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Abstract. Dantzig-Wolfe reformulation of a mixed integer program par-
tially convexifies a subset of the constraints, i.e., it implicitly adds all
valid inequalities for the associated integer hull. Projecting an optimal
basic solution of the reformulation’s LP relaxation to the original space
does in general not yield a basic solution of the original LP relaxation.
Cutting planes in the original problem that are separated using a basis
like Gomory mixed integer cuts are therefore not directly applicable.
Range [22] (and others) proposed as a remedy to heuristically compute
a basic solution and separate this auxiliary solution also with cutting
planes that stem from a basis. This might not only cut off the auxiliary
solution, but also the solution we originally wanted to separate.

We discuss and extend Range’s ideas to enhance the separation proce-
dure. In particular, we present alternative heuristics and consider addi-
tional valid inequalities strengthening the original LP relaxation before
separation. Our full implementation, which is the first of its kind, is
done within the GCG framework. We evaluate the effects on several prob-
lem classes. Our experiments show that the separated cuts strengthen
the formulation on instances where the integrality gap is not too small.
This leads to a reduced number of nodes and reduced solution times.

1 Introduction

Branch-and-price has become a widely used technique for solving mixed integer
programs (MIPs) with an embedded structure. The original problem is first
reformulated using Dantzig-Wolfe reformulation and the reformulated problem
is then solved with branch-and-price [12], where the linear programming (LP)
relaxation is solved using column generation and specialized branching rules are
applied. When additionaly cutting planes are separated, the algorithm is called
branch-price-and-cut [12].

Most often implementations are tailored for particular problems with known
structure that can be exploited, but in the last decade also generic implementa-
tions were developed [15,20,21,25]. Bergner et al. [3] provide a computational
proof-of-concept that the automatic detection of a suitable structure can be
successful even when considering general problems.

Among others, cutting planes formulated with original variables were studied
in the branch-price-and-cut literature. Adding these cuts to the problem does
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not change the structure of the pricing problem, whereas other types of cuts
do [11]. In several applications problem specific cuts formulated with original
variables are separated. Combinatorial cuts exploiting a particular substructure
can also be separated in a generic way [15]. Moreover, Range [22] introduced a
procedure to separate cuts in the original problem using a basis, but he only did
a preliminary computational study on elementary shortest path problems with
resource constraints, which was not successful (personal communication, 2013).

Our Contribution. A separation procedure that generates cuts in the origi-
nal problem using a basis was mentioned by many authors [12,14], but only
Range [22] presented such a procedure without providing a computational study.
We discuss Range’s ideas and present some extensions to enhance the separation
procedure. Furthermore, we implemented all ideas in the branch-price-and-cut
solver GCG [15] and tested the implementation on instances of several problem
classes. In particular, we computationally investigate the strength of the sepa-
rated cutting planes and determine their influence on the overall solution process.

2 Dantzig-Wolfe Reformulation and Branch-and-Price

Let n,m1,m2 ∈ Z≥1, q ∈ Z≥0 be some integers, let A ∈ Q
m1×n,D ∈ Q

m2×n be
some matrices, and let b ∈ Q

m1 , d ∈ Q
m2 , c ∈ Q

n be some vectors. Suppose we
are given the following original problem

min{cTx : Ax ≥ b,Dx ≥ d, x ∈ Z
n−q × Q

q}
with mixed integer hull PMIP := conv({x ∈ Z

n−q × Q
q : Ax ≥ b,Dx ≥ d}),

where conv(S) denotes the convex hull of a set S. We will refer to its LP relax-
ation as original LP relaxation and denote the polyhedron of LP-feasible solu-
tions by PLP := {x ∈ Q

n : Ax ≥ b,Dx ≥ d}.
When reformulating the original problem using Dantzig-Wolfe reformulation

for mixed integer programs [12], a part of the constraints, here Dx ≥ d, is
convexified. Every solution x ∈ X := {x ∈ Z

n−q × Q
q : Dx ≥ d} is reformulated

as a convex combination of extreme points {xp}p∈P plus a non-negative linear
combination of extreme rays {xr}r∈R of the associated convex hull conv(X):

∑

p∈P

xpλp +
∑

r∈R

xrλr = x,
∑

p∈P

λp = 1, λp ∈ Q≥0 ∀p ∈ P ∪ R .

Replacing x by this combination while introducing new λ-variables results in
an extended formulation called the master problem. The corresponding LP
relaxation is called linear master problem and is solved with column genera-
tion, where a pricing problem over X is iteratively solved in order to generate
columns/variables having negative reduced cost. This procedure embedded in a
branch-and-bound tree is called branch-and-price [12].

It is known [26] that the optimal solution value of the linear master problem
is equal to min{cTx : Ax ≥ b, x ∈ conv(X)}, which corresponds to implicitly
adding all valid inequalities for conv(X) to the original LP relaxation.
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3 Separation of Cutting Planes in Branch-and-Price

In each node of the branch-and-bound tree cutting planes can be added in order
to strengthen the LP relaxation, which is then called branch-price-and-cut [12].

We can deal with valid inequalities formulated with original variables of the
form πTx ≥ π0, where π ∈ Q

n and π0 ∈ Q, in the same way as with constraints
Ax ≥ b. Therefore, adding these inequalities as cutting planes to the problem
does not change the structure of the pricing problem, i.e., the set X is not affected.
On the contrary, other types of cutting planes, e.g., cuts formulated with λ-
variables that were introduced in the master problem, may change the structure
of the pricing problem, which can hamper its computational tractability.

Let λ̄ be an optimal basic feasible solution [4] of the linear master prob-
lem and suppose that the projection x̄ :=

∑
p∈P xpλ̄p +

∑
r∈R xrλ̄r onto the

x-variables is not integer feasible for the original problem. We can try to sepa-
rate x̄ using problem specific cuts. Some of these cuts, e.g., knapsack or clique
cuts, are implemented in state-of-the-art MIP solvers [1] and can automatically
be applied in branch-price-and-cut algorithms if the original problem contains a
particular substructure [15]. Additionally, there exist cuts that stem from a basis
like Gomory mixed integer (GMI) cuts. These cuts are in general not directly
applicable, because x̄ does not have to be basic in the original LP relaxation [16],
see Fig. 1.

Ax ≥ b

Dx ≥ d

conv(X)

PLP

PDW

x̄ x̂

x1 x2

x3

Fig. 1. Solution x̄ is not a vertex of the polyhedron PLP = {x : Ax ≥ b, Dx ≥ d} and
solution x̂ is not even a vertex of PDW = {x : Ax ≥ b, x ∈ conv(X)}

In general we can check if the solution x̄ is basic in the original LP relaxation
by calculating the number of linear independent inequalities active at x̄, i.e.,
satisfied with equality by x̄. The solution x̄ is basic if and only if this number is
equal to the dimension n of the underlying vector space [4]. In case a description
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of conv(X) is known explicitly, Goncalves’ criterion [16] can be applied. Rios
and Ross [23] proved that if the pricing problem consists of affinely independent
extreme points, Goncalves’ criterion is satisfied.

Motivated by the fact that cuts obtained from a basis have in general a
larger impact than combinatorial cuts [5], we would like to apply these cuts in
the context of branch-price-and-cut, too.

4 Basis Separation

We recall that cutting planes in the original problem stemming from a basis
are not directly applicable, because the projected solution x̄ is in general not
basic in the original LP relaxation. An idea to overcome this issue is to calculate
some basic feasible solution x∗ and separate x∗. Since x∗ is basic feasible, cuts
stemming from a basis can be applied. The obtained cuts might not only cut
off the basic feasible solution x∗, but also the solution x̄ that we wanted to cut
off initially. If the solution x̄ is not cut off, we can strengthen the original LP
relaxation by temporarily adding the obtained cuts to the problem formulation
and repeat the procedure. Since the solution x∗ is not feasible for the strength-
ened original LP relaxation, we will calculate a different basic feasible solution
that can be used for separation in the following iteration. The resulting generic
algorithm is described as Algorithm 1 and was initially proposed by Range [22].

Data: PMIP , PLP , x̄, pmin, and imax.
Result: Feasible solution x∗ ∈ PMIP or set of coefficients Π̄ ⊆ Q

n+1

corresponding to cuts πTx ≥ π0 with (π, π0) ∈ Π̄ separating x̄.

i := 0, Π̄ := ∅, Π∗ := ∅, P ′
LP := PLP ;

while |Π̄| < pmin and i < imax do
Calculate a vertex x∗ of P ′

LP (guided by x̄);
if x∗ ∈ PMIP then

return x∗;
Separate the solution x∗ from PMIP and let Π∗ be the set of coefficients
corresponding to the generated cuts;
if Π∗ = ∅ then

break;
for (π, π0) ∈ Π∗ do

if πT x̄ < π0 then
Π̄ := Π̄ ∪ {(π, π0)};

end for

P ′
LP := P ′

LP ∩ {x : πTx ≥ π0, (π, π0) ∈ Π∗};
i := i + 1;

end while
return Π̄;

Algorithm 1. The basis separation procedure
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Note that we cannot guarantee to generate cuts that cut off the solution x̄
when using Algorithm 1. Moreover, it highly depends on the types of cuts that
are separated and how the basic feasible solutions are calculated.

4.1 Basis Heuristics

In this section we present approaches to cope with the crucial step in Algorithm 1
of calculating a basic feasible solution. Suppose we are given an optimal solution
λ̄ of the linear master problem. We want to find a basic feasible solution x∗ of
the original LP relaxation such that cuts separating x∗ also tend to separate
the solution x̄ :=

∑
p∈P xpλ̄p +

∑
r∈R xrλ̄r. Approaches to obtain such a basic

feasible solution are called basis heuristics. They were introduced by Range [22]
in the context of branch-price-and-cut as well as by Dash and Goycoolea [10] in
order to heuristically separate rank-1 GMI cuts. We will focus on basis heuristics
based on solving linear programs in the following.

Original Objective. Probably the first idea that comes to mind is that we can
obtain a basic feasible solution x∗ of the original LP relaxation by solving the
original LP relaxation. This basis heuristic will be called the original objective.

This approach is similar to cut-first branch-and-price second [6], where the
original LP relaxation is solved first, cutting planes are added, and then the
strengthened original problem is reformulated and solved using branch-and-price.
A crucial difference is that cuts are added a priori to the problem in cut-first
branch-and-price second without knowing if future solutions will ever violate
these cutting planes. If we use the basis separation procedure instead, only cuts
violated by the current solution of the master LP relaxation will be added, which
is a clear advantage. A disadvantage of both approaches is that they are inde-
pendent from the solution x̄. They only depend on the original problem.

Range’s Face Objective. In the following we present an alternative approach
introduced by Range [22], where also the solution x̄ is considered. Let

A′ :=
(

A
D

)
∈ Q

m×n and b′ :=
(

b
d

)
∈ Q

m

with m := m1 + m2 be the constraint matrix and the left-hand side of the
original problem. Furthermore, denote by A′

i the i-th row of the matrix A′ for
i ∈ {1, . . . , m} and let I0 := {i ∈ {1, . . . , m} : A′

ix̄ = b′
i} be the set of indices

corresponding to constraints of the original problem that are active at x̄.
With the aim of obtaining a basic feasible solution of the original LP relax-

ation near x̄, we solve the original LP relaxation using the face objective function

f(x̄, x) :=
∑

i∈I0

A′
ix − b′

i

||A′
i||2

,

where || · ||2 is the Euclidian norm.
The following proposition was initially proposed by Range [22].
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Proposition 1 ([22]). The solution x̄ is an optimal feasible solution for the
original LP relaxation with face objective and the optimal solution value is zero.

Note that the face [4] F := {x ∈ Q
n : A′x ≥ b′, A′

ix = b′
i ∀i ∈ I0} of the

polyhedron PLP is by definition of I0 the face of smallest dimension containing
x̄. Since x∗ ∈ F holds, the solution x∗ is at least contained in all faces the
solution x̄ is contained in. Hence, when solving the original LP relaxation with
face objective using the simplex algorithm we obtain an optimal basic feasible
solution x∗ with x∗ �= x̄ if and only if x̄ is not basic feasible.

When the number of linearly independent rows A′
i with i ∈ I0 is small in

comparison to n, the information provided by the face objective is rather poor,
because many linear independent inequalities active at x̄ are missing to describe
a basic solution.

Extended Face Objective. In the following we present an extension of the
face objective taking also non-active constraints into account. For k ∈ Z≥0 we
define the k-activity gk(x̄, a, a0) of an inequality aTx ≥ a0 with a ∈ Q

n and
a0 ∈ Q at a given solution x̄ as

gk(x̄, a, a0) := max
(

1 − aT x̄ − a0

||a||2 , 0
)k

.

The k-activity gk(x̄, a, a0) describes how close to being active the inequality
aTx ≥ a0 is at x̄. Note that 0 ≤ gk(x̄, a, a0) ≤ 1 holds and gk(x̄, a, a0) = 1 if
and only if the constraint aTx ≥ a0 is active at x̄. Furthermore, the greater the
value k is chosen the smaller is the k-activity of a fixed non-active inequality.

We define the k-extended face objective, which is an extension of the face
objective using the k-activity as a measure of the influence of a constraint:

fk(x̄, x) :=
m∑

i=1

gk(x̄, A′
i, b

′
i) · A′

ix − b′
i

||A′
i||2

.

We additionally consider constraints that are almost active at x̄, because if many
of these constraints are active at a basic solution, this solution is intuitively a
good approximation of the solution x̄ we want to separate. Solving the original
LP relaxation using the k-extended face objective yields such a basic solution.

Combination. We previously introduced three objectives that can be used as
basis heuristics in combination with the original LP relaxation. The original
objective is independent from the solution x̄, whereas the face and the extended
face objective are independent from the original objective function, they only
depend on the solution x̄ and the polyhedron PLP . In the following we combine
these objective functions in order to exploit as much information as possible.

We will combine the face and the original objective function by using a convex
combination with coefficient α ∈ [0, 1]

min α · f(x̄, x)
|I0| + (1 − α) · cTx

||c||2 .
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Note that |I0| is the norm of the face objective. Analogously, we can com-
bine the extended face objective and the original objective by using the norm∑m

i=1 gk(x̄, A′
i, b

′
i) of the k-extended face objective. In the following we will

present an approach to automatically choose a good value for α.
Remark that n linear independent inequalities are active at x̄ if and only if

the solution x̄ is basic. Let n(x̄) be the maximum number of linear independent
inequalities active at x̄ and define α(x̄) := n(x̄)

n ∈ [0, 1], which can be used as a
measure of how close x̄ is to being basic. In the following we describe why α(x̄)
is intuitively a suitable value for the convex combination coefficient α.

Obviously, α(x̄) = 1 if and only if x̄ is basic. If α(x̄) ≈ 1, then only few linear
independent inequalities are missing to describe a basic solution. The influence
of the face objective is increased, whereby the almost complete basis information
of x̄ will be exploited. On the contrary, if α(x̄) 	 1, many linear independent
inequalities are missing to describe a basic solution and the influence of the face
objective, which contains only poor information, will be decreased.

5 Strengthening of the Original LP Relaxation Before
Separation

In many applications the constraints Dx ≥ d are chosen in such a way that
the LP relaxation of the master problem is much stronger than the one of the
original problem. Thus, a basic solution of the original LP relaxation calculated
during the basis separation procedure can only poorly approximate the solution
x̄ that was projected from the linear master problem. To counteract this and to
enhance the basis separation procedure, we can try to imitate the convexification
of the constraints Dx ≥ d by adding valid inequalities for PDW := {x ∈ conv(X) :
Ax ≥ b} ⊇ PMIP before separation. In the following we present valid inequalities
for PDW that can be obtained while applying a branch-price-and-cut algorithm.

Range’s Original Objective Cut. Range [22] suggests to add the original
objective cut cTx ≥ cT x̄ to the problem in order to potentially strengthen the
original LP relaxation. Note that this inequality holds for all x ∈ PDW , because
x̄ is optimal for min{cTx : x ∈ PDW }. If the objective function is known to be
integral, e.g., c ∈ Z

n and q = 0, the inequality cTx ≥ �cT x̄� can be added.

Reduced Cost Cuts. In each column generation iteration we solve a pricing
problem over the set X in order to find negative reduced cost columns. Let
πTx be the objective function of the pricing problem in some column generation
iteration and let π0 := min{πTx : x ∈ X} be the optimal solution value of the
corresponding pricing problem. Note that πTx ≥ π0 is valid for conv(X). Since
conv(X) ⊇ PDW , the inequality is also valid for PDW . Inequalities of this type
will be called reduced cost cuts, because they state that the reduced costs of all
potential columns are greater than or equal to a specific value.
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Pricing Cuts. Suppose the pricing problem is solved using branch-and-cut and
in some column generation iteration a cutting plane πTx ≥ π0 is separated in
the pricing problem during separation at the root node. Since we optimize over
X in the pricing problem, πTx ≥ π0 is valid for conv(X) ⊇ PDW . We will call
such inequalities pricing cuts, because they are generated in the pricing problem.

6 Computational Setup and Results

We implemented the basis separation procedure including all presented features
in GCG 2.0.1 [15] based on a development version of SCIP 3.1.0 [1] with CPLEX
12.5.0.0 as LP-solver. All computations were performed on Intel Core i7-2600
CPUs with 16GB of RAM on openSUSE 13.1 workstations running Linux kernel
3.11.10. We used a time limit of 3600 seconds in all our tests.

In GCG combinatorial cuts in the original problem are separated by default,
but we will only report on the number of cuts that were separated by the basis
separation procedure and were applied to the problem. Note that SCIP/GCG filters
the separated cuts and only applies a subset of them. We used SCIP’s separators
with the aggressive setting to separate a basic feasible solution in Algorithm 1
and only separated cuts at the root node. In all our tests we used the values
pmin = 1 and imax = 100 for Algorithm 1. In order to compute α(x̄), we used
the QR decomposition with column pivoting from Gnu Scientific Library [13].

We applied the branch-price-and-cut algorithm including basis separation to
instances of the following problems: capacitated p-median problem (cpmp) [2],
generalized assignment problem (gap) [8,9,18], resource allocation/temporal
knapsack problem (rap) [7], and lot sizing problem (lotsizing) [24]. Furthermore,
we applied the algorithm to instances of MIPLIB 2003 and MIPLIB 2010 (miplib)
that were already successfully tested with a generic branch-price-and-cut code [3].
We only considered instances where separation at the root node could be applied.

6.1 Performance of the Basis Separation Procedure

In Table 1 we compare GCG using the default settings (def), basis separation with
face objective (face), basis separation with the combination of face and original
objective (face-conv), basis separation with the combination of 8-extended face
and original objective (8-ext-conv), and basis separation with original objec-
tive (origobj). Additionally, we considered basis separation with k-extended face
objective as well as the combination of k-extended face and original objective
for k ∈ {4, 8, 12}, but preliminary tests have shown that the combination of
8-extended face and original objective outperforms these heuristics.

As we can see, on the majority of the cpmp, lotsizing, and miplib instances
cuts are separated no matter which basis heuristic is used. Although the number
of applied cuts is in shifted geometrical mean at most 19 over a test set and
mostly much smaller, a non negligible part of the integrality gap at the root
node is closed in comparison to the default setting. When using basis separation
with the combination of 8-extended face and original objective, 8 percent of the
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Table 1. Comparison of the percentage of affected instances (aff), i.e., some cuts were
separated, the shifted geom. mean with shift value 1 of the int. gap at the root node
in percent (gap), the number of applied cuts at the root node of the affected instances
(cuts), and the time spent in the basis separation procedure (tm) over the whole testset.
The best gap is written bold.

def face face-conv 8-ext-conv origobj

gap gap aff cuts tm gap aff cuts tm gap aff cuts tm gap aff cuts tm

cpmp easy 1.21 1.15 78.8 4.3 1.0 1.15 79.8 4.3 1.1 1.11 81.7 4.0 1.1 1.18 35.6 1.9 1.7

cpmp hard 4.18 4.05 87.5 9.3 2.5 4.04 87.5 9.4 2.8 4.01 89.1 9.3 3.4 4.13 48.4 1.9 4.3

gap easy 0.15 0.15 4.2 1.0 0.5 0.15 4.2 1.0 0.6 0.14 16.7 2.8 0.5 0.15 8.3 1.0 0.5

gap hard 0.31 0.31 0.0 0.0 3.3 0.31 0.0 0.0 3.9 0.31 0.0 0.0 3.8 0.31 0.0 0.0 4.5

ls easy 3.31 2.08 95.2 5.8 0.5 2.11 95.2 5.8 0.6 2.07 85.7 6.4 0.6 2.36 85.7 4.0 0.5

ls hard 13.36 13.04 66.7 14.5 0.5 13.07 66.7 15.5 1.5 12.83 66.7 17.5 1.4 12.96 66.7 8.2 0.5

rap easy 0.04 0.04 0.0 0.0 0.9 0.04 0.0 0.0 1.0 0.04 0.0 0.0 1.0 0.04 6.2 2.0 1.5

rap hard 0.09 0.09 0.0 0.0 2.4 0.09 0.0 0.0 2.5 0.09 0.0 0.0 2.5 0.09 20.7 1.7 2.9

miplib easy 1.30 1.13 100.0 2.7 0.5 1.13 100.0 2.7 0.5 0.87 100.0 4.1 0.5 1.04 33.3 1.4 0.5

miplib hard 4.94 4.79 66.7 16.2 1.6 4.77 73.3 14.0 11.9 4.91 73.3 14.4 11.6 4.56 73.3 14.0 1.6

gap on easy cpmp, 33 percent of the gap on easy miplib, and 37 of the gap percent
on easy lotsizing instances is closed. Using any other basis heuristic closes less
of the gap. On the corresponding hard instances up to 8 percent of the gap was
closed due to basis separation, where the usage of the original objective or the
combination of 8-extended face and original objective perform best.

On the contrary, almost no cuts were separated on gap and rap instances,
which is probably due to the already very small integrality gap. Consequently,
the usage of basis separation closes hardly anything of the integrality gap.

Note that most often only a few seconds are spent in the basis separation
procedure. Only when using basis heuristics that have to compute the number
of linear independent inequalities active at the current solution x̄ in order to
determine the value α(x̄), separation can take a bit longer on some hard instances.
But in shifted geometrical mean over a test set it does not exceed 12 seconds.

In Fig. 2 the number of nodes and the solution times required by the settings
with basis separation are compared to the default settings. On most test sets the
solution time and even more significantly the number of nodes is reduced due to

Fig. 2. Ratio between the shifted geom. mean with shift 100 (10) of the number of
nodes (solution times) required by the settings with basis separation and the default
settings.
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separation. Only on gap and rap instances, where almost no cuts were separated,
the solution time is increased. But since the basis separation procedure is quite
fast, the increase in solution time is relatively small. Note that these results
match the previous made observations concerning the integrality gap.

On lotsizing and miplib instances the solution time is decreased by up to
12 and 30 percent, respectively. On cpmp instances the solution time is only
marginally decreased. During our computational study, we additionally observed
that the number of solved instances of these problems is slightly increased when
applying the basis separation procedure.

6.2 Influence of Strengthening the Original LP Relaxation Before
Separation

In Table 2 the influence of the valid inequalities presented in section 5 on basis
separation with the combination of the 8-extended face and the original objective
is investigated. Namely these valid inequalities are the original objective cut
(origobjcut), the pricing cuts (ppcuts), and the reduced cost cuts (redcostcuts).

Table 2. Comparison similar to Table 1

basis-conv-8-ext +origobjcut +ppcuts +redcostcuts

gap aff cuts tm gap aff cuts tm gap aff cuts tm gap aff cuts tm

cpmp easy 1.69 86.2 5.4 1.5 1.72 84.1 5.3 1.5 1.70 81.2 12.0 41.6 1.74 79.0 5.9 33.8

cpmp hard 3.25 91.3 8.6 3.2 3.27 89.1 8.4 3.3 3.24 78.3 24.6 159.6 3.30 82.6 8.6 261.3

gap easy 0.18 14.8 2.8 0.6 0.18 14.8 1.9 0.6 0.17 18.5 1.9 0.6 0.17 29.6 2.3 2.7

gap hard 0.40 0.0 0.0 1.0 0.40 0.0 0.0 0.9 0.40 0.0 0.0 0.5 0.40 0.0 0.0 110.8

ls easy 2.02 88.2 6.5 0.5 1.72 88.2 5.7 0.5 2.32 94.1 6.5 0.6 1.97 94.1 4.8 0.5

ls hard 31.18 42.9 30.6 2.1 24.39 42.9 6.3 0.8 29.48 57.1 38.1 3.6 25.34 42.9 6.3 1.2

rap easy 0.04 0.0 0.0 0.9 0.04 0.0 0.0 0.9 0.04 0.0 0.0 0.9 0.04 0.0 0.0 6.2

rap hard 0.09 0.0 0.0 1.9 0.09 0.0 0.0 1.9 0.09 0.0 0.0 2.0 0.09 0.0 0.0 86.8

miplib easy 0.91 100.0 4.3 0.5 0.91 100.0 3.6 0.5 1.36 80.0 5.9 34.6 0.95 100.0 4.1 0.8

miplib hard 4.91 73.3 14.4 11.6 4.90 73.3 14.0 12.1 5.26 80.0 13.0 15.6 4.77 73.3 13.6 25.3

Notice that the percentage of affected instances is of similar magnitude no
matter if the additional valid inequalities were added or not, whereas the num-
ber of applied cuts and the integrality gap vary considerably. Surprisingly, every
setting that is shown in Table 2 provides on some test set the smallest integral-
ity gap. So the impact of the valid inequalities is not solely positive. The same
observation can be made when considering the number of applied cuts. Further-
more, the number of applied cuts and the size of the integrality do not seem to
correlate.

On some instances the time spent in the basis separation procedure is notice-
ably increased due to the valid inequalities that were added before separation.

7 Conclusions and Future Work

We discussed and extended Range’s approach [22] to separate cuts in the orig-
inal problem using a basis in the context of branch-price-and-cut algorithms.
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Furthermore, we implemented all ideas in GCG and presented the first computa-
tional study on a separation procedure of this kind. The cuts close part of the
integrality gap at the root node on instances of various problem types, reducing
the number of nodes and the solution time. On instances, where no cuts were
found, solution times just slightly increased, because the separation procedure
is relatively fast.

Whereas the combination of the 8-extended face and the original objective
seems to be the basis heuristic that improves performance the most, computa-
tional results concerning the strengthening of the original LP relaxation before
separation are not that clear, because they do not solely improve the performance.
A task of future research should be finding a selection of valid inequalities that
exclusively have a positive influence on the separation procedure.

The presented basis heuristics only compute feasible basic solutions, but Dash
and Goycoolea [10] also use basis heuristics that compute infeasible basic solu-
tions in order to heuristically separate rank-1 GMI cuts. Future work should
include the implementation of these basis heuristics in our framework.

Since only auxiliary basic solutions and not the solutions we want to separate
are used to generate cutting planes, a subject of future research should be the
generation of additional valid inequalities as discussed in section 5 such that
the solution we want to separate becomes a basic solution in the original LP
relaxation whenever this is possible. If we managed to achieve this, we could
obtain a corresponding dual solution and apply reduced cost fixing [17,19].

Our experiments suggest that there is a strong relation between the strength
of the Dantzig-Wolfe reformulation and the success of separating violated cuts in
the original problem. Future research should further examine this relation both
computationally and theoretically.
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