
22

Enabling Research through the SCIP Optimization Suite 8.0

KSENIA BESTUZHEVA , Zuse Institute Berlin, Department AIS 2 T

MATHIEU BESANÇON , Zuse Institute Berlin, Department AIS 2 T

WEI-KUN CHEN , Beijing Institute of Technology, School of Mathematics and Statistics

ANTONIA CHMIELA , Zuse Institute Berlin, Department AIS 2 T

TIM DONKIEWICZ , RWTH Aachen University, Lehrstuhl für Operations Research

JASPER VAN DOORNMALEN , Eindhoven University of Technology, Department of Mathematics

and Computer Science

LEON EIFLER , Zuse Institute Berlin, Department AIS 2 T

OLIVER GAUL , RWTH Aachen University, Lehrstuhl für Operations Research

GERALD GAMRATH , Zuse Institute Berlin, Department AIS 2 T and I 2 DAMO GmbH

AMBROS GLEIXNER , Zuse Institute Berlin, Department AIS 2 T and HTW Berlin

The work for this article has been partly conducted within the Research Campus MODAL funded by the German Federal
Ministry of Education and Research (BMBF grant number 05M14ZAM) and has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 773897. It has also been partly supported
by the German Research Foundation (DFG) within the Collaborative Research Center 805, Project A4, and the EXPRESS
project of the priority program CoSIP (DFG-SPP 1798), the German Research Foundation (DFG) within the project HPO-
NAVI (project number 391087700).
Authors’ addresses: K. Bestuzheva, M. Besançon, A. Chmiela, L. Eifler, L. Gottwald, C. Graczyk, A. Hoen, B. Muller, F.
Schlösser, F. Serrano, F. Wegscheider, and J. Witzig, Zuse Institute Berlin, Department AIS 2 T, Takustr. 7, 14195, Berlin,
Germany; emails: {bestuzheva, besancon, chmiela, eifler, gottwald, graczyk, hoen, benjamin.mueller, schloesser, serrano,
wegscheider, witzig}@zib.de; W.-K. Chen, Beijing Institute of Technology, School of Mathematics and Statistics, 5 Zhong-
guancun South Street, Beijing, 100081, China; email: chenweikun@bit.edu.cn; T. Donkiewicz, O. Gaul, M. Lübbecke, E.
Mühmer, and S. Schlein, RWTH Aachen University, Lehrstuhl für Operations Research, Kackertstr. 7, 52072, Aachen, Ger-
many; emails: {tim.donkiewicz, oliver.gaul, marco.luebbecke, erik.muehmer, stefan.schlein}@rwth-aachen.de; J. van Doorn-
malen and C. Hojny, Eindhoven University of Technology, Department of Mathematics and Computer Science, PO Box 513,
5600 MB Eindhoven, The Netherlands; emails: {m.j.v.doornmalen, c.hojny}@tue.nl; G. Gamrath, ZIB-AIS 2 T and I 2 DAMO

GmbH, Englerallee 19, 14195, Berlin, Germany; email: gamrath@zib.de; A. Gleixner, Zuse Institute Berlin, Department
AIS 2 T, Takustr. 7, 14195, Berlin, Germany and HTW Berlin; email: gleixner@zib.de; K. Halbig and D. Weninger, Friedrich-
Alexander Universität Erlangen-Nürnberg, Department of Data Science, Cauerstr. 11, 91058, Erlangen, Germany; emails:
{katrin.halbig, dieter.weninger}@fau.de; R. van der Hulst, University of Twente, Department of Discrete Mathematics and
Mathematical Programming, P.O. Box 217, 7500, AE Enschede, The Netherlands; email: r.p.vanderhulst@utwente.nl; T.
Koch and M. Turner, Technische Universität Berlin, Chair of Software and Algorithms for Discrete Optimization, Straße
des 17. Juni 135, 10623, Berlin, Germany and ZIB, Department A

2 IM, Takustr. 7, 14195, Berlin, Germany; emails: {koch,
turner}@zib.de; S. J. Maher, University of Exeter, College of Engineering, Mathematics and Physical Sciences, Harrison
Building, Streatham Campus, N Park Rd, Exeter EX4 4QF, United Kingdom; email: s.j.maher@exeter.ac.uk; F. Matter and M.
E. Pfetsch, Technische Universität Darmstadt, Fachbereich Mathematik, Dolivostr. 15, 64293, Darmstadt, Germany; emails:
{matter, pfetsch}@mathematik.tu-darmstadt.de; D. Rehfeldt and Y. Shinano, Zuse Institute Berlin, Department A

2 IM,
Takustr. 7, 14195, Berlin, Germany; emails: {rehfeldt,shinano}@zib.de; B. Sofranac, Zuse Institute Berlin, Department AIS 2 T,
Takustr. 7, 14195, Berlin, Germany and Technische Universität Berlin; email: sofranac@zib.de; S. Vigerske, GAMS Software
GmbH, c/o Zuse Institute Berlin, Department AIS 2 T, Takustr. 7, 14195, Berlin, Germany; email: svigerske@gams.com; P.
Wellner, Zuse Institute Berlin, Department AIS 2 T, Takustr. 7, 14195, Berlin, Germany; email: p.we@fu-berlin.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org .
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0098-3500/2023/06-ART22 $15.00
https://doi.org/10.1145/3585516

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://orcid.org/0000-0002-7018-7099
https://orcid.org/0000-0002-6284-3033
https://orcid.org/0000-0003-4147-1346
https://orcid.org/0000-0002-4809-2958
https://orcid.org/0000-0002-5721-3563
https://orcid.org/0000-0002-2494-0705
https://orcid.org/0000-0003-0245-9344
https://orcid.org/0000-0002-2131-1911
https://orcid.org/0000-0001-6141-5937
https://orcid.org/0000-0003-0391-5903
mailto:permissions@acm.org
https://doi.org/10.1145/3585516
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585516&domain=pdf&date_stamp=2023-06-15

22:2 K. Bestuzheva et al.

LEONA GOTTWALD and CHRISTOPH GRACZYK , Zuse Institute Berlin, Department AIS 2 T

KATRIN HALBIG , Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Data Science

ALEXANDER HOEN , Zuse Institute Berlin, Department AIS 2 T

CHRISTOPHER HOJNY , Eindhoven University of Technology, Department of Mathematics and

Computer Science

ROLF VAN DER HULST , University of Twente, Department of Discrete Mathematics and

Mathematical Programming

THORSTEN KOCH , Technische Universität Berlin and Zuse Institute Berlin, Department A

2 IM

MARCO LÜBBECKE , RWTH Aachen University, Lehrstuhl für Operations Research

STEPHEN J. MAHER , University of Exeter, College of Engineering, Mathematics and Physical Sciences

FREDERIC MATTER , Technische Universität Darmstadt, Fachbereich Mathematik

ERIK MÜHMER , RWTH Aachen University, Lehrstuhl für Operations Research

BENJAMIN MÜLLER , Zuse Institute Berlin, Department AIS 2 T

MARC E. PFETSCH , Technische Universität Darmstadt, Fachbereich Mathematik

DANIEL REHFELDT , Zuse Institute Berlin, Department A

2 IM

STEFFAN SCHLEIN , RWTH Aachen University, Lehrstuhl für Operations Research

FRANZISKA SCHLÖSSER and FELIPE SERRANO , Zuse Institute Berlin, Department AIS 2 T

YUJI SHINANO , Zuse Institute Berlin, Department A

2 IM

BORO SOFRANAC , Zuse Institute Berlin, Department AIS 2 T and Technische Universität Berlin

MARK TURNER , Zuse Institute Berlin, Department A

2 IM and Technische Universität Berlin

STEFAN VIGERSKE , GAMS Software GmbH, c/o Zuse Institute Berlin, Department AIS 2 T

FABIAN WEGSCHEIDER , Zuse Institute Berlin, Department AIS 2 T

PHILIPP WELLNER , Zuse Institute Berlin, Department AIS 2 T

DIETER WENINGER , Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Data Science

JAKOB WITZIG , Zuse Institute Berlin, Department AIS 2 T

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization cen-
tered around the constraint integer programming framework SCIP . The focus of this article is on the role of
the SCIP Optimization Suite in supporting research. SCIP ’s main design principles are discussed, followed by
a presentation of the latest performance improvements and developments in version 8.0, which serve both as
examples of SCIP ’s application as a research tool and as a platform for further developments. Furthermore,
this article gives an overview of interfaces to other programming and modeling languages, new features
that expand the possibilities for user interaction with the framework, and the latest developments in several
extensions built upon SCIP .

CCS Concepts: • Theory of computation → Mixed discrete-continuous optimization ; Parallel algo-

rithms; Branch-and-bound; • Mathematics of computing → Solvers ; Mathematical software perfor-

mance ;

Additional Key Words and Phrases: Constraint integer programming, linear programming, mixed-integer
linear programming, mixed-integer nonlinear programming, optimization solver, branch-and-cut, branch-
and-price, column generation, parallelization, mixed-integer semidefinite programming

ACM Reference format:

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van Doorn-
malen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph Graczyk,
Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco Lübbecke,
Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt,
Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://orcid.org/0000-0002-8894-5011
https://orcid.org/0000-0001-8990-9912
https://orcid.org/0000-0002-8730-3447
https://orcid.org/0000-0003-1065-1651
https://orcid.org/0000-0002-5324-8996
https://orcid.org/0000-0002-5941-3016
https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0002-2635-0522
https://orcid.org/0000-0003-3773-6882
https://orcid.org/0000-0002-0499-1820
https://orcid.org/0000-0003-1114-3800
https://orcid.org/0000-0002-4463-2873
https://orcid.org/0000-0002-0947-7193
https://orcid.org/0000-0002-2877-074X
https://orcid.org/0009-0003-8322-7226
https://orcid.org/0000-0002-3716-5031
https://orcid.org/0000-0002-7892-3951
https://orcid.org/0000-0002-2902-882X
https://orcid.org/0000-0003-2252-9469
https://orcid.org/0000-0001-7270-1496
https://orcid.org/0009-0001-2262-0601
https://orcid.org/0009-0000-8100-6751
https://orcid.org/0009-0001-1109-3877
https://orcid.org/0000-0002-1333-8591
https://orcid.org/0000-0003-2698-0767

Enabling Research through the SCIP Optimization Suite 8.0 22:3

Vigerske, Fabian Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. 2023. Enabling Research

through the SCIP Optimization Suite 8.0. ACM Trans. Math. Softw. 49, 2, Article 00 (April 2023), 21 pages.
https://doi.org/10.1145/3585516

1

T

m

Z

c

s

f

p

m

a

e

S

[

e

a

t

n

d

i

W

T

(

t

g

C

r

f

o

f

o

a
 INTRODUCTION

he SCIP Optimization Suite comprises a set of complementary software packages designed to
odel and solve a large variety of mathematical optimization problems: the modeling language
impl [34], the presolving library PaPILO , the linear programming solver SoPlex [73], the
onstraint integer programming solver SCIP [2], which can be used as a fast standalone global
olver for mixed-integer linear and nonlinear programs and a flexible branch-cut-and-price
ramework, the automatic decomposition solver GCG [23], and the UG framework for solver
arallelization [57].
All six tools can be downloaded in source code and are freely available for members of noncom-
ercial and academic institutions. Development and bugfix branches of SCIP , SoPlex , and PaPILO

re mirrored under https://github.com/orgs/scipopt on a daily basis. They are accompanied by sev-
ral extensions for solving specific problem classes such as the award-winning Steiner tree solver
CIP-Jack [22] and the mixed-integer semidefinite programming (MISDP) solver SCIP-SDP
 20]. This article discusses the capacity of SCIP as a software and research tool and presents the
volving possibilities for working with the SCIP Optimization Suite 8.0, both as a black-box toolbox
nd as a framework with possibilties of interaction and extension.

Background . SCIP is a branch-cut-and-price framework for solving different types of optimiza-
ion problems, most importantly, mixed-integer linear programs (MILPs) and mixed-integer

onlinear programs (MINLPs). MINLPs are optimization problems of the form

min c � x

s.t. Ax ≥ b,

д
k
≤ д k (x) ≤ д k for all k ∈ M,

x i ≤ x i ≤ x i for all i ∈ N ,

x i ∈ Z for all i ∈ I ,

(1)

efined by c ∈ R

n , A ∈ R

m

(�) ×n , b ∈ R

m

(�)
, д , д ∈ R

m

(n)

, д : R

n → R

m

(n)
, x , x ∈ R

n
, the index set of

nteger variables I ⊆ N : = { 1 , . . . , n} and the index set of nonlinear constraints M : = { 1 , . . . , m

n } .
e assume that д is specified in algebraic form using basic expressions that are known to SCIP .

he usage of R : = R ∪ { −∞ , ∞} allows for variables that are free or bounded only in one direction
we assume that no variable is fixed to ±∞). In the absence of nonlinear constraints д ≤ д(x) ≤ д ,
he problem becomes an MILP.

SCIP is not restricted to solving MI(N)LPs, but is a framework for solving constraint inte-

er programs (CIPs), a generalization of the former two problem classes. The introduction of
IPs was motivated by the modeling flexibility of constraint programming and the algorithmic

equirements of integrating it with efficient solution techniques available for MILPs. Later on, this
ramework allowed for the integration of MINLPs. Roughly speaking, CIPs are finite-dimensional
ptimization problems with arbitrary constraints and a linear objective function that satisfy the
ollowing property: If all integer variables are fixed, the remaining subproblem must form a linear
r nonlinear program.
The core of SCIP coordinates a central branch-cut-and-price algorithm that is augmented by

 collection of plugins. The methods for processing constraints of a given type are implemented
ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://doi.org/10.1145/3585516
https://github.com/orgs/scipopt

22:4 K. Bestuzheva et al.

i

v

t

b

c

b

c

b

s

s

s

c

f

S

s

B

a

f

e

h

h

a

b

n

s

s

c

a

e

S

S

8

r

2

I

e

i

b

t

A

n constraint handler plugins. The default plugins included in the SCIP Optimization Suite pro-
ide tools to solve MI(N)LPs as well as some problems from constraint programming, satisfiability
esting, and pseudo-Boolean optimization. In this way, advanced methods like primal heuristics,
ranching rules, and cutting plane separators can be integrated using a pre-defined interface. SCIP
omes with many such plugins that enhance MI(N)LP performance, and new plugins can be created
y users. This design and solving process is described in more detail by Achterberg [1].

The core solving engine also includes PaPILO , which provides an additional presolving pro-
edure that is called by SCIP , and the linear programming (LP) solver SoPlex which is used
y default for solving the LP relaxations within the branch-cut-and-price algorithm. Interfaces to
everal external LP solvers exist, and new ones can be added by users.

The flexibility of this framework and its design, which is centered around the capacity for exten-
ion and customization, are aimed at making SCIP a versatile tool to be used by optimization re-
earchers and practitioners. The possibility to modify the solving process by including own solver
omponents enables users to test their techniques within a general-purpose branch-cut-and-price
ramework.

The extensions of SCIP that are included in the SCIP Optimization Suite showcase the use of
CIP as a basis for the users’ own projects. GCG extends SCIP to automatically detect problem
tructure and generically apply decomposition algorithms based on the Dantzig–Wolfe or the
enders’ decomposition scheme. SCIP-SDP allows to solve mixed-integer semidefinite programs,
nd SCIP-Jack is a solver for Steiner tree problems. Finally, the default instantiations of the UG
ramework use SCIP as a base solver in order to perform branch-and-bound in parallel computing
nvironments.

Examples of Works Using SCIP . A number of works independent of the authors of this article
ave employed SCIP as a research tool. Examples of such works include papers on new symmetry
andling algorithms [16], branching rules [7], and integration of machine learning with branch-
nd-bound based MILP solvers [48]. Further application-specific algorithms have been developed
ased on SCIP , for example, specialized algorithms for solving electric vehicle routing [13] and
etwork path selection [11] problems. Many articles employ SCIP as an MINLP solver for problems
uch as hyperplanes location [9], airport capacity extension, fleet investment, and optimal aircraft
cheduling [15], cryptanalysis problems [17], Wasserstein distance problems [12], and chance-
onstrained nonlinear programs [32].

Structure of the Article . This article is organized as follows. A performance evaluation of SCIP 8.0
nd a comparison of its performance to that of SCIP 7.0 is carried out in Section 2 . The core solving
ngine is discussed in Section 3 . The interfaces and modeling languages are presented in Section 4 .
CIP extensions that are included in the SCIP Optimization Suite are discussed in Section 5 , and
ection 6 concludes this article.

For a more detailed description of the new features introduced in SCIP Optimization Suite
.0, and for the technical details, we refer the reader to the SCIP Optimization Suite 8.0 release
eport [8].

 PERFORMANCE OF SCIP 8.0 FOR MILP AND MINLP

n this section, we present computational experiments conducted by running SCIP without param-
ter tuning or algorithmic variations to assess the performance changes since the 7.0 release. The
ndicators of interest are the number of solved instances, the shifted geometric mean of the num-
er of branch-and-bound nodes (shift 100 nodes), and the shifted geometric mean of the solving
ime (shift 1 second).
CM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

Enabling Research through the SCIP Optimization Suite 8.0 22:5

Table 1. Performance Comparison for MILP Instances

SCIP 8.0+ SoPlex 6.0 SCIP 7.0+ SoPlex 5.0 relative
Subset instances solved time nodes solved time nodes time nodes
all 1708 1478 231.3 3311 1445 271.3 4107 1.17 1.24
affected 1475 1424 173.8 2843 1391 209.7 3611 1.21 1.27
[0,tilim] 1529 1478 154.4 2512 1445 184.6 3167 1.20 1.26
[1,tilim] 1470 1419 185.9 2870 1386 223.8 3647 1.20 1.27
[10,tilim] 1361 1310 248.1 3612 1277 303.1 4661 1.22 1.29
[100,tilim] 1000 949 537.1 7270 916 702.6 10262 1.31 1.41
[1000,tilim] 437 386 1566.2 17973 353 2383.1 31707 1.52 1.76
diff-timeouts 135 84 2072.7 19597 51 5062.1 69354 2.44 3.54
both-solved 1394 1394 119.9 2048 1394 133.8 2330 1.12 1.14

2

W

a

w

n

0

[

o

M

t

2

m

n

t

2

R

s

i

t

t

v

v

n

t

t

t

1

.1 Experimental Setup

e use the SCIP Optimization Suite 7.0 as the baseline, including SoPlex 5.0 and PaPILO 1.0,
nd compare it with the SCIP Optimization Suite 8.0 including SoPlex 6.0 and PaPILO 2.0. Both
ere compiled using GCC 7.5, use Ipopt 3.12.13 as NLP subsolver built with the MUMPS 4.10.0
umerical linear algebra solver, CppAD 20180000.0 as algorithmic differentiation library, and bliss
.73 for detecting symmetry. The time limit was set to 7200 seconds in all cases.

The MILP instances are selected from the MIPLIB 2003, 2010, and 2017 [27] as well as the COR@L
 37] instance sets and include all instances solved by SCIP 7.0 with at least one of five random seeds
r solved by SCIP 8.0 with at least one of five random seeds; this amounts to 347 instances. The
INLP instances are similarly selected from the MINLPLib

1 with newly solvable instances added
o the ones solved by SCIP 7.0 for a total of 113 instances.

All performance tests were run on identical machines with Intel Xeon CPUs E5-2690 v4 @
.60GHz and 128GB in RAM. A single run was carried out on each machine in a single-threaded
ode. Each optimization problem was solved with SCIP using five different seeds for random
umber generators. This results in a testset of 565 MINLPs and 1735 MILPs. Instances for which
he solver reported numerically inconsistent results are excluded from the presented results.

.2 MILP Performance

esults of the performance runs on MILP instances are presented in Table 1 . The “affected” sub-
et contains instances for which the two solver versions show different numbers of dual simplex
terations. Instances in the subsets [t , tilim] were solved by at least one solver version within
he time limit and took least t seconds to solve with at least one version. “both-solved” and “diff-
imeouts” are the subsets of instances that can be solved by both versions and by exactly one
ersion, respectively. “relative” shows the ratio of the shifted geometric mean between the two
ersions.

The changes introduced with SCIP 8.0 improved the performance on MILPs both in terms of
umber of solved instances and time. The improvement is more limited on “both-solved” instances
hat were solved by both solvers, for which the relative improvement is only of 12 % . This indicates
hat the overall speedup is more due to newly solved instances than to improvement on instances
hat were already solved by SCIP 7.0.
 https://w w w.minlplib.org .

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://www.minlplib.org

22:6 K. Bestuzheva et al.

Table 2. Performance Comparison for MINLP

SCIP 8.0+ SoPlex 6.0 SCIP 7.0+ SoPlex 5.0 relative
Subset instances solved time nodes solved time nodes time nodes
all 558 454 39.1 2427 435 45.7 1845 1.17 0.76
affected 487 438 23.5 1748 419 28.4 1456 1.21 0.83
[0,tilim] 503 454 21.7 1585 435 25.9 1326 1.19 0.84
[1,tilim] 375 326 56.1 3994 307 71.0 3113 1.27 0.78
[10,tilim] 293 244 121.6 7450 225 169.3 5393 1.39 0.72
[100,tilim] 195 146 307.6 14204 127 433.9 6696 1.41 0.47
[1000,tilim] 153 104 466.9 23425 85 565.3 8382 1.21 0.36
diff-timeouts 117 68 451.4 29142 49 461.8 6275 1.02 0.22
both-solved 386 386 8.2 609 386 10.4 806 1.27 1.32

2

W

M

M

o

v

o

w

b

c

3

T

s

t

i

t

d

t

t

d

r

s

w

3

A

T

s

d

i

h

A

.3 MINLP Performance

ith the major revision of the handling of nonlinear constraints, the performance of SCIP on
INLPs has changed considerably compared to SCIP 7.0. The results are summarized in Table 2 .
ore instances are solved by SCIP 8.0 than by SCIP 7.0, and SCIP 8.0 solves the instances for each

f these subsets with a shorter shifted geometric mean time. On the 386 instances solved by both
ersions, SCIP 8.0 requires fewer nodes and less time. The number of instances solved by only
ne of the two versions (diff-timeouts) is much higher than reported in previous release reports
ith similar experiments, with 68 instances solved only by SCIP 8.0 and 49 instances solved only

y SCIP 7.0. A performance evaluation that focuses only on the changes in handling nonlinear
onstraints is given in Section 3.1.5 .

 THE CORE SOLVING ENGINE

his section presents the core solving engine, which includes the CIP solver SCIP , the MILP pre-
olving library PaPILO , and the LP solver SoPlex . It discusses SCIP ’s MINLP framework in Sec-
ion 3.1 , which was completely reworked in the 8.0 release, and demonstrates the possibilities for
mplementing user’s own methods using the examples of two areas that saw improvement with
he 8.0 release, namely symmetry handling and primal heuristics in Sections 3.2 and 3.3 .

The full list of new features introduced in SCIP 8.0 is the following: a new framework for han-
ling nonlinear constraints, symmetry handling on general variables and improved orbitope detec-
ion, a new separator for mixing cuts, improvements to decomposition-based heuristics, the option
o apply the mixed integer rounding procedure when generating optimality cuts in the Benders’
ecomposition framework, a new plugin type that enables users to include their own cut selection
ules into SCIP, and several technical improvements.

Furthermore, the section provides an overview of the presolving library PaPILO and the LP
olver SoPlex in Sections 3.4 and 3.5 , and presents the new dual postsolving feature in PaPILO ,
hich allowed for it to be integrated into SoPlex .

.1 SCIP’s New MINLP Framework

 new framework for handling nonlinear constraints was introduced with the SCIP 8.0 release.
he main motivation for this change is twofold: First, it aims at increasing the reliability of the
olver and alleviating numerical issues that arose from problem reformulations. Second, the new
esign of the nonlinear framework reduces the ambiguity of expression and structure types by
mplementing different kinds of plugins for low-level expressions that define expressions, and
igh-level structures that add functionality for particular, often overlapping structures.
CM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

Enabling Research through the SCIP Optimization Suite 8.0 22:7

s

n

m

t

w

s

t

g

c

f

s

F

o

n

c

o

a

e

i

a

e

l

o

n

a

c

h

s

h

t

p

t

i

a

t

v

W

s

The main components of the new framework are the following: plugins representing expres-
ions; a reimplementation of the constraint handler for nonlinear constraints, cons_nonlinear ;
onlinear handler plugins that provide functionality for high-level structures; a revision of the pri-
al heuristic that solves NLP subproblems; revised interfaces to NLP solvers; and revised interface

o an automatic differentiation library. Moreover, SCIP 8.0 contains cutting plane separators that
ork on nonlinear structures and interact with cons_nonlinear .

3.1.1 New Expressions Framework. Algebraic expressions are well-formed combinations of con-
tants, variables, and various algebraic operations such as addition, multiplication, exponentiation,
hat are used to describe mathematical functions. In SCIP, they are represented by a directed acyclic
raph with nodes representing variables, constants, and operators and arcs indicating the flow of
omputation.

With SCIP 8.0, the expression system has been completely rewritten. Proper SCIP plugins, re-
erred to as expression handlers , are now used to define all semantics of an operator. These expres-
ion handlers support more callbacks than what was available for user-defined operators before.
urthermore, much ambiguity and complexity is avoided by adding expression handlers for basic
perations only. High-level structures such as quadratic functions can still be recognized, but are
o longer made explicit by a change in the expression type.

3.1.2 New Handler for Nonlinear Constraints. For SCIP 8.0, the constraint handler for nonlinear
onstraints, cons_nonlinear , has been rewritten and constraint handlers for quadratic, second-

rder cone (SOC), absolute power, and bivariate constraints have been removed. Some function-
lities of the removed constraint handlers have been reimplemented in other plugins.

An initial motivation for rewriting cons_nonlinear was a numerical issue which was caused by
xplicit constraint reformulation in earlier versions. Such a reformulation can lead to a difference
n constraint violation estimation in the original and reformulated problems and, in particular, to
 solution being feasible for the reformulated problem and infeasible for the original problem. For
xample, this occurs in a problem where the constraint exp (ln (1000) + 1 + x y) ≤ z is reformu-
ated as exp (w) ≤ z, ln (1000) + 1 + x y = w . On the MINLPLib library, this issue occurred for 7%
f instances.
The purpose of the reformulation is to enable constructing a linear relaxation. In this process,

onlinear functions are approximated by linear under- and overestimators. Since the formulas that
re used to compute these estimators are only available for “simple” functions, new variables and
onstraints were introduced to split more complex expressions into adequate form [64 , 70].

A trivial attempt to solve the issue of solutions not being feasible in the original problem would
ave been to add a feasibility check before accepting a solution. However, if a solution is not fea-
ible, actions to resolve the violation of original constraints need to be taken, such as a separating
yperplane, a domain reduction, or a branching operation. Since the connection from the original
o the presolved problem was not preserved, it would not have been clear which operations on the
resolved problem would help best to remedy the violation in the original problem.
Thus, the new constraint handler aims to preserve the original constraints by applying only

ransformations that, in most situations, do not relax the feasible space when taking tolerances
nto account. The reformulations that were necessary for the construction of a linear relaxation
re not applied explicitly anymore, but handled implicitly by annotating the expressions that define
he nonlinear constraints. Another advantage of this approach is a clear distinction between the
ariables that were present in the original problem and the variables added for the reformulation.
ith this information, branching is avoided on variables of the latter type. Finally, it is now pos-

ible to exploit overlapping structures in an expression simultaneously.
ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

22:8 K. Bestuzheva et al.

c

t

a

a

v

v

H

s
w

t

w

S

w

p

f

t

t

r

p

o

c

s

e

f

S

h

r

f

a

n

t

p

t

A

3.1.3 Extended Formulations. Consider problems of the form (1), where the set of nonlinear
onstraints is non-empty, and some constraints may be nonconvex. SCIP solves such problems
o global optimality via a spatial branch-and-bound algorithm. Important parts of the algorithm
re presolving, domain propagation, linear relaxation, and branching. For domain propagation
nd linear relaxation, extended formulations are used which are obtained by introducing slack

ariables and replacing sub-trees of the expressions that define nonlinear constraints by auxiliary

ariables .
These extended formulations have the following form:

min c � x ,

s . t . h i (x , w i+1 , . . . , w m

) = w i , i = 1 , . . . , m,

x ≤ x ≤ x , w ≤ w ≤ w , x I ∈ Z

I .

(MINLP ext)

ere, w 1 , . . . , w m

are slack variables, and h i : = д i for i = 1 , . . . , m. For each function h i , subexpres-
ions f may be replaced by new auxiliary variables w i ′ , i ′ > m, and new constraints h i ′ (x) = w i ′

ith h i ′ : = f are added. For the latter, subexpressions may be replaced again. The result is referred
o by h i (x , w i+1 , . . . , w m

) for any i = 1 , . . . , m. That is, to simplify notation, w i+1 is used instead of
 max (i,m)+1 .

Example of an Extended Formulation . Consider constraint log (x) 2 + 2 log (x) y + y 2 ≤ 4 .
CIP may replace log (x) by an auxiliary variable w 2 , since this results in a quadratic form

2
2 + 2 w 2 y + y

2 , which is both bivariate and convex, the former being well suited for domain
ropagation and the latter being beneficial for linearization. Therefore, the following extended
ormulation may be constructed:

h 1 (x , y, w 2) : = (w 2)
2 + 2 w 2 y + y

2 = w 1 ,

h 2 (x , y) : = log (x) = w 2 , w 1 ≤ 4 .

3.1.4 Structure Handling. The construction of extended formulations is based on the informa-
ion on what algorithms are available for analyzing expressions of a specific structure. Following
he spirit of the plugin-oriented design of SCIP, these algorithms are added as separate plugins,
eferred to as nonlinear handlers . Nonlinear handlers can detect structures in expressions and
rovide domain propagation and linear relaxation algorithms that act on these structures. Unlike
ther plugins in SCIP, nonlinear handlers are managed by cons_nonlinear and not the SCIP
ore.

Nonlinear handlers for the following expression types are available in SCIP: quadratic expres-
ions defined as sums where at least one term is either a product of two expressions or a square
xpression, bilinear expressions, convex and concave expressions, quotient expressions of the
orm (ay 1 + b)/ (cy 2 + d) + e , and expressions defined in terms of semi-continuous variables. The
OC nonlinear handler provides separation for SOC constraints. Finally, the default nonlinear
andler ensures that there always exist domain propagation and linear under/overestimation
outines for an expression and employs callbacks of expression handlers to provide the necessary
unctionalities.

Additional structures can be recognized for generating cutting planes to strengthen LP relax-
tions. Such structures are handled by separator plugins. While separators are not restricted to
onlinear structures, the following separators were introduced in SCIP 8.0 that work on MINLPs:
he Reformulation-Linearization technique (RLT) [4 –6] separator adds RLT cuts for bilinear
roducts and can additionally reveal linearized products between binary and continuous variables;
he principal minor separator works on a matrix X = x x � , where entries X i j represent auxiliary
CM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

Enabling Research through the SCIP Optimization Suite 8.0 22:9

Table 3. Comparison of Performance of SCIP with Classic versus
New Handling of Nonlinear Constraints on MINLPLib

Subset instances metric classic new both

all 5034 solution infeasible 481 49 20
failed 143 70 18
solved 2929 3131 2742
time limit 1962 1833 1598
memory limit 0 0 0

clean 4839 fastest 3733 3637 2531
mean time 75.9s 70.3s
mean nodes 2543 2601

v

t

t

t

o

S

s

I

w

l

g

t

m

r

5

c

e

a

f

t

F

r

a

w

m

n
ariables corresponding to x i x j , and enforces that principle 2 × 2 minors are PSD; and the intersec-
ion cuts separator for rank-1 constraints (disabled by default) adds cuts derived from the condition
hat any 2 × 2 minor of X has determinant 0.

3.1.5 Performance Impact of Updates for Nonlinear Constraints. While Section 2.3 compared
he performance of SCIP 7.0 and SCIP 8.0, this section takes a closer look at the effect of replacing
nly the handling of nonlinear constraints in SCIP. That is, here the following two versions of
CIP are compared:

classic : the main development branch of SCIP as of 23.08.2021; nonlinear constraints handled
as in SCIP 7.0;

new : as classic, but with the handling of nonlinear constraints replaced as detailed in this sec-
tion and symmetry detection extended to handle nonlinear constraints (see Section 3.2).

SCIP has been build with GCC 7.5.0 and uses PaPILO 1.0.2, bliss 0.73, CPLEX 20.1.0.1 as LP
olver, Ipopt 3.14.4, CppAD 20180000.0 and Intel MKL 2020.4.304 for linear algebra (LAPACK).
popt uses the same LAPACK and HSL MA27 as linear solver. All runs are carried out on machines
ith Intel Xeon CPUs E5-2660 v3 @ 2.60GHz and 128GB RAM in a single-threaded mode. A time

imit of one hour, a memory limit of 100000MB, an absolute gap tolerance of 10 −6 , and a relative
ap tolerance of 10 −4 are set. All 1678 instances of MINLPLib (version 66559cbc from 2021-03-11)
hat can be handled by both versions are used. Note that MINLPLib is not designed to be a bench-
ark set, since, for example, some models are overrepresented. For each instance, two additional

uns were conducted where the order of variables and constraints were permuted. Thus, in total
,034 jobs were run for each version.

Table 3 summarizes the results. A run is considered as failed if the reported primal or dual bound
onflicts with best known bounds for the instance, the solver aborted prematurely due to a fatal
rror, or the solver did not terminate at the time limit. Runs where the final solution is not feasible
re counted separately. With the new version, for much fewer instances the final incumbent is not
easible for the original problem, that is, the issue discussed in Section 3.1.2 has been resolved. For
he remaining 49 instances, typically small violations of linear constraints or variable bounds occur.
urthermore, the reduction in “failed” instances by half shows that the new version is more robust
egarding the computation of primal and dual bounds. Finally, the new version solves about 400
dditional instances in comparision to the classic one, but also no longer solves about 200 instances
ithin the time limit.
Subset “clean” refers to all instances where both versions did not fail, i.e., either solved to opti-
ality or stopped due to the time limit. We count a version to be “fastest” on an instance if it is
ot more than 25% slower than the other version. Mean times were computed as explained in the
ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

22:10 K. Bestuzheva et al.

Fig. 1. Performance profiles with classic versus new handling of nonlinear constraints, showing the number
of instances for which the corresponding version was at most τ times worse (regarding time (left) or gap at
termination (right)) than the best of both versions. For the time plot, instances that were solved to optimality
are considered. For the gap plot, instances that did not fail are considered.

b

m

i

s

T

t

t

3

S

s

S

m

t

k

i

m

s

v

(

f

t

f

h

c

a

A

eginning of Section 2 . Due to the increase in the number of solved instances, a reduction in the
ean time with the new version on subset “clean” can be observed, even though the new version

s fastest on less instances than the classic one.
Figure 1 shows performance profiles that compare both versions w.r.t. the time to solve an in-

tance and the gap at termination. The time comparison visualizes what has been observed in
able 3 : The new version solves more instances, but can be slower. The gap comparison shows
hat on instances that are not solved, often the new version produces a smaller optimality gap
han the classic version.

.2 Improvements in Symmetry Handling

ymmetries are known to have an adverse effect on the performance of MI(N)LP solvers due to
ymmetric subproblems being treated repeatedly without providing new information to the solver.
ince detecting all symmetries is N P -hard [41], SCIP only detects symmetries that keep the for-
ulation invariant.
SCIP ’s symmetry handling framework can be used both as a black box and research tool. In

he black box approach, SCIP automatically detects and handles symmetries. If symmetries are
nown, users can tell SCIP about them by adding specialized constraints. Customized code can
nclude such constraints via API functions, but also black box SCIP can be informed about sym-

etries via parsing them from files in SCIP ’s CIP format. Moreover, SCIP facilitates research on
ymmetries as it stores all symmetry information centrally in the symmetry propagator and pro-
ides implementations of basic symmetry operations such as stabilizer computations.

For a permutation γ of the variable index set { 1 , . . . , n} and a vector x ∈ R

n , we define γ (x) =
x γ −1 (1) , . . . , x γ −1 (n)). We say that γ is a symmetry of (1) if the following holds: x ∈ R

n is feasible
or (1) if and only if γ (x) is feasible, and c � x = c � γ (x) . The set of all symmetries forms a group Γ,
he symmetry group of (1). If Γ is a product group Γ = Γ1 ⊗ · · · ⊗ Γk , the variables affected by one
actor of Γ are not affected by any other factor. In this case, SCIP can apply different symmetry
andling methods for each factor. The sets of all variables affected by a single factor are called
omponents.

SCIP 7.0 was only able to handle symmetries of binary variables in MILPs using two paradigms:
 constraint-based approach or the pure propagation-based approach orbital fixing [39 , 40 , 46]. For
CM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

Enabling Research through the SCIP Optimization Suite 8.0 22:11

a

c

s

g

a

t

M

d

l

j

a

h

a

s

c

c

i

o

t

b

e

t

f

3

M

b

f

a

e

t

o

i

L

l

m

s

t

A

h

h
 symmetry γ , the constraint-based approach enforces that the variable vector x is lexicographi-
ally not smaller than γ (x) . This is implemented via three different constraint handler plugins. For
ingle permutations γ , the symresack and orbisack constraint handlers use separation and propa-
ation [28] techniques for enforcing the lexicographic requirement, also c.f. [31]. Additionally, if
n entire factor Γi of Γ has a special structure, the orbitope constraint handler applies specialized
echniques [21].

SCIP 8.0 extends the symmetry handling framework. First, it allows to detect symmetries in
INLPs [72]. Second, in SCIP 8.0, symmetries of general variables can be handled by inequalities

erived from the Schreier-Sims table (SST cuts) [36 , 54]. These inequalities are based on a list of
eaders � 1 , . . . , � k together with suitably defined orbits O 1 , . . . , O k , leading to inequalities x � i ≥ x j ,
 ∈ O i , i ∈ { 1 , . . . , k } . Users have a high degree of flexibility to control the selection of orbits
nd can thus select the most promising symmetry handling strategy. Third, orbitope detection
as been extended to also detect suborbitopes, i.e., parts of the symmetry group that allow to
pply orbitopes. Since adding suborbitopes did not turn out to always be beneficial, SCIP adds
uborbitopes according to a strategy that can combine suborbitopes and SST cuts; adding SST
uts can be controlled by a user via parameters.

Furthermore, SCIP 8.0 contains improvements of previously available methods. First, if orbisack
onstraints interact with set packing or partitioning constraints in a certain way, they are automat-
cally upgraded to orbitopes. This upgrade has been made more efficient. Second, the running time
f the separation routine of cover inequalities for symresacks has been improved from quadratic
o linear by using the observation from [28] that minimal cover inequalities for symresacks can
e separated by merging connected components of an auxiliary graph. The new implementation
xploits that its connected components are either paths or cycles. Finally, propagation routines of
he symresack and orbisack constraint handler now find all variable fixings that can be derived
rom local variable bound information.

.3 Primal Decomposition Heuristics

ost MILPs have sparse constraint matrices for which a (bordered) block-diagonal form might
e obtained by permuting the rows/columns of the matrix. Identifying such a form allows
or potentially rendering large-scale complex problems considerably more tractable. Solution
lgorithms or heuristics can be designed exploiting the underlying structure and yielding smaller,
asier problems. In this sense, a so-called decomposition identifies subsets of rows and columns
hat are only linked to each other via a set of linking rows and/or linking columns, but are
therwise independent.
A decomposition consisting of k ∈ N blocks is a partition D : = (D

row , D

col) with D

row : =
(D

row

1 , . . . , D

row

k
, L

row), D

col : = (D

col
1 , . . . , D

col
k
, L

col) of the rows/columns of the constraint matrix A

nto k + 1 pieces each, whereby it holds for all i ∈ D

row

q 1
, j ∈ D

col
q 2

that a i, j � 0 implies q 1 = q 2 . Rows

row and columns L

col , which may be empty, are called linking rows and columns , respectively.
In general, there is no unique way to decompose an MILP, and different decompositions might

ead to different solver behaviors. Users might be aware of decompositions and know which are
ost useful for a specific problem. Therefore, since version 7.0 it is possible to pass user decompo-

itions to SCIP [21]. A decomposition structure can be created using the SCIP API, assigning labels
o variables and/or constraints, and calling automatic label computation procedures if necessary.
lternatively, SCIP also provides a file reader for decompositions in constraints.
In SCIP 7.0, the Benders decomposition framework and the heuristic Graph Induced Neighbor-

ood Search were extended to exploit user-provided decompositions, and a first version of the
euristic Penalty Alternating Direction Method (PADM) [25 , 55] was introduced. SCIP 8.0
ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

22:12 K. Bestuzheva et al.

c

P

p

v

s

a

b

f

t

v

c

t

λ

t

T

s

t

i

3

T

w

a

t

p

s

p

s

m

A

omes with an improvement of PADM and provides another decomposition heuristic Dynamic

artition Search (DPS) [8].

Improvement of Penalty Alternating Direction Method . PADM splits an MINLP into several sub-
roblems according to a given decomposition D with linking variables only, whereby the linking
ariables get copied and the differences are penalized. Then, the subproblems are alternatingly
olved. For faster convergence, the objective function of each subproblem has been replaced by
 penalty term, and this replacement can lead to arbitrarily bad solutions. Therefore, PADM has
een extended by the option to improve a found solution by reintroducing the original objective
unction.

Dynamic Partition Search . The new primal construction heuristic DPS requires a decomposi-
ion with linking constraints only. The linking constraints and their sides are split by introducing
ectors p q ∈ R

L row
for each block q ∈ { 1 , . . . , k } , where R

L row
denotes the space of vectors with

omponents indexed by L

row , and requiring that the following holds:

k ∑

q= 1

p q = b [L row] . (2)

To obtain information on subproblem infeasibility and speed up the solving process, the objec-
ive function is replaced by a weighted sum of slack variables z q ∈ R

L row

+ . For penalty parameter
∈ R

L row

>0 , each subproblem q has the form

min λ� z q ,

s . t . A [D

row
q ,D

col
q] x [D

col
q] ≥ b [D

row
q] ,

x i ≤ x i ≤ x i for all i ∈ N ∩ D

col
q ,

x i ∈ Z for all i ∈ I ∩ D

col
q ,

A [L row ,D

col
q] x [D

col
q] + z q ≥ p q ,

z q ∈ R

L row

+ .

(3)

From (3), it is apparent that the correct choice of p q plays a central role. For this reason, we refer
o (p q) q∈{ 1 , . . . , k } as a partition of b [L row] . The method starts with an initial partition fulfilling (2).
hen, it is checked whether this partition will lead to a feasible solution by solving k independent
ubproblems (3) with fixed p q . If the current partition does not correspond to a feasible solution,
hen the partition gets updated, so that (2) still holds. These steps are repeated. Similarly to PADM,
t is possible to improve the found solution by reoptimizing with the original objective function.

.4 PaPILO

he C++ library PaPILO provides presolving routines for (MI)LP problems and was introduced
ith the SCIP Optimization Suite 7.0 [21]. PaPILO can be integrated into MILP solvers or used

s a standalone presolver. As a standalone presolver it provides presolving and postsolving rou-
ines. Hence, it can be used to (a) provide presolving for new solving methods and (b) generate
resolved instances so that different solvers can be benchmarked independently of their own pre-
olvers. Thus, the performance/behavior of the actual solver can be evaluated and compared more
recisely.
PaPILO ’s transaction-based design allows presolvers to run in parallel without requiring expen-

ive copies of the problem and without special synchronizations. Instead of applying results im-
ediately, presolvers return their reductions to the core, where they are applied in a deterministic,
CM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

Enabling Research through the SCIP Optimization Suite 8.0 22:13

s

c

v

m

o

p

p

I

v

o

3

S

d

s

e

e

a

b

i

t

4

T

i

h

W

f

i

P

f

o

s

5

5

S

t
W

a

t

t

i
equential order. Validity of every reduction to the modified problem is checked to avoid applying
onflicting reductions.

Presolving deletes variables from the original problem by fixing, substituting, and aggregating
ariables. After solving the reduced problem, its solution does not contain any information on
issing variables. To restore the solution values of these variables and obtain a feasible solution

f the original problem, corresponding data needs to be stored during the presolving process. The
rocess of recalculating the original solution from the reduced one is called postsolving or post-
rocessing [3]. Until version 1.0.2, PaPILO supported only postsolving primal solutions for LPs.
n the latest version, PaPILO supports postsolving also for dual solutions, reduced costs, slack
ariables of the constraints, and the basic status of the variables and constraints for the majority
f the LP presolvers.

.5 SoPlex

oPlex is a simplex-based LP solver and an essential part of the optimization suite, since is the
efault LP-solver for SCIP . In addition to all the essential features of a state-of-the-art LP solver
uch as scaling, exploitation of sparsity, or presolving, SoPlex also supports an option for 80bit
xtended precision and an iterative refinement algorithm to produce high-precision solutions. This
nables SoPlex to also compute exact rational solutions to LPs, using either continued fraction
pproximations or a symbolic LU factorization.

The support of postsolving of dual LP solutions and basis information in PaPILO makes it possi-
le to integrate PaPILO fully as a presolving library into SoPlex . In version 6.0 of SoPlex , PaPILO
s available as an additional option for presolving. The previous presolving implementation con-
inues to be the default.

 MODELING LANGUAGES AND INTERFACES

here are many interfaces to SCIP from different programming and modeling languages. These
nterfaces allow users to programmatically call SCIP with an API close to the C one or leverage a
igher-level syntax.
The AMPL interface has been rewritten and moved to the main SCIP library and executable.
ith the SCIP Optimization Suite 8.0, there exists a C wrapper for SoPlex, updated GAMS inter-

aces for SoPlex and SCIP, a Julia package SCIP.jl , a basic Java interface JSCIPOpt, a new Matlab
nterface for SCIP 8.0 and SCIP-SDP based on the OPTI Toolbox by Jonathan Currie, and the
ython interface PySCIPOpt which can now also be installed as a Conda package.
The modeling language Zimpl allows for MI(N)LPs to be written and translated into some file

ormats supported by SCIP . Zimpl 3.5.0 allows quadratic objective functions in addition to previ-
usly supported linear objective functions, and can write suitable instances as Quadratic Uncon-
trained Binary Optimization problems.

 EXTENSIONS

.1 The GCG Decomposition Solver

CIP allows implementing tailored decomposition-based algorithms. Complementary to this, GCG
urns SCIP into a generic decomposition-based solver for MILPs. While GCG ’s focus is on Dantzig–

olfe reformulation (DWR) and Lagrangian decomposition, Benders decomposition (BD) is
lso supported. The philosophy behind GCG is that decomposition-based algorithms can be rou-
inely applied to MILPs without the user’s interaction or even knowledge. To this end, GCG au-
omatically detects a model structure that admits a decomposition and performs the correspond-
ng reformulation. This results in a master problem and one or several subproblems, which are
ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

22:14 K. Bestuzheva et al.

u

s

G

f

r

t

i

i

h

c

l

w

S

s

(

c

a

v

s

i

w

h

r

i

s

i
A

m

i

f

i

s

b

2

A

sually formulated as MILPs. Based on the reformulation, the linear relaxation in every node is
olved by column generation (in the DWR case) and Benders cut generation (in the BD case).
CG features primal heuristics and separation of cutting planes, several of which are adapted

rom SCIP , but some are tailored to the decomposition situation in which both an original and a
eformulated model are available. As a research tool, GCG can be used to quickly assess the poten-
ial of a decomposition-based algorithm for any problem for which a compact MILP formulation
s available. This allows evaluating the performance of an algorithmic idea with a single generic
mplementation, but across many different applications. In what follows, we describe some en-
ancements in the GCG 3.5 release.

5.1.1 Detection Loop Refactoring. Decomposition-based algorithms rely on model structures,
f. Section 3.3 . For automatic identification of such structures, GCG features a modular detection
oop. Detectors iteratively assign roles like “master” or “block” to variables and/or constraints. This
ay, usually many different potential decompositions are found. We refer to the SCIP Optimization

uite 6.0 release report [26] for a more detailed overview. Detectors are implemented as plugins
uch that new ones can be added conveniently. In every round, each detector works on existing
but possibly empty) partial or complete decompositions. An empirically very successful detection
oncept builds on the classification of constraints and variables, which is performed prior to the
ctual detection process, using classifiers .

5.1.2 Branching. In GCG , two general branching rules are implemented (branching on original
ariables [71] and Vanderbeck’s generic branching [69]) as well as one rule that applies only to
et partitioning master problems (Ryan and Foster branching [53]). While these rules differ signif-
cantly, the general procedure has two common stages: First, one determines the set of candidates
e could possibly branch on (called the branching rule). Second, the branching candidate selection

euristic selects one of the candidates. GCG previously contained pseudo cost, most fractional, and
andom branching as selection heuristics for original variable branching, and first-index branch-
ng for Ryan-Foster and Vanderbeck’s generic branching. In GCG 3.5, new strong branching-based
election heuristics are added [24].

5.1.3 Python Interface. With GCG 3.5, we introduce PyGCGOpt which extends SCIP ’s exist-
ng Python interface [38] for GCG and is distributed independently from the optimization suite. 2

ll existing functionality for MILP modeling is inherited from PySCIPOpt ; therefore, any MILP
odeled in Python can be solved with GCG without additional effort. The interface supports spec-

fying custom decompositions and exploring automatically detected decompositions, and plugins
or detectors and pricing solvers can be implemented in Python.

5.1.4 Visualization Suite. Visualizations of algorithmic behavior can yield understanding and
ntuition for interesting parts of a solving process. With GCG 3.5, we include a Python-based vi-

ualization suite that offers visualization scripts to show processes and results related to detection,
ranching, or pricing, among others. We highlight two features:

(1) Reporting functionality: A decomposition report offers an overview of all decompositions
that GCG found for a single run. For different runs, GCG 3.5 offers two reports: A testset

report shows data and graphics for each single run of one selected test set. A comparison

report allows to compare two or more runs on the same test set.
(2) Jupyter notebook: data produced for the reports can be read, cleaned, filtered, and visual-
ized interactively.

 https://github.com/scipopt/PyGCGOpt .

CM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://github.com/scipopt/PyGCGOpt

Enabling Research through the SCIP Optimization Suite 8.0 22:15

Table 4. Performance Comparison of SCIP-SDP 4.0
versus SCIP-SDP 3.2

opt # nodes time [s]
SCIP-SDP 3.2 185 617.3 42.9
SCIP-SDP 4.0 187 497.3 26.6

5

S

w

G

i

r

g

t

s

i

r
a

S

L

a

F

e

i

s

M

c

c

r

c

5

G

p

i

o

m

h

w

3

.2 SCIP-SDP

CIP-SDP is an MISDP solver and a platform for implementing methods for solving MISDPs. It
as initiated by Sonja Mars and Lars Schewe [42], and then continued by Gally et al. [20] and
ally [19]. New results and methods mainly concerning presolving and propagation are presented

n [43]. SCIP-SDP features interfaces to SDP-solvers DSDP, Mosek, and SDPA.
SCIP-SDP implements an SDP-based branch-and-bound method, which solves a continuous SDP

elaxation in each node. It incorporates plugins such as primal heuristics, presolving and propa-
ation methods, and file readers. There is also an option to solve LP relaxations in each node of
he branch-and-bound tree and generate eigenvector cuts, see Sherali and Fraticelli [56]. This is
ometimes faster than solving SDPs in every node. These two options can also be run concurrently
f the parallel interface TPI of SCIP is used. There also is a Matlab interface to SCIP-SDP .

Moreover, SCIP-SDP can handle rank-1 constraints, that is, the requirement that a matrix A has
ank 1. For such a constraint, quadratic constraints are added, modeling that all 2 × 2 -minors of A
re zero [14].

Before we present some computational results, let us add some words of caution. Although
CIP-SDP is numerically quite robust, accurately solving SDPs is more demanding than solving
Ps. This can lead to wrong results on some instances, 3 and the results often depend on the toler-
nces. Moreover, the SDP-solvers use relative tolerances, while SCIP-SDP uses absolute tolerances.
inally, for Mosek, we use a slightly tighter feasibility tolerance than in SCIP-SDP .

Table 4 shows a comparison between SCIP-SDP 3.2 and 4.0 on the same testset as used by Gally
t al. [20], which consists of 194 instances; the changes between SCIP-SDP 4.0 and 3.2 are presented
n more detail in [8 , 43]. Reported are the number of optimally solved instances, as well as the
hifted geometric means of the number of processed nodes and the CPU time in seconds. We use
osek 9.2.40 for solving the continuous SDP relaxations. The tests were performed on a Linux

luster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs, having 32 GB main memory and 10 MB
ache. All computations were run single-threaded and with a timelimit of one hour.

As can be seen from the results, SCIP-SDP 4.0 is considerably faster than SCIP-SDP 3.2, but we
ecall that we have relaxed the tolerances. Nevertheless, we conclude that SCIP-SDP has signifi-
antly improved since the last version.

.3 SCIP-Jack : Solving Steiner Tree and Related Problems

iven an undirected, connected graph, edge costs and a set of terminal vertices, the Steiner tree

roblem in graphs (SPG) asks for a tree of minimum weight that covers all terminals. The SPG
s a fundamental N P -hard problem [33] and one of the most studied problems in combinatorial
ptimization.
SCIP-Jack , an exact SPG-solver, is built on the branch-and-cut framework provided by SCIP and
akes extensive use of its plugin-based design. At the heart of the implementation is a constraint

andler that separates violated constraints, most importantly the so-called directed Steiner cuts ,
hich are separated by a specialized maximum-flow algorithm [49]. The implementation includes
 For instance, in seldom cases, the dual bound might exceed the value of a primal feasible solution.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

22:16 K. Bestuzheva et al.

Fig. 2. Computational results on the 200 benchmark instances of Tracks A and B of the PACE Challenge
2018.

a

a

i

S

i

a

b

l

(

t

a

R

G

d

t

l

p

i

S

E

w

w

5

U

e

i

5

Q

4

5

A

 variety of additional SCIP plugins, such as heuristics, propagators, branching rules, and relax-
tors. Finally, the use of SCIP provides significant flexibility in the model to be solved, for example
t is easily possible to add additional constraints. In this way, SCIP-Jack can solve not only the
PG, but also 14 related problems.

The SCIP Optimization Suite 8.0 contains the new SCIP-Jack 2.0, 4 which comes with major
mprovements on most problem classes it can handle and outperforms the SPG solver by Polzin
nd Vahdati [47 , 68], which had remained unchallenged for almost 20 years, on almost all nontrivial
enchmark testsets from the literature [51].
Figure 2 provides computational results on the instances from Tracks A and B of the PACE Chal-

enge 2018 [10]. We use Gurobi 9.5 (Commercial), the best other solver from the PACE Challenge
 SPDP [29]), and SCIP-Jack with SoPlex (SCIPJ/spx) and Gurobi 9.5 (SCIPJ/grb) as LP solvers. A
imelimit of one hour was set. Average times are given as arithmetic means with time-outs counted
s one hour each. The results were obtained on Intel Xeon CPUs E3-1245 @ 3.40 GHz with 32 GB
AM. It can be seen that SCIPJ/grb is roughly 17 times faster than SPDP, and 96 times faster than
urobi . For larger instances of the PACE 2018 benchmark, one commonly observes a run time
ifference of more than six orders of magnitude between SCIP-Jack and commercial MILP solvers.
Considerable problem-specific improvements have been made for the prize-collecting Steiner

ree problem (STP) and (to a lesser extent) for the maximum-weight connect subgraph prob-
em [50 , 52]. SCIP-Jack 2.0 can solve many previously unsolved benchmark instances from both
roblem classes to optimality—the largest of these instances have up to 10 million edges. Large
mprovements are observed for the Euclidean STP: SCIP-Jack 2.0 is able to solve 19 Euclidean
TPs with up to 100 000 terminals to optimality for the first time [51]. Notably, the state-of-the-art
uclidean STP solver GeoSteiner 5.1 [30] could not solve any of these instances, even after one
eek of computation. In contrast, SCIP-Jack 2.0 solves all of them within 12 minutes, some even
ithin two minutes.

.4 The UG Framework

G is a generic framework for parallelizing solvers in a distributed or shared memory computing
nvironment. It was designed to parallelize state-of-the-art branch-and-bound solvers externally
n order to exploit their powerful performance. We have developed parallel solvers for SCIP [58 ,
9 , 61], CPLEX (not developed anymore), FICO Xpress [60], PIPS-SBB [44 , 45], Concorde, 5 and
apNB [18]. Customized SCIP-based solvers such as SCIP-SDP and SCIP-Jack can be parallelized
 See also https://scipjack.zib.de .
 https://w w w.math.uwaterloo.ca/tsp/concorde.html .

CM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://scipjack.zib.de
https://www.math.uwaterloo.ca/tsp/concorde.html

Enabling Research through the SCIP Optimization Suite 8.0 22:17

w

i

v

d

E

v

u

C

l

6

W

a

S

s

o

l

d

i

f

h

w

e

8

S

S

d

a

c

c

A

T

a

t

A

t

R

6

ith minimal effort [62]. The parallel version of SCIP-Jack solved several previously unsolved
nstances from SteinLib [35] by using up to 43,000 cores [63].

In addition to the parallelization of these branch-and-bound base solvers, UG was used to de-
elop MAP-SVP [65], which is a solver for the Shortest Vector Problem (SVP), whose algorithm
oes not rely on branch-and-bound. For these applications, UG had to be adapted and modified.
specially, the success of MAP-SVP, which updated several records of the SVP challenge, 6 moti-
ated us to develop generalized UG , in which all solvers developed so far can be handled by a single
nified framework. This has enabled UG 1.0 to serve as the basis for the parallel frameworks
MAP-LAP (Configurable Massively Parallel solver framework for LAttice Prob-

ems) [66] and CMAP-DeepBKZ [67].

 FINAL REMARKS

e discussed the functionality that the SCIP Optimization Suite offers optimization researchers,
nd highlighted performance improvements and new functionality that was introduced in the
CIP Optimization Suite 8.0. The performance comparison of SCIP 7.0 and SCIP 8.0 showed a 17 %
peed-up on both the MILP and MINLP testsets. This was followed by a discussion of some aspects
f the core solving engine of the SCIP Optimization Suite. The new framework for handling non-
inear constraints was presented, which offers increased reliability as well as improved handling of
ifferent types of nonlinearities that reduces type ambiguity and extends support for implement-
ng the handling of user-defined nonlinearities. The use of SCIP ’s flexible plugin-based structure
or extending the solver with user methods was demonstrated on the examples of new symmetry
andling methods and primal decomposition heuristics. The framework that SCIP provides for
orking on these methods was explained and the relevant plugin types and other customization-

nabling features were discussed, followed by the presentation of new methods added in SCIP
.0.

Furthermore, we presented extensions built around SCIP . The semidefinite programming solver
CIP-SDP and the Steiner tree problem solver SCIP-Jack provide users of the SCIP Optimization
uite the functionality for solving more problem classes, the decomposition solver GCG offers a
ifferent solving approach, and the solver parallelization framework UG enables the use of branch-
nd-bound solvers, and in particular SCIP , in parallel computing environments. Moreover, these
omponents of the SCIP Optimization Suite demonstrate how SCIP ’s features can be leveraged in
reating new research projects which can extend beyond SCIP ’s standard focus and approach.

CKNOWLEDGMENTS

he authors want to thank all previous developers and contributors to the SCIP Optimization Suite
nd all users that reported bugs and often also helped reproducing and fixing the bugs. In particular,
hanks go to Suresh Bolusani, Didier Chételat, Gregor Hendel, Gioni Mexi, Matthias Miltenberger,
ndreas Schmitt, Robert Schwarz, Helena Völker, Matthias Walter, and Antoine Prouvoust and

he Ecole team. The Matlab interface was set up with the big help of Nicolai Simon.

EFERENCES

[1] T. Achterberg. 2007. Constraint Integer Programming . Dissertation. Technische Universität Berlin.
[2] Tobias Achterberg. 2009. SCIP: Solving constraint integer programs. Mathematical Programming Computation 1,

1 (2009), 1–41. DOI: https://doi.org/10.1007/s12532- 008- 0001- 1
[3] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger. 2020. Presolve reductions

in mixed integer programming. INFORMS Journal on Computing 32, 2 (2020), 473–506. DOI: https://doi.org/10.1287/
ijoc.2018.0857
 http://latticechallenge.org/svp-challenge .

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1287/ijoc.2018.0857
http://latticechallenge.org/svp-challenge

22:18 K. Bestuzheva et al.

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

A

[4] Warren P. Adams and Hanif D. Sherali. 1986. A tight linearization and an algorithm for zero-one quadratic program-
ming problems. Management Science 32, 10 (1986), 1274–1290. DOI: https://doi.org/10.1287/mnsc.32.10.1274

[5] Warren P. Adams and Hanif D. Sherali. 1990. Linearization strategies for a class of zero-one mixed integer program-
ming problems. Operations Research 38, 2 (1990), 217–226. DOI: https://doi.org/10.1287/opre.38.2.217

[6] Warren P. Adams and Hanif D. Sherali. 1993. Mixed-integer bilinear programming problems. Mathematical Program-

ming 59, 1 (1993), 279–305. DOI: https://doi.org/10.1007/BF01581249
[7] Daniel Anderson, Pierre Le Bodic, and Kerri Morgan. 2021. Further results on an abstract model for branching and

its application to mixed integer programming. Mathematical Programming 190, 1 (2021), 811–841.
[8] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van Doornmalen,

Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig,
Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic
Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe
Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner, Dieter
Weninger, and Jakob Witzig. 2021. The SCIP Optimization Suite 8.0 . Technical Report. Optimization Online. Retrieved
from http://w w w.optimization-online.org/DB _ HTML/2021/12/8728.html .

[9] Víctor Blanco, Alberto Japón, Diego Ponce, and Justo Puerto. 2021. On the multisource hyperplanes location problem
to fitting set of points. Computers & Operations Research 127 (2021), 105124.

10] Édouard Bonnet and Florian Sikora. 2018. The PACE 2018 parameterized algorithms and computational experiments
challenge: The third iteration. In Proceedings of the 13th International Symposium on Parameterized and Exact Compu-

tation, IPEC 2018 (LIPIcs) . Christophe Paul and Michal Pilipczuk (Eds.), Vol. 115, Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 26:1–26:15. DOI: https://doi.org/10.4230/LIPIcs.IPEC.2018.26

11] Marco Casazza and Alberto Ceselli. 2021. Optimization algorithms for resilient path selection in networks. Computers

& Operations Research 127 (2021), 105191.
12] Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, and Lorenzo Venturello. 2021. Wasserstein

distance to independence models. Journal of Symbolic Computation 104 (2021), 855–873.
13] Alberto Ceselli, Ángel Felipe, M. Teresa Ortuño, Giovanni Righini, and Gregorio Tirado. 2021. A branch-and-cut-and-

price algorithm for the electric vehicle routing problem with multiple technologies. Operations Research Forum 2, 1
(2021), 8.

14] Chen Chen, Alper Atamtürk, and Shmuel S. Oren. 2017. A spatial branch-and-cut method for nonconvex QCQP with
bounded complex variables. Mathematical Programming 165, 2 (2017), 549–577.

15] Stefano Coniglio, Mathias Sirvent, and Martin Weibelzahl. 2021. Airport capacity extension, fleet investment, and
optimal aircraft scheduling in a multilevel market model: Quantifying the costs of imperfect markets. OR Spectrum

43, 2 (2021), 367–408.
16] Gustavo Dias and Leo Liberti. 2021. Exploiting symmetries in mathematical programming via orbital independence.

Annals of Operations Research 298, 1 (2021), 149–182.
17] Antonio Florez-Gutierrez, Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, André Schrottenloher, and Ferdinand

Sibleyras. 2021. Internal symmetries and linear properties: Full-permutation distinguishers and improved collisions
on Gimli. Journal of Cryptology 34, 4 (2021), 1–37.

18] Koichi Fujii, Naoki Ito, Sunyoung Kim, Masakazu Kojima, Yuji Shinano, and Kim-Chuan Toh. 2021. Solving Challeng-

ing Large Scale QAPs . ZIB-Report 21-02. Zuse Institute Berlin.
19] Tristan Gally. 2019. Computational Mixed-Integer Semidefinite Programming . Dissertation. TU Darmstadt.
20] Tristan Gally, Marc E. Pfetsch, and Stefan Ulbrich. 2018. A framework for solving mixed-integer semidefinite pro-

grams. Optimization Methods and Software 33, 3 (2018), 594–632. DOI: https://doi.org/10.1080/10556788.2017.1322081
21] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse, Patrick Gemander,

Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel, Christopher Hojny, Thorsten Koch, Pierre Le Bodic,
Stephen J. Maher, Frederic Matter, Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska
Schlösser, Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter Weninger,
and Jakob Witzig. 2020. The SCIP Optimization Suite 7.0 . Technical Report. Optimization Online. Retrieved from http:
//w w w.optimization-online.org/DB _ HTML/2020/03/7705.html .

22] Gerald Gamrath, Thorsten Koch, Stephen J. Maher, Daniel Rehfeldt, and Yuji Shinano. 2017. SCIP-Jack—a solver
for STP and variants with parallelization extensions. Mathematical Programming Computation 9, 2 (2017), 231–296.
DOI: https://doi.org/10.1007/s12532- 016- 0114- x

23] Gerald Gamrath and Marco E. Lübbecke. 2010. Experiments with a generic Dantzig-Wolfe decomposition for integer
programs. In Experimental Algorithms . Paola Festa (Ed.), Lecture Notes in Computer Science, Vol. 6049, Springer,
Berlin, 239–252. DOI: https://doi.org/10.1007/978- 3- 642- 13193- 6 _ 21

24] Oliver Gaul. 2021. Hierarchical Strong Branching and Other Strong Branching-Based Branching Candidate Selection

Heuristics in Branch-and-Price . Master’s thesis. RWTH Aachen University.
CM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://doi.org/10.1287/mnsc.32.10.1274
https://doi.org/10.1287/opre.38.2.217
https://doi.org/10.1007/BF01581249
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://doi.org/10.4230/LIPIcs.IPEC.2018.26
https://doi.org/10.1080/10556788.2017.1322081
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://doi.org/10.1007/s12532-016-0114-x
https://doi.org/10.1007/978-3-642-13193-6_21

Enabling Research through the SCIP Optimization Suite 8.0 22:19

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

25] Björn Geißler, Antonio Morsi, Lars Schewe, and Martin Schmidt. 2017. Penalty alternating direction methods for
mixed-integer optimization: A new view on feasibility pumps. SIAM Journal on Optimization 27, 3 (2017), 1611–1636.
DOI: https://doi.org/10.1137/16M1069687

26] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gamrath, Robert Lion Gottwald, Gregor Hen-
del, Christopher Hojny, Thorsten Koch, Marco E. Lübbecke, Stephen J. Maher, Matthias Miltenberger, Benjamin
Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska Schlösser, Christoph Schubert, Felipe Serrano,
Yuji Shinano, Jan Merlin Viernickel, Matthias Walter, Fabian Wegscheider, Jonas T. Witt, and Jakob Witzig. 2018. The

SCIP Optimization Suite 6.0 . Technical Report. Optimization Online. Retrieved from http://w w w.optimization-online.
org/DB _ HTML/2018/07/6692.html .

27] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P. M. Christophel, K. Jarck, Th. Koch, J.
Linderoth, M. Lübbecke, H. D. Mittelmann, D. Ozyurt, T. K. Ralphs, D. Salvagnin, and Y. Shinano. 2021. MIPLIB 2017:
Data-driven compilation of the 6th mixed-integer programming library. Mathematical Programming Computation

13, 3 (2021), 443–490. DOI: https://doi.org/10.1007/s12532- 020- 00194- 3
28] Christopher Hojny and Marc E. Pfetsch. 2019. Polytopes associated with symmetry handling. Mathematical Program-

ming 175, 1 (2019), 197–240. DOI: https://doi.org/10.1007/s10107- 018- 1239- 7
29] Yoichi Iwata and Takuto Shigemura. 2019. Separator-based pruned dynamic programming for Steiner tree. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence . Vol. 33, 1520–1527.
30] Daniel Juhl, David M. Warme, Pawel Winter, and Martin Zachariasen. 2018. The GeoSteiner software package for

computing Steiner trees in the plane: An updated computational study. Mathematical Programming Computation 10,
4 (2018), 487–532. DOI: https://doi.org/10.1007/s12532- 018- 0135- 8

31] Volker Kaibel and Andreas Loos. 2011. Finding descriptions of polytopes via extended formulations and liftings. In
Progress in Combinatorial Optimization . A. Ridha Mahjoub (Ed.), Wiley.

32] Rohit Kannan and James R. Luedtke. 2021. A stochastic approximation method for approximating the efficient frontier
of chance-constrained nonlinear programs. Mathematical Programming Computation 13, 4 (2021), 705–751.

33] R. Karp. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations . R. Miller and J.
Thatcher (Eds.), Plenum Press, 85–103. DOI: https://doi.org/10.1007/978- 1- 4684- 2001- 2 _ 9

34] Thorsten Koch. 2004. Rapid Mathematical Prototyping . Dissertation. Technische Universität Berlin.
35] Thorsten Koch, Alexander Martin, and Stefan Voß. 2001. SteinLib: An Updated Library on Steiner Tree Problems in

Graphs . Springer US, Boston, MA, 285–325. DOI: https://doi.org/10.1007/978- 1- 4613- 0255- 1 _ 9
36] Leo Liberti and James Ostrowski. 2014. Stabilizer-based symmetry breaking constraints for mathematical programs.

Journal of Global Optimization 60, 2 (2014), 183–194. DOI: https://doi.org/10.1007/s10898- 013- 0106- 6
37] Jeffrey T. Linderoth and Ted K. Ralphs. 2005. Noncommercial software for mixed-integer linear programming. Integer

Programming: Theory and Practice (2005), 269–320.
38] Stephen Maher, Matthias Miltenberger, João Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz, and Felipe Serrano.

2016. PySCIPOpt: Mathematical programming in Python with the SCIP Optimization Suite. In Mathematical Software

– ICMS 2016 . G. M. Greuel, T. Koch, P. Paule, and A. Sommese (Eds), Springer, 301–307. DOI: https://doi.org/10.1007/
978- 3- 319- 42432- 3 _ 37

39] François Margot. 2002. Pruning by isomorphism in branch-and-cut. Mathematical Programming 94, 1 (2002), 71–90.
DOI: https://doi.org/10.1007/s10107- 002- 0358- 2

40] François Margot. 2003. Exploiting orbits in symmetric ILP. Mathematical Programming 98, 1–3 (2003), 3–21. DOI: https:
//doi.org/10.1007/s10107- 003- 0394- 6

41] François Margot. 2010. Symmetry in integer linear programming. In 50 Years of Integer Programming . Michael Jünger,
Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi,
and Laurence A. Wolsey (Eds.), Springer, 647–686. DOI: https://doi.org/10.1007/978- 3- 540- 68279- 0 _ 17

42] Sonja Mars. 2013. Mixed-Integer Semidefinite Programming with an Application to Truss Topology Design . Dissertation.
FAU Erlangen-Nürnberg.

43] Frederic Matter and Marc E. Pfetsch. 2021. Presolving for Mixed-Integer Semidefinite Optimization . Technical Report.
Optimization Online. Retrieved from http://w w w.optimization-online.org/DB _ HTML/2021/10/8614.html .

44] Lluís-Miquel Munguía, Geoffrey Oxberry, and Deepak Rajan. 2016. PIPS-SBB: A parallel distributed-memory branch-
and-bound algorithm for stochastic mixed-integer programs. In Proceedings of the 2016 IEEE International Parallel and

Distributed Processing Symposium Workshops . 730–739. DOI: https://doi.org/10.1109/IPDPSW.2016.159
45] Lluís-Miquel Munguía, Geoffrey Oxberry, Deepak Rajan, and Yuji Shinano. 2019. Parallel PIPS-SBB: Multi-level par-

allelism for stochastic mixed-integer programs. Computational Optimization and Applications 73, 2 (2019), 575–601.
DOI: https://doi.org/10.1007/s10589- 019- 00074- 0

46] James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio. 2011. Orbital branching. Mathematical Pro-

gramming 126, 1 (2011), 147–178. DOI: https://doi.org/10.1007/s10107- 009- 0273- x
47] Tobias Polzin. 2003. Algorithms for the Steiner Problem in Networks . Dissertation. Saarland University.
ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://doi.org/10.1137/16M1069687
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s10107-018-1239-7
https://doi.org/10.1007/s12532-018-0135-8
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4613-0255-1_9
https://doi.org/10.1007/s10898-013-0106-6
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/s10107-002-0358-2
https://doi.org/10.1007/s10107-003-0394-6
https://doi.org/10.1007/s10107-003-0394-6
https://doi.org/10.1007/978-3-540-68279-0_17
http://www.optimization-online.org/DB_HTML/2021/10/8614.html
https://doi.org/10.1109/IPDPSW.2016.159
https://doi.org/10.1007/s10589-019-00074-0
https://doi.org/10.1007/s10107-009-0273-x

22:20 K. Bestuzheva et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

A

48] Antoine Prouvost, Justin Dumouchelle, Maxime Gasse, Didier Chételat, and Andrea Lodi. 2021. Ecole: A library for
learning inside MILP solvers. arXiv:2104.02828. Retrieved from https://arxiv.org/abs/2104.02828 .

49] Daniel Rehfeldt. 2021. Faster Algorithms for Steiner Tree and Related Problems: From Theory to Practice . Dissertation.
Technische Universität Berlin.

50] Daniel Rehfeldt, Henriette Franz, and Thorsten Koch. 2020. Optimal Connected Subgraphs: Formulations and Algo-

rithms . ZIB-Report 20-23. Zuse Institute Berlin.
51] Daniel Rehfeldt and Thorsten Koch. 2021. Implications, conflicts, and reductions for Steiner trees. Mathematical Pro-

gramming 197, 2 (2021), 903–966. DOI: https://doi.org/10.1007/s10107- 021- 01757- 5 . To appear.
52] Daniel Rehfeldt and Thorsten Koch. 2021. On the exact solution of prize-collecting Steiner tree problems. INFORMS

Journal on Computing 34, 2 (2021), 872–889. DOI: https://doi.org/10.1287/ijoc.2021.1087 To appear.
53] D. M. Ryan and B. A. Foster. 1981. An integer programming approach to scheduling. In Computer Scheduling of Public

Transport Urban Passenger Vehicle and Crew Scheduling . A. Wren (Ed.), North Holland, Amsterdam, 269–280.
54] Domenico Salvagnin. 2018. Symmetry breaking inequalities from the Schreier-Sims table. In Integration of Con-

straint Programming, Artificial Intelligence, and Operations Research . Willem-Jan van Hoeve (Ed.), Springer, 521–529.
DOI: https://doi.org/10.1007/978- 3- 319- 93031- 2 _ 37

55] Lars Schewe, Martin Schmidt, and Dieter Weninger. 2020. A decomposition heuristic for mixed-integer supply chain
problems. Operations Research Letters 48, 3 (2020), 225–232. DOI: https://doi.org/10.1016/j.orl.2020.02.006

56] H. D. Sherali and B. M. Fraticelli. 2002. Enhancing RLT relaxations via a new class of semidefinite cuts. Journal of

Global Optimization 22, 1–4 (2002), 233–261. DOI: https://doi.org/10.1023/A:1013819515732
57] Yuji Shinano. 2018. The ubiquity generator framework: 7 years of progress in parallelizing branch-and-bound. In

Operations Research Proceedings 2017 . Natalia Kliewer, Jan Fabian Ehmke, and Ralf Borndörfer (Eds.), Springer,
143–149. DOI: https://doi.org/10.1007/978- 3- 319- 89920- 6 _ 20

58] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch. 2012. ParaSCIP: A parallel exten-
sion of SCIP. In Competence in High Performance Computing 2010 . Christian Bischof, Heinz-Gerd Hegering, Wolfgang
E. Nagel, and Gabriel Wittum (Eds.), Springer, 135–148. DOI: https://doi.org/10.1007/978- 3- 642- 24025- 6 _ 12

59] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, Thorsten Koch, and Michael Winkler. 2016. Solving
open MIP instances with ParaSCIP on supercomputers using up to 80,000 cores. In Proceedings of the 2016 IEEE

International Parallel and Distributed Processing Symposium . 770–779. DOI: https://doi.org/10.1109/IPDPS.2016.56
60] Yuji Shinano, Timo Berthold, and Stefan Heinz. 2018. ParaXpress: An experimental extension of the FICO Xpress-

Optimizer to solve hard MIPs on supercomputers. Optimization Methods and Software 33, 3 (2018), 530–539. DOI: https:
//doi.org/10.1080/10556788.2018.1428602

61] Yuji Shinano, Stefan Heinz, Stefan Vigerske, and Michael Winkler. 2018. FiberSCIP: A shared memory parallelization
of SCIP. INFORMS Journal on Computing 30, 1 (2018), 11–30. DOI: https://doi.org/10.1287/ijoc.2017.0762

62] Yuji Shinano, Daniel Rehfeldt, and Tristan Gally. 2019. An easy way to build parallel state-of-the-art combinatorial
optimization problem solvers: A computational study on solving Steiner tree problems and mixed integer semidef-
inite programs by using ug[SCIP-*,*]-libraries. In Proceedings of the 2019 IEEE International Parallel and Distributed

Processing Symposium Workshops . 530–541. DOI: https://doi.org/10.1109/IPDPSW.2019.00095
63] Yuji Shinano, Daniel Rehfeldt, and Thorsten Koch. 2019. Building optimal Steiner trees on supercomputers by using

up to 43,000 cores. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research . Louis-
Martin Rousseau and Kostas Stergiou (Eds.), Springer, Cham, 529–539.

64] E. M. B. Smith and C. C. Pantelides. 1999. A symbolic reformulation/spatial branch-and-bound algorithm for the
global optimisation of nonconvex MINLPs. Computers & Chemical Engineering 23, 4–5 (1999), 457–478. DOI: https:
//doi.org/10.1016/s0098- 1354(98)00286- 5

65] Nariaki Tateiwa, Yuji Shinano, Satoshi Nakamura, Akihiro Yoshida, Shizuo Kaji, Masaya Yasuda, and Katsuki Fuji-
sawa. 2020. Massive parallelization for finding shortest lattice vectors based on ubiquity generator framework. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis . 1–15.
DOI: https://doi.org/10.1109/SC41405.2020.00064

66] Nariaki Tateiwa, Yuji Shinano, Keiichiro Yamamura, Akihiro Yoshida, Shizuo Kaji, Masaya Yasuda, and Katsuki Fuji-
sawa. 2021. CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems . ZIB-Report 21-16. Zuse Institute
Berlin.

67] Nariaki Tateiwa, Yuji Shinano, Masaya Yasuda, Keiichiro Yamamura, Shizuo Kaji, and Katsuki Fujisawa. 2021. Mas-

sively Parallel Sharing Lattice Basis Reduction . ZIB-Report 21-38. Zuse Institute Berlin.
68] Siavash Vahdati Daneshmand. 2004. Algorithmic Approaches to the Steiner Problem in Networks . Dissertation. Univer-

sität Mannheim.
69] F. Vanderbeck. 2011. Branching in branch-and-price: A generic scheme. Mathematical Programming 130, 2 (2011),

249–294. DOI: https://doi.org/10.1007/s10107- 009- 0334- 1
CM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://arxiv.org/abs/2104.02828
https://doi.org/10.1007/s10107-021-01757-5
https://doi.org/10.1287/ijoc.2021.1087
https://doi.org/10.1007/978-3-319-93031-2_37
https://doi.org/10.1016/j.orl.2020.02.006
https://doi.org/10.1023/A:1013819515732
https://doi.org/10.1007/978-3-319-89920-6_20
https://doi.org/10.1007/978-3-642-24025-6_12
https://doi.org/10.1109/IPDPS.2016.56
https://doi.org/10.1080/10556788.2018.1428602
https://doi.org/10.1080/10556788.2018.1428602
https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.1109/IPDPSW.2019.00095
https://doi.org/10.1016/s0098-1354(98)00286-5
https://doi.org/10.1016/s0098-1354(98)00286-5
https://doi.org/10.1109/SC41405.2020.00064
https://doi.org/10.1007/s10107-009-0334-1

Enabling Research through the SCIP Optimization Suite 8.0 22:21

[

[

[

[

R

70] Stefan Vigerske and Ambros Gleixner. 2017. SCIP: Global optimization of mixed-integer nonlinear programs in
a branch-and-cut framework. Optimization Methods & Software 33, 3 (2017), 563–593. DOI: 10.1080/10556788.2017.
1335312

71] D. Villeneuve, J. Desrosiers, M. E. Lübbecke, and F. Soumis. 2005. On compact formulations for integer programs
solved by column generation. Annals of Operations Research 139, 1 (2005), 375–388. DOI: https://doi.org/10.1007/
s10479- 005- 3455- 9

72] Fabian Wegscheider. 2019. Exploiting Symmetry in Mixed-Integer Nonlinear Programming . Master’s thesis. Zuse Insti-
tute Berlin.

73] Roland Wunderling. 1996. Paralleler und Objektorientierter Simplex-Algorithmus . Dissertation. Technische Universität

Berlin.

eceived 17 June 2022; revised 22 August 2022; accepted 2 February 2023

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 22. Publication date: June 2023.

https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1007/s10479-005-3455-9
https://doi.org/10.1007/s10479-005-3455-9

	1 INTRODUCTION
	2 PERFORMANCE OF SCIP 8.0 FOR MILP AND MINLP
	2.1 Experimental Setup
	2.2 MILP Performance
	2.3 MINLP Performance

	3 THE CORE SOLVING ENGINE
	3.1 SCIP’s New MINLP Framework
	3.2 Improvements in Symmetry Handling
	3.3 Primal Decomposition Heuristics
	3.4 PaPILO
	3.5 SoPlex

	4 MODELING LANGUAGES AND INTERFACES
	5 EXTENSIONS
	5.1 The GCG Decomposition Solver
	5.2 SCIP-SDP
	5.3 SCIP-Jack: Solving Steiner Tree and Related Problems
	5.4 The UG Framework

	6 FINAL REMARKS
	7 ACKNOWLEDGMENTS
	REFERENCESendgraf

