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Abstract The SCIP Optimization Suite provides a collection of software packages for
mathematical optimization centered around the constraint integer programming frame-
work SCIP. This paper discusses enhancements and extensions contained in version 6.0
of the SCIP Optimization Suite. Besides performance improvements of the MIP and
MINLP core achieved by new primal heuristics and a new selection criterion for cutting
planes, one focus of this release are decomposition algorithms. Both SCIP and the au-
tomatic decomposition solver GCG now include advanced functionality for performing
Benders’ decomposition in a generic framework. GCG’s detection loop for structured
matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has
been significantly revised for greater flexibility. Two SCIP extensions have been added
to solve the recursive circle packing problem by a problem-specific column generation
scheme and to demonstrate the use of the new Benders’ framework for stochastic capac-
itated facility location. Last, not least, the report presents updates and additions to the
other components and extensions of the SCIP Optimization Suite: the LP solver So-
Plex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree
solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.
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1 Introduction

The SCIP Optimization Suite compiles five complementary software packages designed
to model and solve a large variety of mathematical optimization problems:

− the modeling language Zimpl [35],

− the simplex-based linear programming solver SoPlex [68],

− the constraint integer programming solver SCIP [2], which can be used as a fast
standalone solver for mixed-integer linear and nonlinear programs and a flexible
branch-cut-and-price framework,

− the automatic decomposition solver GCG [21], and

− the UG framework for parallelization of branch-and-bound solvers [59].

All of the five tools can be downloaded in source code and are freely available for usage
in non-profit research. They are accompanied by several extensions for more problem-
specific classes such as the award-winning Steiner tree solver SCIP-Jack [23] or the
mixed-integer semidefinite programming solver SCIP-SDP [20]. This paper describes
the new features and enhanced algorithmic components contained in version 6.0 of the
SCIP Optimization Suite.

One emphasis of this release lies on new functionality for decomposition methods.
Via two newly added plugin types, SCIP now provides a generic framework to solve
structured constraint integer programs by Benders’ decomposition. This addition com-
plements the existing support for column generation and Dantzig-Wolfe decomposition
that has been available from the very beginning through pricer plugins in SCIP and the
generic column generation extension of the solver GCG. Furthermore, the new Benders’
methods in SCIP have been directly interfaced by GCG such that they can be used con-
veniently in combination with GCG’s automatic structure detection. This interaction
provides a good example of the added value that is created by developing and distribut-
ing the packages of the SCIP Optimization Suite in a coordinated manner. Another
example are the parallel versions of the SCIP extensions SCIP-SDP or SCIP-Jack
that have been available via the UG framework since SCIP 5.0.

Background From the beginning, SCIP was designed as a branch-cut-and-price frame-
work to solve a generalization of mixed-integer linear programming (MIP) called con-
straint integer programming (CIP). MIPs are optimization problems of the form

min c>x

s.t. Ax ≥ b,
`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(1)

defined by c ∈ Rn, A ∈ Rm×n, b ∈ Rm, `, u ∈ R̄n, and the index set of integer variables
I ⊆ N := {1, . . . , n}. The usage of R̄ := R ∪ {−∞,∞} allows for variables that are
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free or bounded only in one direction. The generalization to CIP was motivated by
the modeling flexibility of constraint programming and the algorithmic requirements of
integrating it with efficient solution techniques for mixed-integer programming. Specifi-
cally, CIPs are optimization problems with arbitrary constraints that statisfy following
property: If all integer variables are fixed, the remaining subproblem must form a lin-
ear or nonlinear program. This also accommodates for the problem class mixed-integer
nonlinear programming (MINLP), which next to MIP forms another focus of SCIP’s
development. MINLPs can be written in the form

min f(x)

s.t. gk(x) ≤ bk for all k ∈M,

`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(2)

where the functions f : Rn → R and gk : Rn → R, k ∈ M := {1, . . . ,m}, are possibly
nonconvex. Within SCIP, we assume that f and gk are specified explicitly in algebraic
form using base expressions that are known to SCIP. The core of SCIP coordinates
a central branch-cut-and-price algorithm. Advanced methods can be integrated via
predefined callback mechanisms. The solving process is described in more detail by
Achterberg [1] and, with focus on the MINLP extensions, by Vigerske and Gleixner [63].

By design, SCIP interacts closely with the other components of the SCIP Optimiza-
tion Suite. SCIP directly accepts optimization models formulated in Zimpl. Although
interfaces to several external LP solvers exist, see also Section 2.7, by default, SCIP
relies on SoPlex for solving linear programs (LPs) as a subroutine. As mentioned
above, GCG extends SCIP to automatically detect problem structure and generically
apply decomposition algorithms based on the Dantzig-Wolfe or the Benders’ decompo-
sition scheme. And finally, the default instantiations of the UG framework use SCIP
as a base solver in order to perform parallel branch-and-bound in parallel computing
environments with shared or distributed memory architectures.

New Developments and Structure of the Paper All five packages of the SCIP Opti-
mization Suite 6.0 provide extended functionality. Updates to SCIP are presented in
Section 2. The most significant additions and improvements are

− a major extension of the framework’s functionality by two new plugin types for per-
forming Benders’ decomposition, including an advanced out-of-the-box implementa-
tion (Section 2.1),

− two new diving heuristics that interact with conflict information (Sections 2.3.1
and 2.3.2),

− a new aggressive multi-level branching rule (Section 2.4),

− a new measure for selecting cutting planes that considers the distance to the incum-
bent solution (Section 2.5.2), and

− refined timing options for symmetry detection with orbital fixing (Section 2.6).

An overview of the performance improvements for standalone MIP and MINLP is given
in Section 2.2. Section 3 describes the updates in the LP solver SoPlex 4.0, which
contain inter alia a new aggregation presolver for improved standalone performance.

In addition to the new core features, SCIP 6.0 comes with a new example imple-
mentation for stochastic capacitated facility location, which makes use of the Benders’
decomposition framework (Section 4.2). The newly added application Ringpacking
implements an advanced column generation scheme based on nonlinear pricing prob-
lems for the recursive circle packing problem (Section 4.1). Version 1.3 of the Steiner
tree solver SCIP-Jack delivers significant performance improvements for the classical
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Steiner tree problem in graphs, the maximum-weight connected subgraph problem, and
the prize-collecting Steiner tree problem (Section 4.3).

Section 5 presents version 3.0 of the generic column generation solver GCG, which
features a long list of enhancements, most notably

− a full redesign of the automatic structure detection scheme, which now orchestrates
multiple detection heuristics dynamically (Section 5.1),

− a restructured pricing scheme providing higher flexibility, in particular regarding
heuristic pricers (Section 5.3),

− an interface to SCIP’s new Benders’ decomposition functionality, turning GCG into
a generic Benders’ decomposition framework (Section 5.2), and

− many improvements regarding usability (Section 5.4) and technical details of the
implementation (Section 5.5).

Updates of the parallelization framework UG are presented in Section 6. UG 0.8.5
comes with a new communication library for shared-memory parallelization based on
C++11 threads, hence improving its portability to non-Unix platforms. Furthermore,
users can now specify customized settings to be used during the racing ramp-up phase.
This feature has also been used for the parallel version of the mixed-integer semidefi-
nite programming solver SCIP-SDP [20] in order to apply a combination of nonlinear
branch-and-bound and an LP-based cutting plane approach.

Finally, note that the modeling language Zimpl in its latest version 3.3.6 is now able
to handle sets with more than 2 billion elements due to enhanced data structures.

2 Advances in SCIP

2.1 A Generic Framework for Benders’ Decomposition

Benders’ decomposition [7] is a popular mathematical programming technique applied
to solve large-scale optimization problems. Most commonly, Benders’ decomposition is
employed to exploit problems with a constraint matrix exhibiting a bordered block diag-
onal form. This structure is typically observed in stochastic programs and mixed-integer
programs that model applications with interconnected resources, such as supply chain
management. Problems that are particularly amenable to the application of Benders’
decomposition have the form:

min c>x+ d>y (3)

s.t. Ax ≥ b, (4)

Bx+Dy ≥ g, (5)

x ∈ Zp+ ×R
n−p
+ , (6)

y ∈ Zq+ ×R
m−q
+ . (7)

The variables x and y are described as the first and second stage variables, respectively.
Similarly, the constraints (4)–(5) are the first and second stage constraints, respectively.
In many applications, it is possible that the constraint matrix D can be further decom-
posed into a number of disjoint blocks. In such cases, the problem is described as having
a bordered block diagonal structure.

Benders’ decomposition was originally proposed by Benders [7] as an approach to
solve structured problems with a second stage that consists only of continuous variables,
i.e., q = 0. Since its first development, Benders’ decomposition has been extended such
that it can be applied to problems where q > 0 by employing methods such as the integer
cuts proposed by Laporte and Louveaux [37] and Carøe and Tind [12] or Logic-based
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Benders’ decomposition, see Hooker and Ottosson [29]. In the following, the traditional
application of Benders’ decomposition will be described. However, the Benders’ decom-
position framework of SCIP 6.0 provides the capabilities to solve problems with discrete
second stage variables.

The application of Benders’ decomposition results in the separation of the first and
second stage variables and constraints by forming a master problem and subproblem.
The subproblem takes a master problem solution x̄ as input, forming a problem in
the y variable space. For a given solution x̄, the Benders’ decomposition subproblem is
formulated as

z(x̄) = min d>y (8)

s.t. Dy ≥ g −Bx̄, (9)

y ∈ Rm+ . (10)

The dual solutions to (8)–(10) are used to generate classical Benders’ optimality and
feasibility cuts. An optimal solution to (8)–(10) yields an optimal dual solution u that is
used to generate an optimality cut of the form ϕ ≥ u>(g−Bx), where ϕ is an auxiliary
variable added to the master problem as an underestimator of the subproblem optimal
objective function value. Similarly, an infeasible instance of (8)–(10), corresponding to
an unbounded dual problem, produces a dual ray v that is used to generate a feasibility
cut of the form 0 ≥ v>(g − Bx). The optimality cut eliminates a suboptimal master
problem solution and the feasibility cut eliminates an infeasible master problem solution,
corresponding to x̄.

The master problem is formed by the first stage variables and constraints and the
cuts generated from solutions to the subproblem. The sets of dual extreme points and
rays from (8)–(10) are denoted by P and R, respectively. Substituting the second stage
constraints from the original problem with all optimality and feasibility cuts produces a
master problem of the form

min c>x+ ϕ (11)

s.t. Ax ≥ b, (12)

ϕ ≥ u>(g −Bx) for all u ∈ P, (13)

0 ≥ v>(g −Bx) for all v ∈ R, (14)

x ∈ Zp+ ×R
n−p
+ , (15)

ϕ ∈ R. (16)

Since the sets P and R are exponential in the size of the input, solving the formulation
(11)–(16) containing all optimality and feasibility cuts is computationally impractical.
As such, (11)–(16) is relaxed by using subsets P̄ ⊆ P and R̄ ⊆ R, which are both
initially empty. The subproblem is then iteratively solved with candidate master prob-
lem solutions to generate cuts to append to P̄ and R̄, and progressively tighten the
feasible region. A sketch of the Benders’ decomposition solution algorithm is given in
Algorithm 1.

There are two methods of implementing Benders’ decomposition. The first is to solve
the master problem to optimality before evaluating the resulting solution by solving
the subproblems and subsequently generating cuts. This algorithm is described as a
row generation approach, and is described in Algorithm 1. The second method is to
employ Benders’ decomposition within a branch-and-cut algorithm. The branch-and-
cut approach to Benders’ decomposition, which is termed branch-and-check [62], only
evaluates solutions by solving the subproblems at nodes where the LP solution is integer
feasible. This second approach allows for the Benders’ decomposition algorithm to be
more integrated with a CIP solver.
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Algorithm 1: Traditional Benders’ Decomposition Algorithm

1 UB←∞, LB← −∞, P̄ ← ∅, R̄ ← ∅;
2 while UB− LB > ε do
3 solve (11)–(16), set (x̂, ϕ̂) to the solution of MP;

4 LB← c>x̂+ ϕ̂;

5 UB← c>x̂;
6 solve (8)–(10) with x̂ as input;
7 if (8)–(10) is infeasible then
8 add unbounded dual ray v of (8)–(10) to R̄;
9 UB←∞;

10 else
11 UB← UB + z(x̂);
12 if z(x̂) > ϕ̂ then
13 add optimal dual solution u of (8)–(10) to P̄;

The possibility to implement the branch-and-check approach to Benders’ decompo-
sition has existed within SCIP since its inception. This is due to the integration of
constraint programming and integer programming along with the plugin design of the
solver. Employing the branch-and-check algorithm using SCIP previously involved the
implementation of a constraint handler that managed the solving of the Benders’ de-
composition subproblems to evaluate candidate solutions from the LP or relaxations
and potential incumbent solutions. While previously possible, implementing Benders’
decomposition within SCIP still involved an understanding of problem-specific details,
especially for the implementation of the Benders’ cut generation methods.

For SCIP 6.0, a Benders’ decomposition framework has been developed to elim-
inate much of the implementation effort for the user when employing the algorithm.
The framework includes constraint handlers to execute the subproblem solving and cut
generation methods at the appropriate points during the branch-and-check algorithm.
Further, default subproblem solving and cut generation methods have been provided to
simplify the use of the Benders’ decomposition algorithm. While the developed frame-
work simplifies the use of the Benders’ decomposition algorithm, it still provides the
flexibility for the user to develop a custom implementation. In its simplest invocation,
the user can employ the Benders’ decomposition algorithm to solve a problem by provid-
ing an instance in the SMPS format [10]. In its most complex use, within the Benders’
decomposition framework a user can implement custom subproblem solving and cut gen-
eration methods. The details regarding the implementation and features of the Benders’
decomposition framework are provided in the following sections.

2.1.1 Usage

There are five different ways in which the Benders’ decomposition framework can be
used within SCIP. These range from complete automation through to the most flexible
approach.

Using GCG: Automatic Decomposition The most automated method of using the Ben-
ders’ decomposition framework is provided in GCG. A Benders’ decomposition plugin
has been added to GCG and the relaxator has been extended with an additional mode,
allowing the user to solve an instance using Benders’ decomposition. The structure de-
tection methods of GCG are used to identify the variables and constraints that form the
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master and subproblems. The subproblems are passed to the Benders’ decomposition
plugin (benders gcg), so that they are registered with the framework.

When the Benders’ decomposition mode is selected, Benders’ decomposition is ap-
plied to solve all problems provided to GCG—regardless of the problem type. If the
appropriate cut generation methods are not available, then the necessary subproblems
are merged into the master problem to ensure the instance can be solved. The merg-
ing of subproblems is also used if numerical troubles are encountered while solving the
master problem.

Providing an Instance in SMPS Format SCIP 6.0 has been extended with a collection
of readers for the SMPS instance format [10]. The SMPS instance format represents
stochastic optimization problems and consists of three file types: a core file (cor), a stage
file (tim), and a stochastic information file (sto). Given an instance in the SMPS format,
the three files can be provided to SCIP in the previously stated order. Additionally, an
smps reader has been added that takes a single file containing the paths and filenames
of the cor, tim, and sto files, and reads them in the appropriate order.

Providing an instance in SMPS format to SCIP will build the monolithic deter-
ministic equivalent of the stochastic problem by default. Alternatively, the parameter
reading/sto/usebenders can be set to TRUE to employ Benders’ decomposition to solve
the input stochastic program.

Using the Default Benders’ Decomposition Plugin The Benders’ decomposition plugin
benders default is included in SCIP 6.0 as a default plugin. To invoke the default
Benders’ decomposition plugin, the user creates the SCIP instances for the master prob-
lem and the subproblems. The subproblems must contain a copy of the variables from
the master problem that will be fixed in the second stage constraints. Most impor-
tantly, the names of the master problem variables must be identical in the master and
subproblems, since currently a string matching is used to establish the mapping inter-
nally. Calling the function SCIPcreateBendersDefault() with the master problem,
an array of subproblems and the number of subproblems will activate the default Ben-
ders’ decomposition implementation. In order to execute the Benders’ decomposition
subproblem solving methods, cons benders must be activated by setting the parameter
constraints/benders/active to TRUE. Additionally, cons benderslp can be activated
to employ the two-phase algorithm described below in Section 2.1.4.

Implementing a Custom Benders’ Decomposition Plugin A custom Benders’ decompo-
sition plugin can be implemented by the user to achieve the most flexibility with the
framework. Even when implementing a custom Benders’ decomposition plugin there are
different levels of flexibility. The fundamental callbacks for a Benders’ decomposition
plugin are the subproblem creation and the variable mapping functions. The subproblem
creation method is required to register each subproblem with the Benders’ decomposition
framework. This is achieved by calling SCIPcreateBendersSubproblem(). The variable
mapping function is an interface function providing a mapping between the master and
subproblem variables. This function takes a variable and an index for the subproblem
from which the mapped variable is desired (−1 for the master problem). This function
is used within the subproblem setup function and the cut generation methods.

Further flexibility is afforded through the subproblem solving and the pre- and post-
subproblem callback functions.

Using Benders’ Decomposition through PySCIPOpt Finally, also the Python interface
PySCIPOpt has been extended to include a set of interface functions to the Benders’
decomposition framework. The example flp-benders.py has been included to demon-
strate how to apply the default Benders’ decomposition implementation. Additionally,
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the set of available plugins in PySCIPOpt has been extended to include the Benders’
decomposition plugin type. This gives the user the flexibility of implementing a custom
Benders’ decomposition plugin using using Python instead of the C API.

2.1.2 Implementation

The Benders’ decomposition framework available within SCIP is designed to provide
a flexible platform for using and implementing the Benders’ decomposition algorithm.
Traditionally, the fundamental components of solving the subproblems and generating
Benders’ cuts required a problem-specific implementation by the user. The framework
provided within SCIP 6.0 aims to reduce the amount of effort required by the user when
employing Benders’ decomposition.

SCIP has been extended with two new plugin types that provide the functionality
for executing the above two critical algorithmic stages. The first plugin type is a Ben-
ders’ decomposition plugin that provides callback functions to allow the user to interact
with the subproblem solving loop and cut generation. The fundamental callbacks for a
Benders’ decomposition plugin are

− the subproblem creation callback, which is used to register the subproblems with the
Benders’ decomposition framework, and

− a mapping function between the master and subproblem variables, which is called
when setting up subproblems with respect to candidate master solutions and gener-
ating Benders’ cuts.

If no other callbacks are implemented, then the Benders’ decomposition framework will
automatically execute the candidate solution evaluation and cut generation methods.
Other callbacks are provided to allow further customization of the Benders’ decompo-
sition solving methods. Details of these additional callbacks can be found in the online
documentation. This release includes one Benders’ decomposition plugin within SCIP
(benders default) and one plugin within GCG (benders gcg).

The second plugin type added to SCIP is the Benders’ decomposition cut plugin
This plugin includes an execution method that is called after each subproblem is solved.
The solution of the corresponding subproblem can then be used to generate a constraint
or cut for addition to the master problem. The Benders’ decomposition framework has
been designed to allow subproblems that are general CIPs. As such, it must be stated
within the Benders’ decomposition cut plugin whether the implemented cut generation
method is suitable for convex subproblems (and convex CIP relaxations) or general
CIPs. The Benders’ decomposition cut plugins available in SCIP 6.0 provide methods
to construct classical optimality (benderscut opt) and feasibility (benderscut feas)
cuts, the integer cuts proposed by Laporte and Louveaux [37] (benderscut int), and no-
good cuts (benderscut nogood). The Benders’ decomposition cut generation methods
currently provided in SCIP 6.0 support problems with continuous variables in the first
and second stages, mixed-integer variables in the first stage and continuous variables in
the second stage, and binary variables in the first stage and mixed-integer variables in
the second stage.

Finally, the interaction between the master problem and the Benders’ decomposition
framework is provided by two constraint handlers, cons benderslp and cons benders.
Both constraint handlers are used to pass LP, relaxation, pseudo, or candidate solutions
to the Benders’ decomposition subproblems for evaluation. The first constraint handler,
cons benderslp, is included to provide the user with the option to employ the two-
phase algorithm [45]. This is a commonly used algorithm for Benders’ decomposition
that tries to improve the convergence of Benders’ decomposition by first generating cuts
for convex relaxations of the master problem. Once the convex relaxation of the master
problem has been solved, then cuts are generated from the candidate integer solutions.
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Within the branch-and-check approach, the two-phase algorithm is achieved by setting
the enforcement priority of the cons benderslp constraint handler greater than that
of the integer constraint handler. Thus when this constraint handler is active, all frac-
tional LP, relaxation, and pseudo solutions are evaluated by the Benders’ decomposition
framework.

By default, cons benderslp is only active at the root node; however, it is possible
to use this constraint handler to evaluate fractional solutions at greater depths in the
branch-and-bound tree. The second constraint handler, cons benders, is the most
important constraint handler for the Benders’ decomposition framework and it must be
active for an exact solution approach. This constraint handler has a lower enforcement
and check priority than the integer constraint handler so that it is only called to evaluate
potential incumbent solutions.

2.1.3 Large Neighborhood Benders’ Search

The Benders’ decomposition framework includes an enhancement technique that, to
the best of the authors knowledge, is only available within SCIP. The large neighbor-
hood Benders’ search [41] aims to produce higher quality solutions from large neigh-
borhood search heuristics when employed within the Benders’ decomposition algorithm.
The development of the large neighborhood Benders’ search has been motivated by the
enhancements achieved through the integration of Benders’ decomposition with Local
Branching [56] and Proximity search [11].

Traditionally, when Benders’ decomposition is used to solve a problem, the large
neighborhood search heuristics of a CIP solver are only applied to the master without
any consideration of the constraints transferred to the subproblems. As such, the so-
lutions found by the large neighborhood search heuristics are potentially suboptimal,
or even infeasible, for the original problem. It is only at the completion of the large
neighborhood search heuristics that the candidate solution is evaluated by solving the
Benders’ decomposition subproblems. At this point, there is no recourse to rerun the
heuristic if the proposed solution is suboptimal or infeasible.

The large neighborhood Benders’ search attempts to address this issue of poten-
tially suboptimal, or infeasible, solutions being found by the large neighborhood search
heuristics. This is achieved by employing Benders’ decomposition to solve the auxiliary
problems of large neighborhood search heuristics. Within SCIP, the auxiliary problem
is created by copying the master problem and applying restrictions to the feasible re-
gion. Since all solutions of the auxiliary problem are feasible for the master problem, it
is possible to evaluate every potential incumbent by solving the Benders’ decomposition
subproblems. Evaluating the potential incumbent solutions during the execution of the
large neighborhood search heuristics ensures that only solutions that improve the bound
of the original problem are accepted.

2.1.4 Additional Features

Convex and CIP Solving Functions Benders’ decomposition was originally proposed
to solve two-stage problems with continuous second-stage variables [7]. However, it is
possible to employ Benders’ decomposition to solve problems with general CIPs as second
stage problems. In the latter case, it is common to generate Benders’ cuts from convex
relaxations of CIP subproblems to improve the convergence of the algorithm—this is
part of the two-phase algorithm described in Section 2.1.2. To permit the generation of
Benders’ decomposition cuts from convex relaxations of general CIP subproblems within
the Benders’ decomposition framework, two subproblem solving callbacks are provided
within the Benders’ decomposition plugins.
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The subproblem solving callbacks are executed during two different steps in the
candidate solution evaluation process. The first step solves the convex subproblems and
the convex relaxations of subproblems. If no cuts are generated from these subproblems,
then the second step solves the CIP subproblems, if any exist. If the default Benders’
decomposition plugin is used, then the solving of the convex and CIP subproblems is
handled internally. If the user implements a custom Benders’ decomposition plugin and
desires control over the subproblem solving, then the two subproblem solving functions
are provided to enable the generation of cuts from convex subproblems and convex
relaxations of CIP subproblems.

Pre- and Post-Subproblem Solving Callbacks Additional flexibility in custom Benders’
decomposition plugins is provided by the pre- and post-subproblem solving callbacks.
The pre-subproblem solving callback allows the user to execute any checks or fast evalua-
tions of the candidate solutions prior to the subproblems being solved. This callback can
also be used to execute enhancement techniques that involve using different candidate
solutions, such as the Magnanti-Wong method [40].

The post-subproblem solving callback is executed after the subproblems are solved
and any required cuts are generated and added to the master problem, but before the
subproblems are freed. This callback allows the user to perform any actions that require
the solution to the subproblems. An example is building a candidate solution for the
original problem, which is what this callback is used for in benders gcg. Also, since
this callback is executed at the end of the subproblem solving process, any additional
clean-up steps can be executed prior to the subproblems being freed.

Subproblem Merging A feature of the Benders’ decomposition framework in SCIP that
is an improvement over other available general frameworks is the ability to merge the
subproblems into the master problem. The merging of subproblems can be required if
there are infeasibilities, or suboptimalities, that can not be resolved by the generation of
cuts. This could be due to numerical troubles or the unavailability of appropriate cuts
for the given problem.

At the end of the subproblem solving process, a list of subproblems that are can-
didates for merging is collated. This list is partitioned into two parts: priority and
normal candidates. The priority candidates are those that must be merged to allow
SCIP to continue solving the instance. An example of a priority merge candidate is a
subproblem s that fails to generate a cut due to numerical troubles and it is the only
subproblem that is not optimal in the current iteration. In this case, since no cut is
generated for any other subproblem, it is not possible to eliminate the current master
problem solution causing the suboptimality in subproblem s. An example of a normal
merge candidate is where the appropriate cut generation methods are not available for
the subproblem type, but cuts have been generated for other subproblems.

The merging of subproblems can be performed by calling the API function
SCIPmergeBendersSubproblemIntoMaster(). The merging process involves transfer-
ring all variables and constraints from the selected subproblem to the master problem.
If it is not possible to resolve infeasibilities or suboptimalities due to the lack of appro-
priate cut generation methods, then it is required to merge at least one subproblem. The
transferring of all subproblem variables and constraints to the master problem effectively
eliminates the current candidate solution.

Presolving A presolving step is included within cons benders to compute a lower
bound on the auxiliary variables. The lower bound for subproblem s is computed
by solving s without fixing any of the master problem variables. If the subproblem
is a CIP, then only the root node relaxation is solved. In subproblem s, the objec-
tive coefficients of the master problem variables are set to zero. As such, the objective
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function value from this solve is a valid lower bound on the auxiliary variable associ-
ated with s. To enable this presolving step for Benders’ decomposition, the parameter
constraints/benders/maxprerounds must be set to 1.

Multiple Decompositions Another feature of the Benders’ decomposition in SCIP that
is not available in other general frameworks is the ability to employ multiple decom-
positions. While it is most common to perform a single decomposition, there are cases
where it is useful to use alternate decompositions within one algorithm. An example is if
two different subproblem solving methods are desired, such as the compact formulation
and using column generation. Additionally, if a tighter relaxation exists, but is more
time consuming to solve, it may be desired to only use the associated decomposition less
frequently.

Within cons benders and cons benderslp, the subproblem solving methods for
each decomposition are executed in decreasing order of priority. If a cut is generated
in a decomposition, then no other decomposition will be executed. The lowest priority
decomposition will only be called when no cut is generated in all other decompositions.

Extensibility Due to the plugin nature of the Benders’ decomposition framework, it is
easily extended with alternative cut generation methods and enhancement techniques.
Additional cut generation methods are added by implementing new Benders’ decompo-
sition cut plugins. Enhancement techniques can be implemented through the use of the
pre- and post-subproblem solving callback functions.

2.2 Overall Performance Improvements for MIP and MINLP

The standalone performance of SCIP for solving mixed-integer linear and nonlinear pro-
grams out-of-the-box is an important foundation for most of its algorithmic extensions.
This section summarizes the overall progress of the MIP and MINLP core since the last
major version SCIP 5.0, which was released December 2017.

2.2.1 Experimental Setup

The diversity of MIP and MINLP and the performance variability of state-of-the-art
solvers asks for a careful methodology when measuring performance differences between
solver versions. The experimental setup used during SCIP development is described in
detail in the release report for SCIP 5.0 [25]. A quick overview is given in the following.

The base testset for MIP evaluation consists of 666 instances compiled from the pub-
licly available instances of the COR@L testset [14] and the five MIPLIB versions [36],
excluding instances identified as duplicates or marked as “numerically unstable”. For
MINLP, 143 instances were manually selected from MINLPLib2 [46], filtering overrep-
resented classes and numerically troublesome instances. In order to save computational
resources during development, testing is usually restricted to a subset of “solvable” in-
stances by removing all that could not be solved by previous releases nor by selected
intermediate development versions with five different random seeds. Currently, these
MIP and MINLP testsets contain 425 and 113 instances, respectively. Note that for
MINLP, an instance is considered solved when a relative primal-dual gap of 0.0001 is
reached; for MIP we use gap limit zero.

Each solver version is run with five different random seed initializations, including
seed zero, with which SCIP is released. Every pair of instance and seed is treated
as an individual observation, effectively resulting in testset sizes of 2125 MIPs and
565 MINLPs. (Hence, in the discussion of performance results the term “instance” is
often used when actually referring to an instance-seed-combination, for example, when
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Table 1: Performance comparison of SCIP 6 versus SCIP 5 on the MIP testset
using five different seeds.

SCIP 6.0.0+SoPlex 4.0.0 SCIP 5.0.0+SoPlex 3.1.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 2113 1925 76.8 1598 1914 83.0 1787 1.08 1.12
affected 1786 1748 66.2 1479 1737 72.2 1686 1.09 1.14

[0,7200] 1963 1925 54.0 1148 1914 58.8 1295 1.09 1.13
[1,7200] 1731 1693 87.9 1594 1682 96.7 1833 1.10 1.15
[10,7200] 1402 1364 180.0 2755 1353 203.6 3255 1.13 1.18
[100,7200] 875 837 562.1 5630 826 664.5 6798 1.18 1.21
[1000,7200] 374 336 1934.4 21472 325 2312.8 26163 1.20 1.22
diff-timeout 87 49 3007.4 28229 38 4055.3 36284 1.35 1.29
both-solved 1876 1876 44.7 980 1876 48.2 1099 1.08 1.12

MIPLIBs 958 868 98.2 2560 866 101.4 2736 1.03 1.07
COR@L 1230 1112 71.1 1252 1106 79.0 1435 1.11 1.15

comparing the number of solved instances.) Instances for which solver versions return
numerically inconsistent results are excluded from the analysis. Besides the number of
solved instances, the main measure of interest is the shifted geometric mean of solving
times and number of branch-and-bound nodes. The shifted geometric mean of values
t1, . . . , tn is (∏

(ti + s)
)1/n − s.

The shift s is set to 1 second and 100 nodes, respectively.
As can be seen in Tables 1 and 2, these statistics are displayed for several subsets of

instances. The subset “affected” filters for instances where solvers show differing number
of dual simplex iterations. The brackets [t, T ] collect the subsets of instances which were
solved by at least one solver and for which the maximum solving time (among both solver
versions) is at least t seconds and at most T seconds, where T is usually equal to the
time limit. With increasing t, this provides a hierarchy of subsets of increasing difficulty.
The subsets “both-solved” and “diff-timeout” contain the instances that can be solved
by both of the versions and by exactly one of the versions, respectively. Additionally,
MIP results are compared for the subsets of MIPLIB and COR@L instances, which
have a small overlap; MINLP results are reported for the subsets of MINLPs containing
“integer” variables and purely “continuous” NLPs.

The experiments were performed on a cluster of computing nodes equipped with
Intel Xeon Gold 5122 CPUs with 3.6 GHz and 92 GB main memory. Both versions of
SCIP were built with GCC 5.4 and use SoPlex as underlying LP solver: version 3.1.0
(released with SCIP 5.0) and version 4.0.0 (released with SCIP 6.0). Further external
software packages linked to SCIP include the NLP solver Ipopt 3.12.5 [32] built with lin-
ear algebra package MUMPS 4.10 [4], the algorithmic differentiation code CppAD [13]
(version 20160000.1 for SCIP 5.0 and version 20180000.0 for SCIP 6.0), and the graph
automorphism package bliss 0.73 [33] for detecting MIP symmetry. The time limit was
set to 7200 seconds for MIP and to 3600 seconds for the MINLP runs.

2.2.2 MIP Performance

Table 1 analyzes the MIP performance of SCIP 6.0 in comparison to the previous
version SCIP 5.0. Despite a brief development period since the last major release in
December 2017, it can be seen that notable improvements have been achieved. Overall,
SCIP 6 is about 8% faster than SCIP 5. While only a smaller speedup of 3% can be
seen on the MIPLIB sets, the impact on COR@L is more pronounced, with 11%. On
the subset of harder instances in the [100,7200] bracket, SCIP 6 is even more than 18%
faster.
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Table 2: Performance comparison of SCIP 6 versus SCIP 5 on the MINLP
testset using five different seeds.

SCIP 6.0.0+SoPlex 4.0.0 SCIP 5.0.0+SoPlex 3.1.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 561 484 143.0 18829 453 176.4 20224 1.23 1.07
affected 486 474 92.3 15338 443 117.8 16963 1.28 1.11

[0,3600] 496 484 93.4 13849 453 118.5 15286 1.27 1.10
[1,3600] 481 469 106.4 15951 438 136.0 17560 1.28 1.10
[10,3600] 434 422 147.6 20657 391 190.5 22972 1.29 1.11
[100,3600] 290 278 327.3 42569 247 540.3 52694 1.65 1.24
[1000,3600] 112 100 550.8 91789 69 1640.0 152565 2.98 1.66
diff-timeout 55 43 367.4 64193 12 2662.1 237382 7.25 3.70
both-solved 441 441 78.7 11429 441 80.2 10837 1.02 0.95

continuous 134 104 179.7 36424 96 208.7 27814 1.16 0.76
integer 427 380 133.0 15301 357 167.3 18298 1.26 1.20

While the “diff-timeout” subset shows a larger speedup of 35%, the “both-solved”
results make clear that the small increase in the number of solved instances by 11 is
not the main source for the average reduction of running time. It predominantly stems
from improvements over the majority of instances that are already solved by SCIP 5.
The main algorithmic contributors to these results are the new Farkas diving heuristic
(Section 2.3.1), the tuned ALNS heuristic, updates in the separation of cutting planes
(Section 2.5), in particular the newly introduced directed cutoff distance for improved
cut selection, and the refined timing for symmetry detection (Section 2.6).

2.2.3 MINLP Performance

While SCIP 6.0 does not come with new MINLP-specific features, the tuning of sev-
eral parts of the code together with some of the MIP developments notably improved
MINLP performance. The bound tightening of quadratic equations has been strength-
ened in certain cases and cuts for quadratic constraints with nonconvex constraint
function, but convex feasible region are now marked to be globally valid when pos-
sible. Generally, cuts generated by nonlinear constraint handlers are scaled up more
aggressively. The gauge separation for convex quadratic constraints introduced with
SCIP 4.0 [42] and the disaggregation of quadratic constraints (controlled by the pa-
rameter constraints/quadratic/maxdisaggrsize) available since SCIP 5.0 [25] have
been deactivated. Both features can be helpful for specific instances, but currently their
application seems to deteriorate SCIP’s performance on average.

The comparison to SCIP 5.0 is displayed in Table 2. As can be seen, SCIP 6.0
is about 23% faster overall and even 65% faster on the subset of harder instances in
the [100,3600] bracket. The improvement is slightly more pronounced on MINLPs with
integer variables, but also for pure NLPs SCIP 6.0 is 16% faster. The results on the
“diff-timeout” and “both-solved” subsets reveal that these speedups are mostly due to
the notable increase in the number of solved instances by 31, i.e., by more than 5% of
the testset size.

2.3 Primal Heuristics

SCIP 6.0 comes with two new conflict-driven diving heuristics and some performance
changes in the adaptive large neighborhood search heuristic. Compared to SCIP 5.0,
ALNS starts more conservatively and initially uses the maximum variable fixing rate for
defining the neighborhoods. However, the minimum fixing rate of variables that needs
to be achieved to run the heuristic is now adjusted dynamically over time in SCIP 6.0.
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The new conflict-driven heuristics combine the concepts of primal heuristics and conflict
analysis in two different ways: using primal heuristics to derive conflict information and
using conflict information to guide a heuristic.

2.3.1 Farkas Diving

Primal heuristics typically aim to find improving solutions. As a side effect, variable
statistics and information about infeasible parts of the search tree are collected. In
contrast to all other diving heuristics in SCIP 6.0, Farkas diving aims to construct
infeasible subproblems in order to derive new conflict information. To this end, Farkas
diving makes all decisions, i.e., variable selection and determining rounding directions,
based on the dual of the current LP. The overall goal is to push the solution of the dual
LP relaxation towards a proof of local infeasibility.

Suppose a mixed-integer program is given in the form

min {c>x : Ax ≤ b, `i ≤ xi ≤ ui for all i ∈ N , xi ∈ Z for all i ∈ I},

and consider the LP relaxation of a subproblem defined by local bound vectors `′ and
u′. This LP relaxation is primal infeasible if and only if there exists a dual ray (y, s)
satisfying

y>A+ s = 0, (17)

y>b+ s{`′, u′} > 0. (18)

Here, we define s{`′, u′} :=
∑
i:si>0 si`

′
i +

∑
i:si<0 siu

′
i, i.e., the minimum activity of

s>x over x ∈ [`′, u′]. Aggregation with respect to the dual multiplier vector y leads to
the valid linear constraint (y>A)x ≥ y>b, called a Farkas constraint. This constraint
can be propagated in order to prove infeasibility subject to `′ and u′. Since version 4.0,
SCIP implements the technique of dual ray analysis and collects and propagates Farkas
constraints during the search [42, 67].

Diving heuristics as they are implemented in SCIP 6.0 follow the diving scheme in
Algorithm 2. Let x? be an optimal primal LP solution of the current local subproblem
and (y?, r?) be the corresponding optimal solution of its dual LP relaxation

max {y>b+ r{`′, u′} : y>A+ r = c, (y, r) ∈ Rm+ ×Rn}. (19)

Clearly, (y?, r?) neither satisfies (17) nor (18). However, (y?, r?−c) satisfies at least (17).
In order to push the dual solution towards infeasibility, Farkas diving aims to reduce the
violation of (18) when tightening the bounds in Lines 8 and 10 of Algorithm 2. To this
end, the violation of (18) can be reduced by tightening the upper (or lower) bound of
a variable with positive (or negative) objective coefficient. Hence, for determining the
rounding direction in Line 4, Step A, it is sufficient to consider the objective coefficient
ci for every integer variable i with fractional LP solution value x?i . In order to construct
a Farkas constraint with only a few number of bound tightening steps, Farkas diving
prefers variables with the most impact on (18) (cf. Line 5). Therefore, the absolute
objective coefficient and the change in the local bound are considered.

Note that this rounding strategy has a primal interpretation: diving towards the
pseudo-solution. The pseudo-solution is the best possible solution subject to variable
bounds only. However, the pseudo-solution is often infeasible because it does not consider
constraints. In other words, although the main goal of this heuristic is the construction
of infeasibility proofs, if primal solutions are found, they can be expected to be of high
quality.

In SCIP 6.0 Farkas diving is enabled by default and called directly at the root node.
During the search tree it is only executed if it succeeded to produce a primal feasible
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Algorithm 2: Generic Diving Procedure

Input : LP solution x?, rounding function φ, score function ψ
Output: Solution candidate x̂ or NULL

1 x̂← NULL, x̃← x?;
2 D ← {j ∈ I : x̃j /∈ Z}; // diving candidates

3 while x̂ = NULL and D 6= ∅ do
4 foreach i ∈ D do

(A) determine rounding direction: dj ← φ(j);

(B) calculate variable score: sj ← ψ(j);

5 select candidate xj with maximal score sj ;
6 update D ← D \ j;
7 if dj = up then
8 `j ← dx̃je; // tighten local lower bound

9 else
10 uj ← bx̃jc; // tighten local upper bound

11 (optional) propagate this bound change;
12 if infeasibility detected then
13 analyze infeasibility, add conflict constraints, perform 1-level backtrack,

goto Line 5 or 20 if D = ∅;
14 (optional) re-solve local LP relaxation;
15 if infeasibility detected then
16 analyze infeasibility, add conflict constraints, perform 1-level backtrack,

goto Line 5 or 20 if D = ∅;
17 update x̃ and D if LP was resolved;
18 if x̃j ∈ Z for all j ∈ I or D = ∅ then
19 x̂← x̃;

20 return x̂;

solution during this first call. When activating the feature, our intermediate performance
evaluations using two random seeds for comparison showed a 2% speedup on the overall
MIP testset and an increased number of instances that could be solved to optimality.

2.3.2 Conflict Diving

A well-established diving heuristic in mixed-integer programming is coefficient diving [9].
This heuristic guides the search based on so-called variable locks [1]. Variable locks give
rise whether a variable can always be rounded without violating a model constraints or
whether there exists a certain number of model constraints that might be violated after
rounding the variable into a certain direction. Therefore, the number of variable down-
locks or up-locks measure the “risk” of becoming infeasible when rounding a variable
downwards or upwards.

Usually, the number of variable locks does not change after presolving anymore.
Hence, variable locks are a static criterion and may incorporate model constraints that
do not lead frequently to bound deductions or are not tight in the LP relaxation.

Since this release, SCIP maintains locks implied by conflict constraints, too. This
type of locks are called conflict locks and are counted separately from variable locks.
SCIP uses an aging scheme and a separate pool to maintain all conflict constraints and
to discards those that turned out to be less useful than others. The following observation
suggests that conflict locks may measure the “risk” of rounding more accurately.
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Observation 2.1. Let (y>A)x ≥ y>b be a conflict constraint (or Farkas constraint)
derived from an infeasible LP. If the conflict contributes to the conflict up-locks (or
conflict down-locks) of a variable j, then there exists at least one (model) constraint that
contributes to the variable up-locks (or variable down-locks) of j, too.

SCIP 6.0 adds an implementation for a new heuristics conflict diving. In contrast to
coefficient diving, conflict diving relies on conflict locks (either solely or in a weighted
combination with variable locks) and prefers the more “risky” rounding direction. By
default, conflict diving is disabled in SCIP 6.0 because a thorough tuning and perfor-
mance evaluation still needs to be conducted.

2.4 Lookahead Branching

With the current release 6.0, SCIP features a new branching rule called lookahead
branching. This branching method is based on an idea by Glankwamdee and Lin-
deroth [24], who propose to base the branching decision not only on the predicted dual
bounds of potential child nodes, but rather take into account potential grand-child nodes
as well, i.e., potential nodes two levels deeper in the tree than the current node.

The implementation in SCIP uses a recursive approach that allows to investigate
an arbitrary number of levels in the lookahead procedure. The general scheme is il-
lustrated in Figure 1. Starting from the current problem P , for each variable xi with
fractional value x̄i, the two potential sub-problems P i− and P i+ are created and the
corresponding LPs are solved, resulting in LP solutions x̄i− and x̄i+. Based on these
LP solutions, another auxiliary branching is performed for each fractional variable and
the corresponding LPs are solved. This can be repeated as long as desired, but since
the number of LPs to be solved is exponential in the maximum recursion depth, more
than two levels are usually too expensive.

P

P i−

P i−j−

...
...

xj ≤ bx̄i−
j c

P i−j+

...
...

xj ≥ dx̄i−
j e

xi ≤ bx̄ic

P i+

P i+k−

...
...

xk ≤ bx̄i+
k c

P i+k+

...
...

Level 2

Level 1

Level 0

xk ≥ dx̄i+
k e

xi ≥ dx̄ie

Figure 1: Illustration of the lookahead branching procedure.

Based on the information provided by these auxiliary sub-trees, a branching decision
is taken at the original level. This is done mainly based on the dual bounds of the
auxiliary nodes, but rather than combining just two dual bounds to one score as for
strong branching, many more dual bounds from deeper levels are taken into account.
Here, the SCIP implementation uses the dual bounds of child nodes in level two and
deeper to improve the dual bounds originally computed for their parent node, while the
dual bounds of the level one nodes are combined with a product score, as usually done
in SCIP [1]. This behavior is different to the proposed method of Glankwamdee and
Linderoth but proved to perform better in practice. In the lookahead process, additional
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information can be extracted, including bound changes, locally valid constraints, feasible
solutions, and pseudo cost.

Since the full-scale version of lookahead branching is too time consuming for prac-
tical applications, a faster version called abbreviated lookahead branching is available.
It computes standard strong branching scores for all candidates and performs the ex-
pensive lookahead procedure only for the k candidates with the best scores. In deeper
levels, again only the k best candidates are considered, re-using strong branching scores
computed beforehand.

Computational results with a preliminary version of abbreviated lookahead branching
with k = 4 showed a node reduction by almost 40 % on all instances of the last three
MIPLIB benchmark sets that were solved with some branching within 5 hours. When
measuring tree size using the fair node number [22], which takes into account the side-
effects of strong branching and lookahead branching, the reduction still amounts to 35 %,
which shows that the branching decision that lookahead branching takes are indeed of
a higher quality. In the end, a combination of abbreviated lookahead branching and
full strong branching, where the former is only applied at the first five levels of the
branch-and-bound tree, outperforms standard full strong branching. It solves three
more instances within the time limit and leads to a slight speedup. All in all, this
method offers a viable alternative in the context of memory-restricted environments or
massive parallelization because it reduces the branch-and-bound tree size. For more
details, we refer to the Master’s thesis of Christoph Schubert [58].

2.5 Improvements in Cutting Plane Separation

The use of cutting planes is among the core techniques contributing to the effectiveness of
modern MIP solvers [3]. Successfully applying cutting plane techniques computationally
requires algorithms and methods for generation, selection, and management of cuts.
Version 6.0 of SCIP includes improvements within the separation of complemented
mixed-integer rounding (CMIR) cuts [43] and the general cut selection algorithm.

2.5.1 The CMIR Separator

The CMIR separation procedure comprises heuristics for aggregating rows, substituting
bounds, and generating MIR cuts from the resulting single row relaxation. During the
last stage, different scaling factors are tested within the cut generation heuristic and
the scaling factor that yields the most efficacious MIR cut is chosen. SCIP 5.0 tries
(the inverse of) each nonzero coefficient of integral variables in the single row relaxation
as scaling factor, if the variable has a solution value that is far away from its bounds.
The reasoning behind this strategy is that the violation of an MIR cut decreases when
the coefficients of those variables are rounded. Therefore, it is desirable to scale the
single row relaxation such that these coefficients are integral, or almost integral, if this
results in a fractional right-hand side. To extend the simple heuristic employed in
SCIP 5.0, starting from version 6.0 SCIP tries to find the smallest scaling factor that
makes all these coefficients integral by computing the greatest common divisor of the
denominators of the coefficients. If the right-hand side remains fractional this scaling
factor is considered in addition to the ones already tested in SCIP 5.0.

2.5.2 Directed Cutoff Distance: A New Measure for Cut Selection

As has been pointed out in the recent survey of Dey and Molinaro [16], the selection
of cutting planes is a challenging problem that is still not well understood. Usually it
is desired to maximize the dual bound gain achieved by the selected set of cuts, while
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avoiding to clutter the LP relaxation with too many useless cuts. The best dual bound
clearly is achieved by adding all cuts to the LP relaxation, but commonly only a small
subset of them will be active at the optimal solution after reoptimizing the LP. Moreover,
a largely increased size of the LP and the occurrence of many parallel cuts is likely to
affect the numerical stability and the solving time of the LP adversely. Therefore, adding
all cuts to the LP increases the solving time despite reducing the number of branch-and-
bound nodes for most instances.

Most solvers employ a heuristic approach to select the set of cutting planes added to
the LP relaxation. Successful methods described in the literature [2, 65, 5] commonly
use a scoring function for assessing the quality of cutting planes and the parallelism
between them to measure their similarity. A greedy approach that selects the cut with
the highest score and discards similar cuts is then employed iteratively until no more
candidates are left, or the maximum amount of cuts has been selected. This general
algorithm is customized by the choice of the scoring function and the threshold for
the maximum parallelism between cuts. In order to compute meaningful scores for the
cutting planes it is necessary to compute some kind of measure that indicates the quality
of a cut. For the purpose of cut selection, however, it is unclear what constitutes the
quality of an individual cut due their interaction.

Among other measures, SCIP 5.0 uses the efficacy, sometimes also called cutoff
distance: the Euclidean distance between the half-space defined by the cut and the
current LP solution. The efficacy, however, can be small for cuts which are considered
“strong” in some other sense, for instance, because they are facets of the convex hull
of integer solutions. Version 6.0 of SCIP introduces a new measure that can overcome
these problems in some cases, and is still cheap to compute.

The idea of the new measure is to use the cutoff distance in a more relevant direction,
instead of using the shortest distance to the half-space of the cut. A relevant direction
should point towards the feasible region. Often points that are within the integer poly-
tope are found early on by primal heuristics. Hence, the direction from the current LP
solution towards the current incumbent solution is readily available in many cases. In
these cases, the distance between the current LP solution and the cut along the segment
that joins the current LP and incumbent solutions can be computed easily and is used
as part of the score in SCIP 6.0. We call this measure the directed cutoff distance.

Formally, given a cut a>x ≤ b, the current LP solution x̃, and the current incumbent
solution x̄, let d = x̄−x̃

||x̄−x̃|| . Then the directed cutoff distance is given by

aT x̃− b
|a>d|

.

Since d, the normalized direction from x̃ towards x̄, only needs to be computed once when
separating a fixed x̃, the computational effort is comparable to computing the efficacy.
The weight of the directed cutoff distance in the linear combination used to compute
the score of a cut is adjusted via the parameter separating/dircutoffdistfac. The
default setting in SCIP 6.0 uses the weight 0.5 in addition to the existing weights
for the other measures: the efficacy (default weight 1.0), the integral support (default
weight 0.1), and the parallelism with the objective function (default weight 0.1). At the
time of activating this feature, this gave a speed-up of 4% on all instances and 9% on
harder instances in the [100,7200] bracket.

2.6 Improvements in Symmetry Handling

Symmetries in mixed-integer programs typically have an adverse effect on the run-
ning time of branch-and-bound procedures because symmetric solutions are explored
repeatedly without providing new information to the solver. To handle symmetries
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on binary variables, two symmetry handling approaches have been implemented and
are available in SCIP since version 5.0: a pure propagation approach, so-called orbital
fixing [44, 47, 48], and a separation-based approach via so-called symretopes [28]. In
either approach, the user has the possibility to use the symmetries of the original or the
presolved problem as the basis for symmetry reductions.

With the release of SCIP 6.0, the timing scheme for computing symmetries has been
refined for the orbital fixing approach. Via the parameter

propagating/orbitalfixing/symcomptiming

the user can control if symmetries are computed before presolving (value 0), at the end
of presolving (value 1), or at the end of processing the root node (value 2), which is
also the default value of the parameter. The reason for this is that symmetries typically
can be computed very fast after the reductions at the root node. Also computing sym-
metries after the root node has the advantage that symmetry handling cannot change
the solution process on very easy instances that can be solved within the root. Further,
SCIP 6.0 allows to handle symmetry via orbital fixing already during presolving by
setting parameter propagating/orbitalfixing/performpresolving to TRUE.

Moreover, in the previous implementation it was not possible to update symmetry
information during the solving process. To add more flexibility in symmetry handling,
the method SCIPgetGeneratorsSymmetry() has been extended by an additional ar-
gument to allow for recomputing symmetries of the problem. For example, it is now
possible to use orbital fixing after a restart of the solution process occured, by set-
ting propagating/orbitalfixing/enabledafterrestarts to TRUE. In addition, if a
user writes her own symmetry handling plugin, she can access the symmetries of the
subproblem at the current branch-and-bound node by recomputing symmetries.

2.7 Updates in the Linear Programming Interfaces

SCIP allows to be interfaced with several LP solvers: Clp1, CPLEX2, Gurobi3,
MOSEK4, Qsopt5, SoPlex, and Xpress6. In SCIP 6.0, the corresponding Linear
Programming Interfaces (LPIs) have been updated as follows. The documentation of
features and functions has been made more precise. Several checks for wrong usage have
been added and the extension of internal unit tests during the development allowed to
fix several minor bugs. For example, the LPI for the open-source solver Clp has been
improved and is now much more stable for recent versions of Clp. Finally, the interface
has been tuned for several solvers (Gurobi, MOSEK, Xpress), and the SCIP solution
process using these solvers is now quite stable.

2.8 Technical Improvements and Interfaces

A set of smaller technical changes and improvements have been performed with SCIP 6.0,
detailed in the following.

2.8.1 Generalized Variable Locks

SCIP uses the concept of variable locks in order to count, for each variable, the number
of constraints that may become infeasible when increasing or decreasing the value of this

1projects.coin-or.org/Clp
2www.ibm.com/analytics/cplex-optimizer
3www.gurobi.com/
4www.mosek.com
5https://www.math.uwaterloo.ca/~bico/qsopt/
6http://www.fico.com/en/products/fico-xpress-optimization
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variable in a solution. This generalizes the information given by the signs of coefficients in
the matrix representation of a mixed-integer program to constraint integer programs [1].
Until SCIP 5.0, these variable locks were only counted for model constraints having
their “check” flag set to true. SCIP 6.0 extends the concept of variable locks and
introduces lock types. The new conflict locks regard constraints in the conflict pool,
while the classical locks are now captured in the model locks. The main motivation for
this generalization was the work on the new conflict-driven diving heuristics described
in Section 2.3. The conflict diving heuristic uses a diving scheme similar to coefficient
diving, but instead of taking the fixing decision based on model locks, it uses conflict
locks or a combination of both lock types.

2.8.2 Checks and Statistics regarding LP

Analogous to the previously existing checks of primal and dual feasibility of LP solutions,
SCIP 6.0 now double-checks the feasibility of Farkas rays returned by the LP solver.
The check is controlled by the new parameter lp/checkfarkas, which is set to true by
default.

In addition, the statistics now report the number of additional LP solves that were
triggered because the initial solution returned by the LP solver was marked as instable.
Both features help to better detect and deal with numerical instability related to LP
solving.

2.8.3 Support for Nonlinear Constraint Functions in PySCIPOpt

The Python interface PySCIPOpt available and developed at https://github.com/

SCIP-Interfaces/PySCIPOpt now supports a larger set of nonlinear functions. Previ-
ously, the only nonlinear expressions supported were polynomials. With the new version,
PySCIPOpt models may include: non-integer exponents, logarithms, exponentials, ab-
solute values, square roots, and divisions. An example of these new functions can be
found in tests/test nonlinear.py.

2.8.4 Further Changes

The order for checking constraint handler feasibility of solutions in the original problem
has been modified. Constraint handlers with negative check priority that do not need
constraints are now checked only after all other constraint handlers.

Furthermore, the number of calls to presolvers as controlled by parameters named
.../maxrounds and .../maxprerounds is now limited by the number of rounds that
a presolving step has actually been executed, not (like previously) by the total number
of presolving steps performed so far. This simplifies tuning of different presolving steps
and reduces random side effects between presolvers.

Finally, the large source file scip/scip.c has been split into several smaller im-
plementation files scip/scip *.c for improving the accessibility of the code. The file
scip/scip.c was removed. This does not affect external SCIP projects as the central
header file scip/scip.h still remains the standard include for API use.

3 SoPlex

SoPlex 4.0 is a major update on the last version, albeit mostly due to technical changes.
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3.1 Aggregation Presolver

Equations with two variables, i.e., of the form

a1 · x1 + a2 · x2 = b (20)

are now removed by aggregating either x1 = (b − a2 · x2)/a1 or x2 = (b − a1 · x1)/a2,
depending on the size of the coefficients and the potentially tightened bounds on the
variables. This presolving step can decrease the solving time significantly on suitable
instances that contain constraints of said type. An example of the possible performance
impact is given in Table 3.

Table 3: Comparison of presolving reductions and total solving time on instance
sgpf5y6.

cols rows time (in seconds)

original instance 308634 246077 –
SoPlex 3.1 206033 143546 718
SoPlex 4.0 105453 42966 22

Note that this presolving reduction is already available within SCIP. Hence, this
improvement only impacts performance when using SoPlex as a standalone LP solver.

3.2 Handling of Numerical Difficulties

SoPlex 4.0 introduces a new solution status OPTIMAL UNSCALED VIOLATIONS to signal
numerical violations that could not be resolved. This is meant to be a last resort
when all other options have been exhausted and the last version would have terminated
the solving process unsuccessfully. This new status has been integrated into the LP
interface of SCIP 6.0 to treat those cases either as optimally solved or not, depending
on the parameters in SCIP, namely lp/checkdualfeastol, lp/checkprimalfeastol,
and lp/checkstability. A new API method SoPlex::ignoreUnscaledViolations()

has been implemented to transform the new solution status to OPTIMAL.

3.3 Technical Improvements

The organization of header files has been changed to enable the inclusion of a single
header file soplex.h with all other header and source files being moved to a subdirectory
src/soplex. This avoids name clashes and provides a clean file structure when installing
the solver.

Furthermore, there is a new parameter bool:ensureray that controls whether So-
Plex may skip the generation of a proof for primal or dual infeasibility. This parameter
is set to false when running SoPlex standalone because the proof is usually not re-
quired. It is active within SCIP, though, because this information is used, for instance,
to generate conflicts.

Finally, the LEGACY mode for compatibility with pre-C++11 compilers has been re-
moved to simplify code maintenance.

4 Applications and Extensions

In addition to the core solvers, the SCIP Optimization Suite is accompanied by several
applications and extensions for various classes of mathematical programming problems.
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SCIP 6.0 includes the new application Ringpacking, which exploits SCIP’s function-
ality as a column generation framework for solving the recursive circle packing problem
(RCPP) [50, 26]. The CycleClustering application [66, 17] has been improved by
bugfixes and code refactoring, and the performance of the Steiner tree solver SCIP-
Jack [23] has been improved significantly for several problem classes. The package
SCIP-SDP [20] for solving mixed-integer semidefinite programs has been updated with
bugfixes and an extension of the SDPA-reader to indicator constraints. Furthermore,
the parallelized version of SCIP-SDP has been extended by racing parameters to allow
a combination of nonlinear branch-and-bound and an LP-based cutting plane approach,
see Section 6.

4.1 Recursive Ring Packing

The Ringpacking application implements a column generation algorithm that solves
the recursive circle packing problem (RCPP) [50] exactly. Given a set of ring types
T = {1, . . . , T}, where each t ∈ T is associated with an internal radius rt ∈ R+, an
external radius Rt ∈ R+, and a demand Dt ∈ Z+, the objective is to select a minimum
number of identical rectangles of size W ×H such that all rings can be packed into these
rectangles in a nonoverlapping way. Rings can be put either recursively into larger ones
or directly into a rectangle.

The RCPP contains multiple sources of symmetry. Any permutation of rectangles,
i.e., relabeling rectangles, constitutes an equivalent solution to RCPP. Even worse, there
is also considerable symmetry inside a rectangle. First, rotating or reflecting a rectangle
gives an equivalent rectangle since both contain the same set of rings. Second, two rings
with same internal and external radius can be exchanged arbitrarily inside a rectangle,
again resulting in an equivalent rectangle packing.

The Ringpacking application implements the techniques developed by Gleixner,
Maher, Müller, and Pedroso [26]. First, the concept of circular and rectangular patterns
is introduced in order to decompose packings of rectangle packings. Afterward, these
patterns are used to apply a Dantzig-Wolfe decomposition [15] to the RCPP in order to
break the above mentioned symmetry between equivalent rectangles. A column gener-
ation and column enumeration algorithm is used to solve the continuous relaxation of
the obtained reformulation.

More precisely, a vector P ∈ ZT+ is a rectangular pattern if and only if Pt many circles
of each type t ∈ T can be packed together into a rectangle at the same time. Here, circle
corresponds to a ring with zero inner radius and acts as a placeholder for rings of the
same external radius. Similarly, a tuple (t′, P ) ∈ T × ZT+ is a circular pattern if it is
possible to pack Pt many circles of each type t ∈ T together into one ring of type t′. Let
RP and CP denote the set of all rectangular or circular patterns, respectively. Figure 2
shows an example of circular and rectangular patterns.

The Dantzig-Wolfe decomposition PDW (RP) of the RCPP reads as

min
∑
P∈RP

zP (21a)

s.t.
∑

C=(t,P )∈CP

zC ≥ Dt for all t ∈ T , (21b)

∑
C=(t,P )∈CP

zC ≤
∑
P∈RP

Pt · zP +
∑

C=(t′,P )∈CP

Pt · zC for all t ∈ T , (21c)

zC ∈ Z+ for all C ∈ CP, (21d)

zP ∈ Z+ for all P ∈ RP, (21e)
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←→

Figure 2: An example with four circular patterns and one rectangular pattern
showing how patterns are used to model the combinatorial part of RCPP. Each
line connects a circular pattern to a circle. The number of outgoing edges is equal
to the number of rings that are used. The corresponding packing is shown on the
right.

where zP and zC is the number of used rectangular patterns P ∈ RP and circular
patterns C ∈ CP, respectively. The objective (21a) minimizes the total number of used
rectangles. Constraint (21b) ensures that the demand for each ring type is satisfied. The
recursive decisions how to place rings into each other are implicitly modeled by (21c).
Each selection of a pattern (t′, P ) ∈ CP or P ∈ RP enables to use Pt circular patterns
of type t.

The reformulation is solved by applying two different methods to handle the expo-
nential number of variables. On the one hand, the implementation contains a column
enumeration algorithm to compute all (relevant) circular patterns. On the other hand,
a column generation approach that dynamically generates rectangular pattern variables
is used in order to solve the LP relaxation of (21). The two kinds of variables are treated
differently since in typical applications the rectangles are quite large compared to the
rings. Therefore, RP is expected to be much larger than CP, making an enumeration
intractable.

The main step of the circular pattern enumeration algorithm is to verify whether a
given tuple (t, P ) ∈ T × ZT+ is in the set CP or not. A tuple can be checked by solving
the following nonlinear nonconvex verification problem:

∥∥∥∥(xiyi
)
−
(
xj
yj

)∥∥∥∥
2

≥ Ri +Rj for all i, j ∈ C, i < j, (22a)∥∥∥∥(xiyi
)∥∥∥∥

2

≤ rt −Ri for all i ∈ C, (22b)

xi, yi ∈ R for all i ∈ C. (22c)

Here, C is the index set of individual circles, so if Pτ = k for a circle type τ , C contains
the indices of k many circles of type τ . Furthermore, (xi, yi) is the corresponding center
and Ri the external radius of a circle i ∈ C. The model checks whether all circles can
be placed in a nonoverlapping way into a ring of type t ∈ T . Constraint (22a) ensures
that no two circles overlap, and (22b) guarantees that all circles are placed inside a ring
of type t. Symmetry handling constraints and a dominance relation between circular
patterns are introduced in order to solve this problem more efficiently. Additionally, a
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greedy heuristic is used to verify simple patterns before solving (22).
Concerning rectangular patterns, the LP relaxation of PDW (RP ′) is called the re-

stricted master problem of (21) for a subset RP ′ ⊆ RP. Let λ ∈ RT+ be the nonnegative
vector of dual multipliers for (21c) after solving the LP relaxation of PDW (RP ′) for
the current set of rectangular patterns RP ′. To compute a rectangular pattern with the
most negative reduced cost the following pricing problem has to be solved:

min
P∈RP

{
1−

∑
t∈T

λtPt

}
. (23)

This can be modeled as the maximization variant of the circle packing problem for
a single rectangle. This problem is known to be NP-hard [38] and solved by applying
a sub-SCIP to a nonconvex MINLP formulation. Greedy heuristics are implemented to
find improving columns quickly during the early pricing calls, and to avoid solving the
expensive MINLP pricing problems. Still, for hard instances the pricing problems at
the root node cannot be solved to optimality. In this case the implementation resorts to
price-and-branch: a last valid dual bound is derived using Farley’s Lemma [18], column
generation is terminated, and the remaining MIP is solved.

To address the potentially expensive enumeration of circular patterns, [26] presents
a price-and-verify algorithm, employing a dynamic verification process. Instead of enu-
merating all circular patterns at the start, strict working limits are applied when solv-
ing (22) to obtain an initial set of circular patterns; this initial set may contain both
feasible patterns and patterns for which neither feasibility nor infeasibility could be ver-
ified within these limits. After the pricing problem has been solved, only those circular
patterns which are relevant in the LP solution of the restricted master problem are then
verified. If one turns out to be infeasible, the pricing loop is entered again with this new
information. Algorithm 3 gives a detailed description of this procedure.

Algorithm 3: Price-and-verify

in : internal and external radii r and R, demands D
out: LP solution z∗ of the master problem

1 (CPfeas, CPunknown)← EnumeratePatterns(r,R,D); // initial verification

2 ΨC ← 0 for all C ∈ CPunknown;
3 while ∃R ∈ RP : redR < 0 do
4 RP ← RP ∪ {R}; // pricing loop

5 z∗ ← solve LP (RMP );
6 while ∃C ∈ CPunknown : z∗C > 0 ∧ΨC = 0 do
7 status← solve verification NLP (22); // verification step

8 ΨC ← 1;
9 if status = ”feasible” then

10 CPunknown ← CPunknown\{C};
11 CPfeas ← CPfeas ∪ {C};
12 if status = ”infeasible” then
13 fix zC ← 0;
14 CPunknown ← CPunknown\{C};
15 go to 3; // enter pricing loop again

16 if ∃C ∈ CPunknown : z∗C > 0 then
17 fix zC ← 0 for all C ∈ CPunknown;
18 CPunknown ← ∅;
19 go to 3; // mark dual bound as invalid and continue pricing

20 return z∗;
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First, in Line 1, the column enumeration algorithm for circular patterns is used with
strict working limits in order to produce an initial set (CPfeas, CPunknown) of circular
patterns some of which are verified feasible and some of which have not been verified
yet. Afterwards, in Lines 3 to 5, the pricing problem and then the LP relaxation of the
restricted master problem are solved as described above. If the LP solution contains
a variable z∗C > 0 corresponding to an unverified circular pattern C, the verification
algorithm is called again, see Line 7, with higher working limits than in the beginning.

There are three possible outcomes. If the verification is successful and the pattern
turns out to be feasible, see Line 9, or if the verification process failed by reaching the
working limits, the algorithm looks for another variable satisfying the above conditions.
If, however, the pattern could be proven to be infeasible, the variable is fixed to zero
and the pricing loop is entered again, see Lines 12 to 15. Of course, if the verification
process failed, in further iterations it should not be called again for the same pattern.
This is handled by the variable Ψ. It can happen that none of the circular patterns
with positive LP solution value can be verified. In that case, all unknown patterns are
discarded and the master LP seizes to provide a valid dual bound for RCPP, see Lines
16 to 19. As in the case of prematurely terminated pricing, a last valid dual bound is
reported and the solution process enters a restricted price-and-branch phase.

The advantage of dynamically verifying circular patterns is that the information
gained from the LP solution of the restricted master problem is used to perform expensive
verification only for relevant patterns. Once the pricing loop returns an LP solution with
z∗C = 0 for all unverified circular patterns C ∈ CP, the LP relaxation of (21) has been
solved for the root node. If there exist any integer variables with fractional solution
value, the solving process continues with branching. Further details and a thorough
computational evaluation can be found in [26]. Experimental results on a large test set
show that the implementation method not only succeeds in computing exact, sometimes
optimal dual bounds, but can even produce primal solutions that improve upon those
computed by dedicated heuristics from the literature.

4.2 A Benders’ Decomposition Example for Stochastic Capacitated Facility
Location

The stochastic capacitated facility location problem (SCFLP) is included in SCIP 6.0 to
provide an example of using the Benders’ decomposition framework (see Section 2.1).
The formulation of the SCFLP used for this example has been adapted from the model
developed by Louveaux [39]. The first stage consist of selecting the set of facilities
to open and the second stage attempts to satisfy the customer demand—in a set of
scenarios—from the open facilities. The sets I and J denote the facilities and customers
respectively. The scenarios for this problem describe different demand profiles across
the set of customers. The set of scenarios is denoted by S.

The SCFLP is formulated with variables indicating which facilities are opened and
what facility serves each of the customers. If facility i ∈ I is open, the variables xi
equal 1, 0 otherwise; opening facility i incurs a cost of fi. The variable ysij equals 1 to
indicate that customer j ∈ J is serviced by facility i ∈ I in scenario s ∈ S, which has a
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cost of qij . Using these variables, the formulation of the SCFLP is given by

min
∑
i∈I

fixi +
1

|S|
∑
s∈S

∑
i∈I

∑
j∈J

qijy
s
ij , (24)

s.t.
∑
i∈I

ysij ≥ λkj for all j ∈ K, s ∈ S, (25)∑
j∈J

ysij ≤ kixi for all i ∈ I, s ∈ S, (26)

∑
i∈I

kixi ≥ max
s∈S

∑
j∈J

λsj , (27)

xi ∈ {0, 1} for all i ∈ I, (28)

ysij ≥ 0 for all i ∈ I, j ∈ J, s ∈ S. (29)

The demand of customer j in scenario s is denoted by λsj and the capacity of facility
i is denoted by ki. The constraints (25) ensure that the demand for each customer is
satisfied in every scenario. Constraints (26) limit the customers served by each facility
to the respective capacities. Finally, constraints (27) ensure that enough facilities are
opened to cover the demand of all customers. This final constraint is redundant, but is
useful in ensuring feasibility of the first stage decisions in the decomposed problem.

The instances included in this example have been collected from the OR-Library [6].
Within the reader (reader cap), a parameter is provided to select the number of sce-
narios. These scenarios describe the demand for each customer j, which is sampled from
a normal distribution with a mean of µj , which is the deterministic demand given in
the instance file, and a standard deviation sampled from a uniform distribution in the
range [0.1µj , 0.3µj ].

By default, SCFLP instances are constructed as the monolithic deterministic equiv-
alent (24)–(29) and solved directly by SCIP. The parameter reading/cap/usebenders
can be set to TRUE to decompose the SCFLP using Benders’ decomposition. The master
problem consists of the xi variables and one subproblem is constructed for each scenario,
comprising variables ysij . The default Benders’ decomposition plugin is used to interact
with the framework provided in SCIP 6.0. Since the decomposition of SCFLP results in
continuous subproblems, the classical Benders’ optimality and feasibility cuts are gen-
erated for the instances. The cut generation methods are provided by benderscut opt

and benderscut feas.

4.3 SCIP-Jack: Steiner Tree and Related Problems

Given an undirected, connected graph G = (V,E), costs (or weights) c : E → R+ and
a set T ⊆ V of terminals, the Steiner tree problem in graphs (SPG) asks for a tree
S = (V (S), E(S)) ⊆ G such that T ⊆ V (S) holds and

∑
e∈E(S) c(e) is minimized. The

SPG is one of the fundamental combinatorial optimization problems [34] and the subject
of more than a thousand research articles. Moreover, many related problems have been
extensively described in the literature and can be found in a wide range of practical
applications [23].

The SCIP Optimization Suite contains SCIP-Jack, an exact solver not only for
the SPG, but also for 11 related problems. This release of the SCIP Optimization
Suite contains the new SCIP-Jack 1.3. Most changes in the latest release concern
the SPG, the maximum-weight connected subgraph problem (MWCSP), and the prize-
collecting Steiner tree problem (PCSTP). Improvements for the SPG include a tentative
implementation of some extended reduction techniques described by Polzin [52] and a
new propagation routine. For the MWCSP, the reductions by Rehfeldt and Koch [53]
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have been implemented. Moreover, in the dual-ascent routine [55] a specialized extension
for MWCSP and PCSTP has been added that improves the run time of this routine by
a factor of more than 2 for most instances. Finally, for the PCSTP bottlenecks in the
graph data structures and the ancestor data structures have been removed.

The developments sketched above yield the following results (with CPLEX 12.7.1
as LP solver). Several large-scale PCSTP instances (from the HAND test set) can
now be solved more than two orders of magnitude faster than with SCIP-Jack 1.2.
Furthermore, most MWCSP instances tested in [54] can now be solved more than twice as
fast. The previously open benchmark instance cc7-3nu from the 11th DIMACS Challenge
(which was originally formulated as a PCSTP, but can be transformed to MWCSP
due to its single-weight edges) can be solved by SCIP-Jack 1.3 for the first time to
optimality. Moreover, SCIP-Jack 1.3 participated in the Parameterized Algorithms
and Computational Experiments (PACE) Challenge 2018 [49], dedicated to the Steiner
tree problem in graphs, which allows for fixed-parameter algorithms in the number of
terminals, and in the treewidth. Although SCIP-Jack does not implement any fixed-
parameter algorithms, it finished 3rd place in Track A (exact solution of problems with
few terminals), 1st place in Track B (exact solution of problems with bounded treewidth),
and 2nd in Track C (heuristic solution of problems with different structures). In the
PACE Challenge SoPlex 4.0 was used as the LP solver.

The focus of the future development will be on the SPG and the PCSTP. For both
problems additional reduction techniques will be implemented, existing ones extended,
and domain propagation will be improved. Some of the data structures for the PCSTP
will be reimplemented, as they are still a bottleneck for some large-scale instances.
Future work will also concentrate on the generation of new cutting planes. Finally, the
dual-ascent routine will be improved, both algorithmically and implementation-wise. As
dual-ascent is used for all problem classes covered by SCIP-Jack, any improvements of
this routine have an overall impact on the performance of the solver.

5 The GCG Solver

GCG turns SCIP’s branch-price-and-cut (BP&C) framework into a generic branch-
price-and-cut solver. It performs a Dantzig-Wolfe reformulation [15] of the (“original”)
input MIP and solves the reformulated (“master”) model with BP&C. That is, the re-
laxation in each node of the branch-and-bound tree is solved by column generation. The
pricing subproblems are usually MIPs themselves and solved as sub-SCIPs or special-
ized solvers. It has always been GCG’s ambition to not require the user to have any
knowledge about problem or model structure or the decomposition algorithms to exploit
such structure. An aim is to make decomposition methods more widely applicable also
to non-experts.

A critical step is the automatic detection of such model structure that allows for a
beneficial Dantzig-Wolfe reformulation. The new release GCG 3.0 incorporates major
improvements in this respect. Moreover, thanks to the generic Benders’ decomposition
framework that was added to SCIP 6.0 (see Section 2.1), GCG has become a generic
Benders’ decomposition solver for MIPs. The new detection is flexible enough to support
this case equally well. Again, the user does not need to provide or even know any model
structure. In summary, this makes GCG 3.0 a general-purpose decomposition solver.

Preliminary results indicate that GCG 3.0 is faster than the previous version GCG 2.1.4
on structured instances and fails less often on unstructured ones.
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5.1 A Modular Detection Loop

A model structure that can be exploited by a decomposition algorithm can be explicitly
given, for example in form of a dec file. Otherwise, a suitable structure in the constraint
matrix of the MIP must be identified. This structure itself is referred to as a decompo-
sition, which can be exposed by suitably permuting rows and columns. An example on
the MIPLIB 2010 instance b2c1s1 can be seen in Figure 3. The classic single-bordered
block-angular form for Dantzig-Wolfe is a set of independent subsystems of variables
and constraints (the “blocks”) which are linked by constraints that contain variables
from more than one block. Linking variables that appear in more than one block can
be present, and in such cases GCG applies a Lagrangean decomposition.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  500  1000  1500  2000  2500  3000  3500

 0

 500

 1000

 1500

 2000

 2500

 0  500  1000  1500  2000  2500

 0

 500

 1000

 1500

 2000

 2500

 0  500  1000  1500  2000  2500

Figure 3: Nonzero structure of the constraint matrix of b2c1s1: original as
given in the file, rearranged into a single-bordered block-diagonal form with only
linking constraints and 4 blocks, and rearranged into a double-bordered block-
diagonal form with linking constraints, linking variables, and 15 blocks. GCG 3.0
default detects 262 further decompositions of the presolved b2c1s1 instance.

The previous versions of GCG detected model structure in a rather static way.
Several detectors each worked on the entire matrix and, when successful, output one or
more decompositions. An important class of detectors are graph-based detectors [8, 64].
The constraint matrix is, e.g., represented as a hypergraph H: for each nonzero entry
there is a vertex and each row (and/or column) is represented by a hyperedge. A
partition of H into k connected components reveals k blocks in the matrix. GCG uses
hmetis to heuristically solve the hypergraph partitioning problem.

Our influence on the detected decompositions from this approach is limited by the
parameters available in hmetis. Since the hypergraph is partitioned only heuristically,
very regular textbook decompositions of structured models, see Figure 4, were not con-
sistently detected.
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Figure 4: Nonzero structure of the constraint matrix of the capacitated p-
median instance p2050-1 with 50 blocks. A hypergraph-based approach would
need to remove as many as halve of the hyperedges to find 50 connected compo-
nents.
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5.1.1 Orchestrating Detectors for Partial Decompositions

The mentioned shortcomings motivated a complete redesign of the structure detection
in GCG 3.0. Each detector now works on one atomic concept at a time and fixes only
a part of the decomposition, for example, the constraints of the master problem or a
subset of it. That is, each detector receives a partial decomposition as input, in the
code referred to as seeed,7 where the roles of only a subset of constraints and variables
are already given, initially none at all. Then the detector fixes the roles of additional
constraints and/or variables, not necessarily all of them, and outputs a set of partial
and/or complete decompositions. There are detection/maxrounds consecutive rounds
in which detectors are called, iteratively refining partial decompositions. Detection is
performed in parallel on partial decompositions. Decisions taken in previous rounds
cannot be revoked, except by so-called postprocessors, see below. Different ways may
lead to the same decomposition, but duplicates are filtered. Thus, we may represent the
set of partial decompositions as a tree with complete decompositions at the leaf nodes.
An example is given in Figure 5.

Figure 5: Example of a family tree of decompositions for noswot.

Each detector implements up to three callbacks to propagate, finish, or postprocess
a (partial) decomposition. The first two work on partial decompositions. Propagators
may output a mix of partial and complete decompositions while finishers always com-
plete a decomposition. A typical finisher looks for connected components in the graph
that represents only the yet unfixed constraints and variables of the matrix. A postpro-
cessor may modify a complete decomposition, e.g., by re-assigning constraints from the
master to a block, if applicable. Whether a specific detector is called in a specific round
depends on the detection history, that is, whether certain detectors (maybe itself) were
run/successful in previous rounds.

The modular detection scheme allows for finding structures that were undetected
or even undetectable before GCG 3.0. One example is an uncommon structure like a
double-bordered staircase form. Staircase structures appear in multi-stage optimization
problems like lot-sizing. The corresponding detectors are enabled by setting the pa-
rameters detection/detectors/stair*/enabled to TRUE. When no decomposition is
detected, GCG runs in “SCIP-mode” and solves the model with empty master problem
and one block.

7Friends of German dancehall may recognize this as a reference to the esteemed Berlin-based band.
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A detection/emphasis meta parameter has been included in the new release. The
default uses only one round of only a few detectors, but still rather quickly finds a
lot of classical decompositions. If too slow, the emphasis fast can be tried. Rather
for experimental purposes, the emphasis can be set to aggressive, which enables all
detectors and increases round limits. This emphasis can easily prove too expensive.
If one is looking for a certain decomposition, the user is advised to enable or disable
detectors directly and change their parameters accordingly, such as the number of blocks
to look for.

5.1.2 Constraint and Variable Classifier

We assume that MIP modelers typically define sets of constraints, for capacities, as-
signments, implications, flow conservation, supplies, etc. In a classical Dantzig-Wolfe
reformulation, each such set either distributes among blocks, often in a regular fash-
ion, or completely remains in the master problem, see again Figure 4. This knowledge
has not been systematically exploited in the past. It motivates the following strat-
egy. Constraints are grouped into classes and entire classes are tentatively assigned
to the master problem, resulting in a potentially large number of partial decomposi-
tions. Examples for classification criteria for constraints are the number of nonzeros,
constraint type according to SCIP’s constraint handlers or the classification used by
MIPLIB 2010 [36], or constraint names that differ only by small edit distance. Typi-
cally, too many classes are identified to test all subsets, so that their number is limited
to detection/maxnclassesperclassifier. The same modeling rationale motivates
classifying variables; entire classes are tentatively assigned to become linking or static
variables, which appear exclusively in the master problem. Variables are classified ac-
cording to their SCIP type, (the sign of) their objective function coefficient, etc. The
classification is performed before entering the detection loop and subsets of classes are
assigned by propagating detectors consclass, and varclass.

Note that the classification according to similarity of constraint names gives a con-
venient way of annotating a model such that a particular decomposition is detected.

5.1.3 Interaction with Preprocessing

Preprocessing and symmetry handling can significantly modify the constraint matrix
by deletion and addition of rows, columns, and nonzero coefficients. Since preproces-
sors are currently not “decomposition aware”, a decomposable structure may not be
recognized as such by the detectors after preprocessing has been applied. The balance
between preprocessing and detection has not yet been addressed sufficiently in the lit-
erature. In GCG, emphasis is given on structure detection. Therefore, conflict analysis
and several of SCIP’s presolvers are not included. With the aim of recovering some
information lost in preprocessing, GCG optionally performs constraint/variable classifi-
cation in the original problem and may also run a full detection on the original problem
(detection/origprob/{classificationenabled,enabled}). The resulting informa-
tion is used in the detection on the preprocessed problem: Classes and decompositions
are tried to be matched with/translated to those from the preprocessed model.

5.1.4 Guessing Candidates for the Number of Blocks

The hypergraph partitioning detectors h{r,c,rc}gpartition need as input the num-
ber of connected components (blocks) to look for. Wang and Ralphs [64] suggested
to count the number of constraints with identical number of nonzeros, letting the con-
straints “vote” for numbers of nonzeros. A number of votes that appears most often
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Figure 6: Two decompositions of noswot with 5 blocks each, but different
numbers of master constraints and static variables; the white scores are 0.7719
and 0.4225, respectively.

is considered a candidate for the number of blocks. This implicitly assumes that all
constraints of a certain type are distributed to the blocks. In contrast, GCG collects
votes for greatest common divisors of cardinalities of constraint and variable classes. The
detection/detectors/h*partition/maxnblockcandidates most likely candidates are
then used by the hypergraph-based detectors. This list can be manually extended by
setting the detection/addblocknr parameter.

5.1.5 Choosing a Final Decomposition to Work With

Different decompositions usually lead to vastly different computation times for solving
the Dantzig-Wolfe reformulation. Experiments suggest that for MIPLIB models fewer
constraints in the master problem may help [8], but further experimentation is necessary.
GCG explicitly rewards a “textbook decomposition” like a set partitioning master prob-
lem with the remainder decomposing into (identical) blocks. There are other predefined
detection/scoretypes that reflect modeling experience from the column generation
literature. Experimentally, these features are weighted and combined with the percent-
age of the “white area” of a decomposition, illustrated in Figure 6. The highest score
determines the final decomposition.

5.1.6 Updates to the dec File Format

The dec file format describes decompositions. A dec file always refers to variable and
constraint names of a corresponding MIP. The format is section oriented where keywords
in a separate line start a new section. Keywords are followed by one or more values, each
in a separate line. Examples are mastercons, followed by names of constraints that are
assigned to the master problem; and presolved, followed by 1 or 0 to indicate whether
the decomposition refers to a presolved model or not.

In previous versions of the format, constraints that were not listed were assigned
to the master. For backwards compatibility, this is still the default, but to make use
of the new concept of partial decompositions, keyword consdefaultmaster followed
by a 0 enables that constraints not listed are left unassigned. Moreover, linking and
static variables can now be specified. Note that there are several implicit assignments of
constraints or variables. For instance, constraints with variables that appear in several
blocks are assigned to the master. Further details on the format can be found in the
documentation of the file reader dec.h.
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5.1.7 Computational Results

The most noticeable improvement over previous versions is the robustness of structure
detection. The new loop consistently finds decomposable structure, not only in “struc-
tured” models for which we know that they are amenable to a Dantzig-Wolfe reformu-
lation, but also for “non-structured” models from the MIPLIBs. Figure 7 gives some
results for all 361 instances of the MIPLIB 2010. Even the very basic setting of using
constraint classifiers and the connected finisher only fails to detect a decomposition 10
times (among which 3 are timeouts). The upcoming release of the next MIPLIB will
contain structure information provided with GCG 3.0.

Figure 7: For almost 300 out of 361 instances of the entire MIPLIB 2010 we
detect decompositions with at least 2 blocks; half of the instances have decom-
positions with more than 20 blocks (left figure). The score distribution of the
respective “whitest” detected decomposition is given on the right.

5.2 Automatic Benders’ Decomposition

As described in Section 2.1, SCIP 6.0 provides new Benders’ decomposition function-
ality. GCG 3.0 can be seen as one frontend to this functionality, see Section 2.1.1.
It automatically detects a Benders’ decomposable structure as seen, for instance, in
Figure 8. Then it forms a master problem with a series of subproblems and passes it
to SCIP’s Benders’ decomposition framework to manage the subproblem solving and
Benders’ cut generation. The Benders’ decomposition mode is activated by setting
relaxing/gcg/mode to 1.

Three settings are provided to detect structures suitable for Benders’ decomposition:
detect-benders, detect-benders-bin master, and detect-benders-cont subpr. The
last two restrict detection to the special cases of having only binary variables in the mas-
ter problem, or having only continuous variables in the subproblems, respectively. The
last case comes closest to the structure to which CPLEX, since version 12.8, can apply
Benders’ decomposition. All settings use an experimental Benders’ score to evaluate
Benders’ decompositions. In contrast to detecting Dantzig-Wolfe reformulations, the
score encourages linking variables and heavily penalizes linking constraints. In particu-
lar, linking constraints must not share variables with the blocks. In a first computational
comparison of GCG 3.0 against CPLEX 12.8 with Benders auto-decompose model

mode on, CPLEX is clearly faster on MIPLIB models that both can solve to optimality.
However, GCG is much more successful in identifying structure amenable to Benders’
decomposition.
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Figure 8: Nonzero structure of the constraint matrix of gesa3; original and
rearranged into a form amenable to Benders’ decomposition, as given in (4)–(5).

5.3 More Flexible Pricing

Pricing problems in GCG are usually MIPs and a sub-SCIP is used as the so-called
pricing solver. This refers to the pricingsolver/mip. CPLEX is used when GCG is
built with option PRICINGSOLVER=cplex. Beyond using a general MIP solver, there is
also the possibility to apply specialized solvers. When the subproblem is detected to be
a knapsack problem, it is solved with the solver specified in pricingsolver/knapsack.
A new such pricing solver was added in GCG 3.0 for weighted independent set pric-
ing problems (like for vertex coloring models). It uses the cliquer library and needs
compilation with CLIQUER=true.

More importantly, the pricing scheme has been completely restructured. This in
particular affects the way in which heuristic pricing is performed, and in which order
the pricing solvers are applied on the pricing problems. Previously, exact pricing was not
performed until all pricing problems had been solved heuristically, or heuristic pricing
had been aborted due to a parameter limit. Furthermore, the pricing loop iterated over
all pricing problems, while the next pricing problem was not considered until all available
solvers had been tried on each pricing problem.

GCG 3.0 offers a more flexible pricing scheme. Pricing is now performed via pricing
jobs, which essentially consist of a pricing problem, a solver to be applied on it, and the
information whether the solver should be applied heuristically. There is a one-to-one
correspondence between pricing jobs and pairs of pricing problems and solvers. These
pricing jobs are organized in a priority queue, which is maintained by a new class, the
pricing controller. The latter is also responsible for deciding over premature abortion
of the loop. For example, the loop can be aborted if a certain percentage of the pricing
problems have found at least one improving column, or if a certain number of columns
has already been generated.

In this context, the way in which heuristic pricing is used has changed. During the
pricing loop, the MIP and CPLEX pricing can now be applied more than one heuristic
pricing iteration per pricing problem, i.e., if a (node, gap, solution) limit is reached,
another iteration with an increased working limit may be performed rather than solving
the problem to optimality.

5.4 More Statistics and Exploration Capabilities

After detection has finished, the explore menu contains the list of all detected decompo-
sitions with information about the detectors that found the decompositions, their score,
etc. The default typically finds a few dozens up to a few hundred. The user can inter-
actively visualize single decompositions in the PDF viewer visual/pdfreader, which
defaults to evince, or select them for further processing: to be used for Dantzig-Wolfe
or Benders’ reformulation, or in reporting. The PDF generation requires gnuplot. All
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figures in this report were produced using this functionality.
Furthermore, the write menu contains two new options to write LATEX files, familytree,

and reportdecompositions. The former produces the tree of (partial) decompositions
as mentioned above, see Figure 5. The latter gives a detailed report, with figures, about
all the decompositions found. The selection can be limited with the select command
in the explore menu.

5.5 Further Improvements

Many parts of the code were revisited and improved, among others:

− The column management is now similar to SCIP’s cut management with pricerstore
and column pool.

− The dual variable stabilization is a hybridization of smoothing and an ascent method
of Pessoa et al. [51]. It is enabled in the root node only.

− The LP relaxation of the original model is now solved for obtaining a first dual bound
and to run SCIP’s heuristics.

− The initialization of the master problem also benefits from this and from the in-
troduction of artificial variables combined with a “big M” method, when this is
numerically safe.

− Discretization is now enabled on MIPs where continuous variables are convexified.
This allows for aggregation of subproblems also in the mixed-integer case.

− Several primal heuristics were improved. GCG can now be used as the popu-
lar price-and-branch heuristic by setting heuristics/restmaster/pbheur in the
master menu to TRUE.

6 The UG Framework

The Ubiquity Generator (UG) is a generic framework for parallelizing branch-and-bound
solvers. The SCIP Optimization Suite contains UG parallelizations of SCIP for both
shared and distributed memory computing environments, namely FiberSCIP [61] and
ParaSCIP [60]. A more detailed recent overview of the UG framework is given by
Shinano [59]. The release UG 0.8.5 extends the framework by

− the availability of C++11 threads for shared memory communication,

− customized racing ramp-up, which allows to use a set of user-defined parameters for
the racing ramp-up phase,

− branching on constraints for ug[SCIP,*], and

− user interfaces to initialize subproblems for ug[SCIP,*].

Previously, Pthreads was the only communicator available for shared memory com-
puting environments, but with the latest version of UG also C++11 threads can be used.
Since C++11 threads are a programming language feature, their usage improves the
portability of the parallel solver instantiated by UG.

Table 4 presents a brief performance comparison between FiberSCIP with Pthreads
and with C++11 threads on the 87 instances of the MIPLIB 2010 benchmark set. For the
experiment a PC cluster with Intel Xeon E5-2670 v2 CPUs with 2.50GHz, two sockets
with 10 cores each, and with 125 GB of main memory was used. Both FiberSCIP ver-
sions are agorithmically equivalent and use distributed domain propagation [27] during
racing ramp-up. Since UG’s parallelization is not deterministic, the results are aeraged
over 5 repeated runs. As the comparison shows, the performance of FiberSCIP with
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Table 4: Comparison between SCIP with Pthreads and C++11 threads as com-
municator, using 4 and 12 threads. The performance of sequential SCIP is given
as a reference. Statistics reported are the geometric mean of solving time in
seconds and the number of solved instances/timeouts/aborts.

Comm. None Pthreads C++11

Run SCIP FiberSCIP (4th) FiberSCIP (12th) FiberSCIP (4th) FiberSCIP (12th)

1 446.5 (75/12/0) 366.1 (77/10/0) 299.3 (79/7/1) 351.1 (78/9/0) 302.3 78/8/1
2 360.1 (77/9/1) 292.1 (79/8/0) 371.9 (77/10/0) 285.5 81/6/0
3 371.3 (76/11/0) 291.1 (78/9/0) 361.6 (78/9/0) 291.5 81/5/1
4 352.5 (77/10/0) 301.2 (78/8/1) 359.6 (78/9/0) 296.3 78/8/1
5 354.1 (77/10/0) 304.7 (79/6/2) 362.7 (77/10/0) 284.6 80/7/0

Avg. 446.5 360.8 297.7 361.4 292.0

Pthreads and C++11 threads is quite similar, but with C++11 threads FiberSCIP seems
to be slightly faster when using 12 threads. Therefore, FiberSCIP with C++11 threads
has become the new default in this release.

Note that the parameters are not tuned for the latest release version of SCIP and the
testset from MIPLIB 2010 benchmark is not overly suited for achieving large performance
gains by parallelization. The reason is that by now many of the instances are either
easy to solve with a single thread or too hard for SCIP even using multiple threads
in a few hours. Nevertheless, it can be observed that FiberSCIP outperforms the
sequential version of SCIP performance in parallelization on the PC up to 12 threads.
A closer analysis shows that on average more than 43 instances were solved in racing
stage when using 4 threads and more than 45 instances with 12 threads. Hence, for this
testset, the racing mechanism seems to have a large performance impact than the actual
parallelization of the search tree.

Racing ramp-up is a UG feature to exploit the performance variability commonly
observed in MIP solving. An instance is solved multiple times in parallel, each time with
a different parameter setting. If the instance has not been solved to optimality when
a predefined termination criterion, e.g., a time limit, is reached, the most promising
branch-and-bound tree is distributed among the UG solvers and the default solving
procedure is initiated. The latest UG release includes customized racing, which allows
the user to specify their own parameter settings for racing. If the number of UG
solvers exceeds the number of provided parameter sets, then the customized parameter
settings are combined with default ones. While this release version of SCIP does not
use customized racing by default, it is applied in both ug[SCIP-Jack,*] and ug[SCIP-
SDP,*].

This release also contains several updates regarding the parallel version of the Steiner
tree problem solver SCIP-Jack (see Section 4.3). Instead of branching on variables,
which in the case of Steiner tree problem correspond to edges, default SCIP-Jack uses
vertex branching [30]. During the branch-and-bound process, SCIP-Jack selects a non-
terminal vertex of the Steiner problem graph to be rendered a terminal in one branch-
and-bound child node and to be excluded in the other child. These two operations are
modeled in the underlying IP formulation by including one additional constraint. While
this procedure could not be used in previous versions of ug[SCIP-Jack,*], the latest UG
release now allows to not only branch on variables, but also on constraints. Furthermore,
to retain previous branching decisions, ug[SCIP-Jack,*] transfers the branching history
together with a subproblem, enabling SCIP-Jack to change the underlying graph (adds
terminals and deletes vertices). Additionally, whenever a subproblem has been trans-
fered, SCIP-Jack performs aggressive reduction routines to reduce the problem further.

For ug[SCIP-SDP,*] the customized racing can be used to combine both nonlin-
ear branch-and-bound and an LP-based cutting plane approach into a single solver for

35



mixed-integer semidefinite programs. In this case, one or possibly more threads will
try to solve the root node and the earlier parts of the tree using linear relaxations and
eigenvector cuts. The remaining threads will solve semidefinite relaxations until after
the racing stage the more promising approach on the particular instance is chosen for
the remainder of the solution process. This allows to exploit the sometimes very fast but
on other types of problems almost non-progressing cutting plane approach whenever it
works well on a particular instance, while keeping the more stable behavior of the SDP-
based branch-and-bound approach. Some first results on the CBLIB [19] show that this
approach leads to a speedup factor of three on the cardinality-constrained least-squares
instances already for two threads because of the success of the cutting-plane approach
on these instances. The LP-based approach also helps on some of the truss topology in-
stances, which also benefit from the parallelization of the branch-and-bound tree, while
the partitioning instances with smaller trees do not lend themselves well to this kind of
parallelization, since they are also not really suited for the LP-approach.

7 Final Remarks

The most notable extensions of functionality in Release 6.0 of the SCIP Optimization
Suite has been the support for Benders’ decomposition, both in SCIP and GCG. This
presents a first step towards the tighter integration between the decomposition algorithm
and state-of-the-art solvers for mixed-integer optimization. From a research perspective,
a generic Benders’ decomposition framework of this form allows to measure and compare
the impact of algorithmic ideas beyond single problem-specific implementations. With
the interaction with large neighborhood search heuristics one showcase for this advantage
has already been displayed. Future research will extend the framework with the addition
of enhancement techniques and new cutting plane methods and investigate methods to
detect structures most amenable to the application of Benders’ decomposition.

Further, through GCG, the Benders’ decomposition framework makes SCIP one of
the first state-of-the-art solvers capable of automatically applying Benders’ decomposi-
tion to general MIP instances, also for non-expert users. This added usability was made
possible first and foremost through a major redesign and many improvements in the core
of GCG, that are equally targeted towards its classical use case for performing Dantzig-
Wolfe reformulation generically and automatically. The greatly increased flexibility of
the new modular detection scheme allows for finding structures that were undetected or
even undetectable with previous versions.

Last, not least, it should be mentioned that SCIP’s MINLP performance was im-
proved by careful tuning and the performance of the MIP core was advanced through
two algorithmic innovations: a new diving heuristic called Farkas diving, which exploits
interactions with conflict analysis, and a new cut selection measure called the directed
cutoff distance, which takes into account knowledge about the incumbent solution. All
in all, these enhancements help to reduce the average running time of SCIP and increase
the number of solved instances for both MIP and MINLP testsets.
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Code Contributions of the Authors

The material presented in the article is highly related to code and software. In the
following we try to make the corresponding contributions of the authors and possible
contact points more transparent.

SCIP’s extension for Benders’ decomposition including the interface to PySCIPOpt
and the stochastic capacitated facility location example (Section 2.1 and 4.2) have been
implemented by SM. The nonlinear extensions of PySCIPOpt have been implemented
by FeS. GH conducted the tuning of the ALNS heuristic and the new conflict-driven div-
ing heuristics were contributed by JaW and AG (Section 2.3). The lookahead branching
rule (Section 2.4) was added by CS and GG. RG implemented the improvements to
the cutting plane separation (Section 2.5). The improvements to symmetry handling
(Section 2.6) were performed by MP and CH. Several LPI interfaces and their unit tests
have been maintained by MP with support from FrS, FeS, and AG (Section 2.7). The
generalized variable locks have been implemented by JaW (Section 2.8.1). GH and FrS
have supported the infrastructure for performing and evaluating computational exper-
iments throughout the SCIP development with their work on the tools Ipet [31] and
Rubberband [57].

The improvements to SoPlex described in Section 3 have been chiefly performed by
MM together with GG (for the new aggregation presolver). The work on the applications
in Section 4 has been conducted by BM, FW, and AG (for recursive ring packing), DR
(updates in SCIP-Jack), and TG (updates in SCIP-SDP). The adjustments to UG
explained in Section 6 have been implemented by YS, TG (for MISDP), and DR (for
SCIP-Jack).

The redesign of GCG’s structure detection described in Section 5.1 has been per-
formed by MB, its interaction with the Benders’ framework (Section 5.2) by SM. The
visualization of (partial) decompositions has been implemented by MB. CP restructured
the pricing loop as described in Section 5.3 and improved several primal heuristics. JoW
improved the initialization of the master problem and the implementations of column
and cut management and the stabilization of dual variables. Build files for cmake were
added by MW.
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Automatic Dantzig-Wolfe reformulation of mixed integer programs. Mathematical Pro-
gramming, 149(1–2):391–424, 2015. doi:10.1007/s10107-014-0761-5.

[9] T. Berthold. Heuristics of the Branch-Cut-and-Price-Framework SCIP. In J. Kalcsics and
S. Nickel, editors, Operations Research Proceedings 2007, pages 31–36, 2008.

[10] J. R. Birge, M. A. Dempster, H. I. Gassmann, E. Gunn, A. J. King, and S. W. Wallace.
A standard input format for multiperiod stochastic linear programs. Technical Report
WP-87-118, IIASA, Laxenburg, Austria, 1987.

[11] N. Boland, M. Fischetti, M. Monaci, and M. Savelsbergh. Proximity Benders: a decom-
position heuristic for stochastic programs. Journal of Heuristics, 22(2):181–198, 2016.
doi:10.1007/s10732-015-9306-1.

[12] C. Carøe and J. Tind. L-shaped decomposition of two-stage stochastic programs with
integer recourse. Mathematical Programming, 83(1):451–464, 1998.

[13] COIN-OR. CppAD, a package for differentiation of C++ algorithms. http://www.

coin-or.org/CppAD.

[14] Computational Optimization Research at Lehigh Laboratory (CORAL). MIP in-
stances. https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/. Vis-
ited 12/2017.

[15] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8(1):101–111, 1960. doi:10.2307/167547.

[16] S. S. Dey and M. Molinaro. Theoretical challenges towards cutting-plane selection. Math-
ematical Programming, 170(1):237–266, 2018. doi:10.1007/s10107-018-1302-4.

[17] L. Eifler. Mixed-integer programming for clustering in non-reversible Markov processes.
Master’s thesis, Technische Universität Berlin, 2017.

[18] A. A. Farley. A note on bounding a class of linear programming problems, including cutting
stock problems. Operations Research, 38(5):922–923, 1990. doi:10.1287/opre.38.5.922.

[19] H. A. Friberg. CBLIB 2014: A benchmark library for conic mixed-integer and continuous
optimization. Mathematical Programming Computation, 8(2):191–214, 2016.

[20] T. Gally, M. E. Pfetsch, and S. Ulbrich. A framework for solving mixed-integer semidefinite
programs. Optimization Methods and Software, 33(3):594–632, 2018.
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