ≤ z?, z̄ + c̄? is also a lower bound on z?. In general, z̄ is not a valid

upper bound on z?, except if the current x variables are integer. The algorithm
is exact and finite as long as finiteness is ensured in optimizing the RMP.

The original formulation is the starting point to obtain integer solutions in the
x variables. Branching and cutting constraints are added there, the reformula-
tion as in Section 1.1.1 is re-applied, and the process continues with an updated
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master problem. It is important to see that it is our choice as to whether the
additional constraints remain in the master problem (as in the previous section)
or go into the subproblem (as we will see later).

Pricing Out the Original x Variables. Assume that in (1.22) we have a
linear subproblem X = {x ∈ R

n
+ | Dx ≥ d} 6= ∅. Column generation then

essentially solves the linear program

min ctx subject to Ax ≥ b, Dx ≥ d, x ≥ 0.

We obtain an optimal primal solutionx but only the dual multipliers π associated
with the constraint set Ax ≥ b. However, following an idea of Walker, 1969
we can also retrieve the dual variables σ associated with Dx ≥ d: it is the
vector obtained from solving the linear subproblem in the last iteration of the
column generation process. This full dual information allows for a pricing of
the original variables, and therefore a possible elimination of some of them.
Given an upper bound on the integer optimal objective function value of the
original problem, one can eliminate an x variable if its reduced cost is larger
than the optimality gap.

In the general case of a linear integer or even non-linear pricing subproblem,
the above procedure does not work. Poggi de Aragão and Uchoa, 2003 suggest
to directly use the extensive formulation: if we keep the coupling constraint
(1.28) in the master problem, it suffices to impose the constraint x ≥ ε, for a
small ε > 0, at the end of the process. The shadow prices of these constraints are
the reduced costs of the x vector of original variables. Note that there is no need
to apply the additional constraints to already positive variables. Computational
experiments underline the benefits of this procedure.

Block Diagonal Structure. For practical problems Dantzig-Wolfe decom-
position can typically exploit a block diagonal structure of D, i.e.,

D =











D1

D2

. . .
Dκ











d =











d1

d2

...
dκ.











(1.32)

Each Xk = {Dkxk ≥ dk, xk ≥ 0 and integer}, k ∈ K := {1, . . . , κ}, gives
rise to a representation as in (1.23). The decomposition yields κ subproblems,
each with its own convexity constraint and associated dual variable:

c̄k? := min{(ckT − π
tAk)xk − πk

0 | xk ∈ Xk}, k ∈ K. (1.33)

The superscript k to all entities should be interpreted in the canonical way. The
algorithm terminates when c̄k? ≥ 0, for all k ∈ K . Otherwise, extreme points
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and rays identified in (1.33) give rise to new columns to be added to the RMP. By
linear programming duality, z̄ = π

tb+
∑κ

k=1 πk
0 , and we obtain the following

bounds, see Lasdon, 1970:

z̄ +

κ
∑

k=1

c̄k? ≤ z?
MP ≤ z̄. (1.34)

2.3 Useful Working Knowledge
When problems get larger and computationally much more difficult than

our small constrained shortest path problem it is helpful to know more about
mechanisms, their consequences, and how to exploit them.

Infeasible paths. One may wonder why we kept infeasible paths in the
RMP during column generation. Here, as for the whole process, we cannot
overemphasize the fact that knowledge about the integer solution usually does
not help us much in solving the linear relaxation program. Figure 1.2 illustrates
the domain of the RMP (shaded) and the domain X of the subproblem. In part
(a), the optimal solution x, symbolized by the dot, is uniquely determined as a
convex combination of the three extreme points of the triangle X , even though
all of them are not feasible for the intersection of the master and subproblem.
In our example, in iteration BB0.5, any convex combination of feasible paths
which have been generated, namely 13256 and 1356, has cost larger than 7,
i.e., is suboptimal for the linear relaxation of the master problem. Infeasible
paths are removed only if needed during the search for an integer solution. In
Figure 1.2 (a), x can be integer and no branch-and-bound search is needed.

In part (b) there are many ways to express the optimal solution as a convex
combination of three extreme points. This is a partial explanation of the slow
convergence (tailing off ) of linear programming column generation.

(a)

x x

(b)

XX

master master

Figure 1.2. Schematic illustration of the domains of master and subproblem X
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Lower and Upper Bounds. Figure 1.3 gives the development of upper (z̄)
and lower (z̄ + c̄∗) bounds on z?

MP in the root node for our small constrained
shortest path example. The values for the lower bound are 3.0, −8.33, 6.6, 6.5,
and finally 7. While the upper bound decreases monotonically (as expected
when minimizing a linear program) there is no monotony for the lower bound.
Still, we can use these bounds to evaluate the quality of the current solution by
computing the optimality gap, and could stop the process when a preset quality
is reached. Is there any use of the bounds beyond that? Note first that UB = z̄

z̄ + c̄?
z̄

Iterations
54321

100

80

60

40

20

0

-20

Figure 1.3. Development of lower and upper bounds on zMP in BB0

is not an upper bound on z?. The currently (over all iterations) best lower bound
LB, however, is a lower bound on z?

MP and on z?. Even though there is no
direct use of LB or UB in the master problem we can impose the additional
constraints LB ≤ ctx ≤ UB to the subproblem structure X if the subproblem
consists of a single block. Be aware that this cutting modifies the subproblem
structure X , with all algorithmic consequences, that is, possible complications
for a combinatorial algorithm. In our constrained shortest path example, two
generated paths are feasible and provide upper bounds on the optimal integer
solution z∗. The best one is path 13256 of cost 15 and duration 10. Table 1.3
shows the multipliers σi, i = 1, . . . , 6 for the flow conservation constraints of
the path structure X at the last iteration of the column generation process.

Table 1.3. Multipliers σi for the flow conservation constraints on nodes i ∈ N

node i 1 2 3 4 5 6
σi 29 8 13 5 0 −6
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Therefore, given the optimal multiplier π1 = −2 for the resource constraint,
the reduced cost of an arc is given by c̄ij = cij − σi + σj − tijπ1, (i, j) ∈ A.
The reader can verify that c̄34 = 3 − 13 + 5 − (7)(−2) = 11. This is the
only reduced cost which exceeds the current optimality gap which equals to
15 − 7 = 8. Arc (3, 4) can be permanently discarded from the network and
paths 1346 and 13456 will never be generated.

Integrality Property. Solving the subproblem as an integer program usually
helps in closing part of the integrality gap of the master problem (Geoffrion,
1974), except when the subproblem possesses the integrality property. This
property means that solutions to the pricing problem are naturally integer when
it is solved as a linear program. This is the case for our shortest path subproblem
and this is why we obtained the value of the linear relaxation of the original
problem as the value of the linear relaxation of the master problem.

When looking for an integer solution to the original problem, we need to
impose new restrictions on (1.1)–(1.6). One way is to take advantage of a new
X structure. However, if the new subproblem is still solved as a linear program,
z?
MP remains 7. Only solving the new X structure as an integer program may

improve z?
MP .

Once we understand that we can modify the subproblem structure, we can
devise other decomposition strategies. One is to define the X structure as

∑

(i,j)∈A

tijxij ≤ 14, xij binary, (i, j) ∈ A (1.35)

so that the subproblem becomes a knapsack problem which does not possess the
integrality property. Unfortunately, in this example, z?

MP remains 7. However,
improvements can be obtained by imposing more and more constraints to the
subproblem. An example is to additionally enforce the selection of one arc
to leave the source (1.2) and another one to enter the sink (1.4), and impose
constraint 3 ≤

∑

(i,j)∈A xij ≤ 5 on the minimum and maximum number of
selected arcs. Richer subproblems, as long as they can be solved efficiently and
do not possess the integrality property, may help in closing the integrality gap.

It is also our decision how much branching and cutting information (ranging
from none to all) we put into the subproblem. This choice depends on where
the additional constraints are more easily accommodated in terms of algorithms
and computational tractability. Branching decisions imposed on the subproblem
can reduce its solution space and may turn out to facilitate a solution as integer
program. As an illustration we describe adding the lower bound cut in the root
node of our small example.

Imposing the Lower Bound Cut ctx ≥ 7. Assume that we have solved
the relaxed RMP in the root node and instead of branching, we impose the lower
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bound cut on the X structure, see Table 1.4. Note that this cut would not have
helped in the RMP since z̄ = ctx = 7 already holds. We start modifying the
RMP by removing variables λ1246 and λ1256 as their cost is smaller than 7. In
iteration BB0.6, for the re-optimized RMP λ13256 = 1 is optimal at cost 15; it
corresponds to a feasible path of duration 10. UB is updated to 15 and the dual
multipliers are π0 = 15 and π1 = 0. The X structure is modified by adding
constraint ctx ≥ 7. Path 13246 is generated with reduced cost −2, cost 13,
and duration 13. The new lower bound is 15 − 2 = 13. On the downside of
this significant improvement is the fact that we have destroyed the pure network
structure of the subproblem which we have to solve as an integer program now.
We may pass along with this circumstance if it pays back a better bound.

We re-optimize the RMP in iteration BB0.7 with the added variable λ13246.
This variable is optimal at value 1 with cost and duration equal to 13. Since this
variable corresponds to a feasible path, it induces a better upper bound which
is equal to the lower bound: optimality is proven. There is no need to solve the
subproblem.

Table 1.4. Lower bound cut added to the subproblem at the end of the root node

Iteration Master Solution z̄ π0 π1 c̄? p cp tp UB LB

BB0.6 λ13256 = 1 15 15 0 −2 13246 13 13 15 13
BB0.7 λ13246 = 1 13 13 0 13 13

Note that using the dynamically adapted lower bound cut right from the start
has an impact on the solution process. For example, the first generated path
1246 would be eliminated in iteration BB0.3 since the lower bound reaches 6.6,
and path 1256 is never generated. Additionally adding the upper bound cut has
a similar effect.

Acceleration Strategies. Often acceleration techniques are key elements for
the viability of the column generation approach. Without them, it would have
been almost impossible to obtain quality solutions to various applications, in a
reasonable amount of computation time. We sketch here only some strategies,
see e.g., Desaulniers et al., 2001 for much more.

The most widely used strategy is to return to the RMP many negative reduced
cost columns in each iteration. This generally decreases the number of column
generation iterations, and is particularly easy when the subproblem is solved by
dynamic programming. When the number of variables in the RMP becomes too
large, non-basic columns with current reduced cost exceeding a given threshold
may be removed. Accelerating the pricing algorithm itself usually yields most
significant speed-ups. Instead of investing in a most negative reduced cost
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column, any variable with negative reduced cost suffices. Often, such a column
can be obtained heuristically or from a pool of columns containing not yet
used columns from previous calls to the subproblem. In the case of many
subproblems, it is often beneficial to consider only few of them each time the
pricing problem is called. This is the well-known partial pricing. Finally, in
order to reduce the tailing off behavior of column generation, a heuristic rule
can be devised to prematurely stop the linear relaxation solution process, for
example, when the value of the objective function does not improve sufficiently
in a given number of iterations. In this case, the approximate LP solution does
not necessarily provide a lower bound but using the current dual multipliers, a
lower bound can still be computed.

With a careful use of these ideas one may confine oneself with a non-optimal
solution in favor of being able to solve much larger problems. This turns column
generation into optimization based heuristics which may be used for comparison
with other methods for a given class of problems.

3. A Dual Point of View
The dual program of the RMP is a relaxation of the dual of the master problem,

since constraints are omitted. Viewing column generation as row generation
in the dual, it is a special case of Kelley’s cutting plane method from 1961.
Recently, this dual perspective attracted considerable attention and we will see
that it provides us with several key insights. Observe that the generation process
as well as the stopping criteria are driven entirely by the dual multipliers.

3.1 Lagrangian Relaxation
A practically often used dual approach to solving (1.22) is Lagrangian relax-

ation, see Geoffrion, 1974. Penalizing the violation of Ax ≥ b via Lagrangian
multipliers π ≥ 0 in the objective function results in the Lagrangian subprob-
lem relative to constraint set Ax ≥ b

L(π) := min
x∈X

ctx− π
t(Ax − b). (1.36)

Since L(π) ≤ min{ctx − π
t(Ax − b) | Ax ≥ b,x ∈ X} ≤ z?, L(π) is

a lower bound on z?. The best such bound on z? is provided by solving the
Lagrangian dual problem

L := max
π≥0

L(π). (1.37)

Note that (1.37) is a problem in the dual space while (1.36) is a problem inx. The
Lagrangian function L(π),π ≥ 0 is the lower envelope of a family of functions
linear in π, and therefore is a concave function of π. It is piecewise linear with
breakpoints where the optimal solution of L(π) is not unique. In particular,
L(π) is not differentiable, but only sub-differentiable. The most popular, since
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very easy to implement, choice to obtain optimal or near optimal multipliers are
subgradient algorithms. However, let us describe an alternative computation
method, see Nemhauser and Wolsey, 1988. We know that replacing X by
conv(X) in (1.22) does not change z? and this will enable us to write (1.37) as
a linear program.

When X = ∅, which may happen during branch-and-bound, then L = ∞.
Otherwise, given some multipliers π, the Lagrangian bound is

L(π) =

{

−∞ if (ct − π
tA)xr < 0 for some r ∈ R

ctxp − π
t(Axp − b) for some p ∈ P otherwise.

Since we assumed z? to be finite, we avoid unboundedness by writing (1.37) as

max
π≥0

min
p∈P

ctxp − π
t(Axp − b) such that (ct − π

tA)xr ≥ 0,∀r ∈ R,

or as a linear program with many constraints

L = max π0

subject to π
t(Axp − b) + π0 ≤ ctxp, p ∈ P

π
tAxr ≤ ctxr, r ∈ R

π ≥ 0.

(1.38)

The dual of (1.38) reads as the linear relaxation of the master problem (1.24)–
(1.29):

L = min
∑

p∈P

ctxpλp +
∑

r∈R

ctxrλr

subject to
∑

p∈P

Axpλp +
∑

r∈R

Axrλr ≥ b
∑

p∈P

λp

∑

p∈P

λp = 1

λ ≥ 0.

(1.39)

Observe that for a given vector π of multipliers and a constant π0,

L(π) = (πtb + π0) + min
x∈conv(X)

(ct − π
tA)x− π0 = z̄ + c̄?,

that is, each time the RMP is solved during the Dantzig-Wolfe decomposition,
the computed lower bound in (1.31) is the same as the Lagrangian bound, that
is, for optimal x and π we have z? = ctx = L(π).

When we apply Dantzig-Wolfe decomposition to (1.22) we satisfy comple-
mentary slackness conditions, we have x ∈ conv(X), and we satisfy Ax ≥ b.
Therefore only the integrality of x remains to be checked. The situation is
different for subgradient algorithms. Given optimal multipliers π for (1.37),
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we can solve (1.36) which ensures that the solution, denoted xπ, is (integer)
feasible for X and π

t(Axπ − b) = 0. Still, we have to check whether the
relaxed constraints are satisfied, that is, Axπ ≥ b to prove optimality. If this
condition is violated, we have to recover optimality of a primal-dual pair (x,π)
by branch-and-bound. For many applications, one is able to slightly modify in-
feasible solutions obtained from the Lagrangian subproblems with only a small
degradation of the objective value. Of course these are only approximate so-
lutions to the original problem. We only remark that there are more advanced
(non-linear) alternatives to solve the Lagrangian dual like the bundle method
(Hiriart-Urruty and Lemaréchal, 1993) based on quadratic programming, and
the analytic center cutting plane method (Goffin and Vial, 1999), an interior
point solution approach. However, the performance of these methods is still to
be evaluated in the context of integer programming.

3.2 Dual Restriction / Primal Relaxation
Linear programming column generation remained “as is” for a long time.

Recently, the dual point of view prepared the ground for technical advances.

Structural Dual Information. Consider a master problem and its dual
and assume both are feasible and bounded. In some situations we may have
additional knowledge about an optimal dual solution which we may express as
additional valid inequalities F t

π ≤ f in the dual. To be more precise, we would
like to add inequalities which are satisfied by at least one optimal dual solution.
Such valid inequalities correspond to additional primal variables y ≥ 0 of cost
f that are not present in the original master problem. From the primal perspec-
tive, we therefore obtain a relaxation. Devising such dual-optimal inequalities
requires (but also exploits) a specific problem knowledge. This has been suc-
cessfully applied to the one-dimensional cutting stock problem, see Valério de
Carvalho, 2003 and Ben Amor et al., 2003.

Oscillation. It is an important observation that the dual variable values
do not develop smoothly but they very much oscillate during column genera-
tion. In the first iterations, the RMP contains too few columns to provide any
useful dual information, in turn resulting in non useful variables to be added.
Initially, often the penalty cost of artificial variables guide the values of dual
multipliers (Vanderbeck, 2005 calls this the heading-in effect). One observes
that the variables of an optimal master problem solution are generated in the
last iterations of the process when dual variables finally come close to their
respective optimal values. Understandably, dual oscillation has been identified
as a major efficiency issue. One way to control this behavior is to impose lower
and upper bounds, that is, we constrain the vector of dual variables to lie “in a
box” around its current value. As a result, the RMP is modified by adding slack
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and surplus variables in the corresponding constraints. After re-optimization of
the new RMP, if the new dual optimum is attained on the boundary of the box,
we have a direction towards which the box should be relocated. Otherwise, the
optimum is attained in the box’s interior, producing the global optimum. This
is the principle of the Boxstep method (Marsten, 1975; Marsten et al., 1975).

Stabilization. Stabilized column generation (see du Merle et al., 1999;
Ben Amor and Desrosiers, 2003) offers more flexibility for controlling the
duals. Again, the dual solution π is restricted to stay in a box, however, the
box may be left at a certain penalty cost. This penalty may be a piecewise
linear function. The size of the box and the penalty are updated dynamically
so as to make greatest use of the latest available information. With intent
to reduce the dual variables’ variation, select a small box containing the (in
the beginning estimated) current dual solution, and solve the modified master
problem. Componentwise, if the new dual solution lies in the box, reduce its
width and increase the penalty. Otherwise, enlarge the box and decrease the
penalty. This allows for fresh dual solutions when the estimate was bad. The
update could be performed in each iteration, or alternatively, each time a dual
solution of currently best quality is obtained.

3.3 Dual Aspects of our Shortest Path Example
Optimal Primal Solutions. Assume that we penalize the violation of
resource constraint (1.5) via the objective function with the single multiplier
π1 ≤ 0 which we determine using a subgradient method. Its optimal value
is π1 = −2, as we know from solving the primal master problem by column
generation. The aim now is to find an optimal integer solution x to our original
problem. From the Lagrangian subproblem with π1 we get L(−2) = 7 and
generate either the infeasible path 1256 of cost 5 and duration 15, or the feasible
path 13256 of cost 15 and duration 10. The important issue now, left out in
textbooks, is how to perform branch-and-bound in that context?

Assume that we generated path 1256. A possible strategy to start the branch-
and-bound search tree is to introduce cut x12 + x25 + x56 ≤ 2 in the original
formulation (1.1)–(1.6), and then either incorporate it in X or relax it (and
penalize its violation) in the objective function via a second multiplier. The first
alternative prevents the generation of path 1256 for any value of π1. However,
we need to re-compute its optimal value according to the modified X structure,
i.e., π?

1 = −1.5. In this small example, a simple way to get this value is to solve
the linear relaxation of the full master problem excluding the discarded path.
Solving the new subproblem results in an improved lower bound L(−1.5) = 9,
and the generated path 13256 of cost 15 and duration 10. This path is feasible
but suboptimal. In fact, this solution x is integer, satisfies the path constraints
but does not satisfy complementary slackness for the resource constraint. That
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is, π1(
∑

(i,j)∈A tijxij − 14) = −1.5(10 − 14) 6= 0. The second cut x13 +
x32 + x25 + x56 ≤ 3 in the X structure results in π?

1 = −2, an improved lower
bound of L(−2) = 11, and the generated path 1246 of cost 3 and duration 18.
This path is infeasible, and adding the third cut x12 + x24 + x46 ≤ 2 in the
subproblem X gives us the optimal solution, that is, π1 = 0, L(0) = 13 with
the generated path 13245 of cost 13 and duration 13.

Alternatively, we could have penalized the cuts via the objective function
which would not have destroyed the subproblem structure. We encourage the
reader to find the optimal solution this way, making use of any kind of branching
and cutting decisions that can be defined on the x variables.

A Box Method. It is worthwhile to point out that a good deal of the operations
research literature is about Lagrangian relaxation. We can steal ideas there about
how to decompose problems and use them in column generation algorithms (see
Guignard, 2004). In fact, the complementary availability of both, primal and
dual ideas, brings us in a strong position which e.g., motivates the following.
Given optimal multipliers π obtained by a subgradient algorithm, one can use
very small boxes around these in order to rapidly derive an optimal primal
solution x on which branching and cutting decisions are applied. The dual
information is incorporated in the primal RMP in the form of initial columns
together with the columns corresponding to the generated subgradients. This
gives us the opportunity to initiate column generation with a solution which
intuitively bears both, relevant primal and dual information.

Alternatively, we have applied a box method to solve the primal master
problem by column generation, c.f. Table 1.5. We impose the box constraint
−2.1 ≤ π1 ≤ −1.9. At start, the RMP contains the artificial variable y0 in the
convexity constraint, and surplus (s1 with cost coefficient 1.9) and slack (s2

with cost coefficient 2.1) variables in the resource constraint.

Table 1.5. A box method in the root node with −2.1 ≤ π1 ≤ −1.9

Iteration Master Solution z̄ π0 π1 c̄? p cp tp UB LB

BoxBB0.1 y0 = 1, s2 = 14 73.4 100.0 −1.9 −66.5 1256 5 15 – 6.9
BoxBB0.2 λ1256 = 1, s1 = 1 7.1 36.5 −2.1 −0.5 13256 15 10 7.1 6.6
BoxBB0.3 λ13256 = 0.2, λ1256 = 0.8 7.0 35.0 −2.0 0 7 7
Arc flows: x12 = 0.8, x13 = x32 = 0.2, x25 = x56 = 1

In the first iteration, denoted BoxBB0.1, the artificial variable y0 = 1 and
the slack variable s2 = 14 constitute a solution. The current dual multipliers
are π0 = 100 and π1 = −1.9. Path 1256 is generated (cost 5 and duration 15)
and the lower bound already reaches 6.9. In the second iteration, λ1256 = 1 and
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surplus s1 = 1 define an optimal solution to the RMP. This solution provides
an upper bound of 7.1 and dual multipliers are π0 = 36.5 and π1 = −2.1.
Experimentation reveals that a smaller box around π = −2 results in a smaller
optimality gap. The subproblem generates path 13256 (cost 15 and duration
10) and the lower bound decreases to 6.6. Solving the RMP in BoxBB0.3 gives
us an optimal solution of the linear relaxation of the master problem. This can
be verified in two ways: the previous lower bound values 6.9 and 6.6, rounded
up, equal the actual upper bound z̄ = 7; and the reduced cost of the subproblem
is zero. Hence, the solution process is completed in only three iterations! The
box constraint has to be relaxed when branch-and-bound starts but this does not
require any re-optimization iteration.

Geometric Interpretation. Let us draw the Lagrangian function L(π), for
π ≤ 0, for our numerical example, where π ≡ π1. Since the polytope X is
bounded, there are no extreme rays and L(π) can be written in terms of the
nine possible extreme points (paths). That is, L(π) = minp∈P cp +(14− tp)π,
where cp and tp are the cost and duration of path p, respectively. Table 1.6 lists
the lines (in general, hyperplanes) defined by p ∈ P , with an intercept of cp

and a slope of 14 − tp. We have plotted these lines in Figure 1.4.

Table 1.6. Hyperplanes (lines) defined by the extreme points of X , i.e., by the indicated paths

p 1246 1256 12456 13246 13256 132456 1346 13456 1356
line 3 − 4π 5 − π 14 13 + π 15 + 4π 24 + 5π 16 − 3π 27 + π 24 + 6π

Observe that for π given, the line of smallest cost defines the value of function
L(π). The Lagrangian function L(π) is therefore the lower envelope of all lines
and its topmost point corresponds to the valueL of the Lagrangian dual problem.

If one starts at π = 0, the largest possible value is L(0) = 3, on the line
defined by path 1246. At that point the slope is negative (the line is defined by
3−4π) so that the next multiplier should be found on the left to the current point.
In Dantzig-Wolfe decomposition, we found π(≡ π1) = −97/18 ≈ −5.4. This
result depends on big M : the exact value of the multiplier is (3 −M)/18. For
any large M , path 1356 is returned, and here, L(−97/18) = −25/3, a lesser
lower bound on L(π).

The next multiplier is located where the two previous lines intersect, that is,
where 3−4π = 24+6π for π = −2.1. L(−2.1) = 6.6 for path 13256 with an
improvement on the lower bound. In the next iteration, the optimal multiplier
value is at the intersection of the lines defined by paths 1246 and 13256, that
is, 3 − 4π = 15 + 4π for π = −1.5. For that value, the Lagrangian function
reaches 6.5 for path 1256. The final and optimal Lagrangian multiplier is at the
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Figure 1.4. Lagrangian function L(π)

intersection of the lines defined by paths 13256 and 1256, that is, 15+4π = 5−π
for π = −2 and therefore L(−2) = 7. We can now see why the lower bound
is not strictly increasing: the point associated with the Lagrangian multiplier
moves from left to right, and the value of the Lagrangian function is determined
by the lowest line which is hit.

The Lagrangian point of view also teaches us why two of our methods are so
successful: when we used the box method for solving the linear relaxation of the
master problem by requiring that π has to lie in the small interval [−2.1,−1.9]
around the optimal value π = −2, only two paths are sufficient to describe the
lower envelope of the Lagrangian function L(π). This explains the very fast
convergence of this stabilization approach.

Also, we previously added the cut ctx ≥ 7 in the subproblem, when we
were looking for an integer solution to our resource constrained shortest path
problem. In Figure 1.4 this corresponds to removing the two lines with an
intercept smaller than 7, that is, for paths 1246 and 1256. The maximum value
of function L(π) is now attained for π = 0 and L(0) = 13.
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4. On Finding a Good Formulation
Many vehicle routing and crew scheduling problems, but also many others,

possess a multicommodity flow problem as an underlying basic structure (see
Desaulniers et al., 1998). Interestingly, Ford and Fulkerson, 1958, suggested
to solve this “problem of some importance in applications” via a “specialized
computing scheme that takes advantage of the structure”: the birth of col-
umn generation which then inspired Dantzig and Wolfe, 1960 to generalize
the framework to a decomposition scheme for linear programs as presented in
Section 1.2.1. Ford and Fulkerson had no idea “whether the method is practica-
ble.” In fact, at that time, it was not. Not only because of the lack of powerful
computers but mainly because (only) linear programming was used to attack
integer programs: “That integers should result as the solution of the example
is, of course, fortuitous” (Gilmore and Gomory, 1961).

In this section we stress the importance (and the efforts) to find a “good”
formulation which is amenable to column generation. Our example is the
classical column generation application, see Ben Amor and Valério de Carvalho,
2005. Given a set of rolls of width L and integer demands ni for items of length
`i, i ∈ I the aim of the cutting stock problem is to find patterns to cut the rolls
to fulfill the demand while minimizing the number of used rolls. An item may
appear more than once in a cutting pattern and a cutting pattern may be used
more than once in a feasible solution.

4.1 Gilmore and Gomory (1961, 1963)
Let R be the set of all feasible cutting patterns. Let coefficient air denote how

often item i ∈ I is used in pattern r ∈ R. Feasibility of r is expressed by the
knapsack constraint

∑

i∈I air`i ≤ L. The classical formulation of Gilmore and
Gomory (1961, 1963) makes use of non-negative integer variables: λr reflects
how often pattern r is cut in the solution. We are first interested in solving
the linear relaxation of that formulation by column generation. Consider the
following primal and dual linear master problems PCS and DCS , respectively:

(PCS) : min
∑

r∈R λr
∑

r∈R airλr ≥ ni, i ∈ I
λr ≥ 0, r ∈ R

(DCS) : max
∑

i∈I niπi
∑

i∈I airπi ≤ 1, r ∈ R
πi ≥ 0, i ∈ I .

For i ∈ I , let πi denote the associated dual multiplier, and let xi count the
frequency item i is selected in a pattern. Negative reduced cost patterns are
generated by solving

min 1 −
∑

i∈I

πi xi ≡ max
∑

i∈I

πixi such that
∑

i∈I

xi`i ≤ L, xi ∈ Z+, i ∈ I.
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This pricing subproblem is a knapsack problem and the coefficients of the
generated columns are given by the value of variables xi, i ∈ I .

Gilmore and Gomory, 1961 showed that equality in the demand constraints
can be replaced by greater than or equal. Column generation is accelerated by
this transformation: dual variables πi, i ∈ I then assume only non-negative
values and it is easily shown by contradiction that these dual non-negativity
constraints are satisfied by all optimal solutions. Therefore they define a set of
(simple) dual-optimal inequalities.

Although PCS is known to provide a strong lower bound on the optimal
number of rolls, its solution can be fractional and one has to resort to branch-
and-bound. In the literature one finds several tailored branching strategies based
on decisions made on the λ variables, see Barnhart et al., 1998; Vanderbeck
and Wolsey, 1996. However, we have seen that branching rules with a potential
for exploiting more structural information can be devised when some compact
formulation is available.

4.2 Kantorovich (1939, 1960)
From a technical point of view, the proposal by Gilmore and Gomory is a

master problem and a pricing subproblem. For precisely this situation, Vil-
leneuve et al., 2003 show that an equivalent compact formulation exists under
the assumption that the sum of the variables of the master problem be bounded
by an integer κ and that we have the possibility to also bound the domain of the
subproblem. The variables and the domain of the subproblem are duplicated
κ times, and the resulting formulation has a block diagonal structure with κ
identical subproblems. Formally, when we start from Gilmore and Gomory’s
formulation, this yields the following formulation of the cutting stock problem.

Given the dual multipliers πi, i ∈ I , the pricing subproblem can alternatively
be written as

min (x0 −
∑

i∈I

πi xi)

subject to
∑

i∈I

`i xi ≤ L x0

x0 ∈ {0, 1}
xi ∈ Z+ i ∈ I ,

(1.40)

where x0 is a binary variable assuming value 1 if a roll is used and 0 otherwise.
When x0 is set to 1, (1.40) is equivalent to solving a knapsack problem while
if x0 = 0, then xi = 0 for all i ∈ I and this null solution corresponds to an
empty pattern, i.e., a roll that is not cut.

The constructive procedure to recover a compact formulation leads to the
definition of a specific subproblem for each roll. Let K := {1, . . . , κ} be a set
of rolls of width L such that

∑

r∈R λr ≤ κ for some feasible solution λ. Let
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xk = (xk
0 , (x

k
i )i∈I), k ∈ K , be duplicates of the x variables, that is, xk

0 is a
binary variable assuming value 1 if roll k is used and 0 otherwise, and xk

i , i ∈ I
is a non-negative integer variable counting how often item i is cut from roll k.
The compact formulation reads as follows:

min
∑

k∈K

xk
0

subject to
∑

k∈K

xk
i ≥ ni i ∈ I

∑

i∈I

`i xk
i ≤ L xk

0 k ∈ K

xk
0 ∈ {0, 1} k ∈ K

xk
i ∈ Z+ k ∈ K, i ∈ I,

(1.41)

which was proposed already by Kantorovich in 1939 (a translation of the Rus-
sian original report is Kantorovich, 1960). This formulation is known for the
weakness of its linear relaxation. The value of the objective function is equal
to

∑

i∈I `i/L. Nevertheless, a Dantzig-Wolfe decomposition with (1.40) as an
integer program pricing subproblem (in fact, κ identical subproblems, which
allows for further simplification), yields an extensive formulation the linear
programming relaxation of which is equivalent to that of PCS . However, the
variables of the compact formulation (1.41) are in a sense interchangeable,
since the paper rolls are indistinguishable. One speaks of problem symme-
try which may entail considerable difficulties in branch-and-bound because of
many similar and thus redundant subtrees in the search.

4.3 Valério de Carvalho (2002)
Fortunately, the existence of a compact formulation in the “reversed” Dantzig-

Wolfe decomposition process by Villeneuve et al., 2003 does not mean unique-
ness. There may exist alternative compact formulations that give rise to the same
linear relaxation of an extensive formulation, and we exploit this freedom of
choice.

Valério de Carvalho, 2002 suggests a very clever original network-based
formulation for the cutting stock problem. Define the acyclic network G =
(N,A) where N = {0, 1, . . . , L} is the set of nodes and the set of arcs is given
by A = {(u, v) ∈ N × N | v − u = `i,∀i ∈ I} ∪ {(u, v) | u ∈ N\{L}},
see also Ben Amor and Valério de Carvalho, 2005. Arcs link every pair of
consecutive nodes from 0 to L without covering any item. An item i ∈ I is
represented several times in the network by arcs of length v − u = `i. A path
from the source 0 to the sink L encodes a feasible cutting pattern.
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The proposed formulation of the cutting stock problem, which is pseudo-
polynomial in size, reads as

min z (1.42)

subject to
∑

(u,u+`i)∈A

xu,u+`i
≥ ni i ∈ I (1.43)

∑

(0,v)∈A

x0,v = z (1.44)

∑

(u,v)∈A

xuv −
∑

(v,u)∈A

xvu = 0 v ∈ {1, . . . , L − 1} (1.45)

∑

(u,L)∈A

xuL = z (1.46)

xuv ∈ Z+ (u, v) ∈ A . (1.47)

Keeping constraints (1.43) in the master problem, the subproblem is X =
{(x, z) satisfying (1.44)–(1.47)}. This set X represents flow conservation con-
straints with an unknown supply of z from the source and a matching demand
at the sink. Given dual multipliers πi, i ∈ I associated to the constraint (1.43),
the subproblem is

min
(1.44)−(1.47)

z −
∑

(u,u+`i)∈A

πi xu,u+`i
. (1.48)

Observe now that the solution (x, z) = (0, 0) is the unique extreme point of
X and that all other paths from the source to the sink are extreme rays. Such
an extreme ray r ∈ R is represented by a 0-1 flow which indicates whether
an arc is used or not. An application of Dantzig-Wolfe decomposition to this
formulation directly results in formulation PCS , the linear relaxation of the
extensive reformulation (this explains our choice of writing down PCS in terms
of extreme rays instead of extreme points). Formally, as the null vector is an
extreme point, we should add one variable λ0 associated to it in the master
problem and the convexity constraint with only this variable. However, this
empty pattern makes no difference in the optimal solution as its cost is 0.

The pricing subproblem (1.48) is a shortest path problem defined on a net-
work of pseudo-polynomial size, the solution of which is also that of a knapsack
problem. Still this subproblem suffers from some symmetries since the same
cutting pattern can be generated using various paths. Note that this subproblem
possesses the integrality property although the previously presented one (1.40)
does not. Both subproblems construct the same columns and PCS provides the
same lower bound on the value of an optimal integer solution. The point is that
the integrality property of a pricing subproblem, or the absence of this property,
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has to be evaluated relative to its own compact formulation. In the present case,
the linear relaxation of Kantorovich’s formulation provides a lower bound that
is weaker than that of PCS , although it can be improved by solving the integer
knapsack pricing subproblem (1.40). On the other hand, the linear relaxation
of Valério de Carvalho’s formulation already provides the same lower bound
as PCS . Using this original formulation, one can design branching and cut-
ting decisions on the arc flow variables of network G to get an optimal integer
solution.

Let us mention that there are many important applications which have a
natural formulation as set covering or set partitioning problems, without any
decomposition. In such models it is usually the master problem itself which has
to be solved in integers (Barnhart et al., 1998). Even though there is no explicit
original formulation used, customized branching rules can often be interpreted
as branching on variables of such a formulation.

5. Further Reading
Even though column generation originates from linear programming, its

strengths unfold in solving integer programming problems. The simultaneous
use of two concurrent formulations, compact and extensive, allows for a better
understanding of the problem at hand and stimulates our inventiveness in what
concerns for example branching rules.

We have said only little about implementation issues, but there would be
plenty to discuss. Every ingredient of the process deserves its own attention,
see e.g., Desaulniers et al., 2001, who collect a wealth of acceleration ideas and
share their experience. Clearly, an implementation benefits from customization
to a particular application. Still, it is our impression that an off-the-shelf column
generation software to solve large scale integer programs is in reach reasonably
soon; the necessary building blocks are already available. A crucial part is to
automatically detect how to “best” decompose a given original formulation,
see Vanderbeck, 2005. This means in particular exploiting the absence of
the subproblem’s integrality property, if applicable, since this may reduce the
integrality gap without negative consequences for the linear master program.
Let us also remark that instead of a convexification of the subproblem’s domain
X (when bounded), one can explicitly represent all integer points in X via a
discretization approach formulated by Vanderbeck, 2000. The decomposition
then leads to a master problem which itself has to be solved in integer variables.

In what regards new and important technical developments, in addition to the
stabilization of dual variables already mentioned, one can find a dynamic row
aggregation technique for set partitioning master problems in Elhallaoui et al.,
2003. This allows for a considerable reduction in size of the restricted master
problem in each iteration. An interesting approach is also proposed by Valério
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de Carvalho, 1999 where variables and rows of the original formulation are
dynamically generated from the solutions of the subproblem. This technique
exploits the fact that the subproblem possesses the integrality property. For
a presentation of this idea in the context of a multicommodity network flow
problem we refer to Mamer and McBride, 2000.

This primer is based on our recent survey (Lübbecke and Desrosiers, 2002),
and a much more detailed presentation and over one hundred references can be
found there. For those interested in the many column generation applications
in practice, the survey articles in this book will serve the reader as entry points
to the large body of literature. Last, but not least, we recommend the book by
Lasdon, 1970, also in its recent second edition, as an indispensable source for
alternative methods of decomposition.
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optimal inequalities for stabilized column generation. Les Cahiers du GERAD
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Valério de Carvalho, J.M. (1999). Exact solution of bin-packing problems using
column generaion and branch-and-bound. Annals of Operations Research,
86:629–659.
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