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Abstract 1 Introduction

The (axis-parallel) stabbing number of a given set of line  Objective Functions. Typical problems in combina-
segments is the maximum number of segments that caridréal optimization, algorithmic graph theory, or compu-
intersected by any one (axis-parallel) line. We investigasgional geometry deal with minimizing the length of a
problems of finding perfect matchings, spanning trees,agsired structure: Given a set of points, find a set of line
triangulations of minimum stabbing number for a givesegments of small total length, such that a certain struc-
set of points. The complexity of these problems has bemal condition is maintained. Among the most popular
a long-standing open problem; in fact, it is one of th&uch structures are spanning trees, perfect matchings, or
original 30 outstanding open problems in computation@h a planar geometric setting) triangulations. However,
geometry on the list by Demaine, Mitchell, and O’Rourkesome geometric scenarios motivate other objective func-

We show that minimum stabbing problems are NHoNs; one such alternative for measuring t_he qua!ity of a
complete. We also show that an iterated rounding tecructure is the total turn cost between adjacent line seg-
nique is applicable for matchings and spanning treesBgNtS; €., see [3].
minimum stabbing number by showing that there is a When dealing with structural or algorithmic proper-
polynomially solvable LP-relaxation that has fractiondies, one can be more interested in yet another objective
solutions with at least one heavy edge. This suggegiaction called thestabbing number In order to unify
constant-factor approximations. Our approach uses palgfinitions for different structures and to allow for a con-
hedral methods that are related to another open prsistent notation throughout this paper, we describe this as
lem (from a combinatorial optimization list), in combinaa property of a set of line segments: For a given set of line
tion with geometric properties. We also demonstrate tteigments, thetabbing numbeis the maximum number
the resulting techniques are practical for actually solvirg segments that are encountered (in their interior or at an
problems with up to several hundred points optimally @ndpoint) by any infinite line; if we consider only axis-

near-optimally. parallel lines, we get thaxis-parallel stabbing number
Classification: F.2.2 Nonnumerical Algorithms andVhen focusing on the number of objects defined by the
Problems line segments, we may consider the closely relateds-

ing numberwhich arises from considering the number of
Keywords: Stabbing number, crossing number, m i ' g

. : . ) NDEr, Maonnected components in the intersection with the set of
tching, spanning tre_e, tr_langulauon, c_ompIeX|ty, Imeqi'he segments that we have to cross along a line. In the
programming relaxation, iterated rounding. absence of connected components of collinear segments
(which is the case for matchings), the crossing number is
equal to the stabbing number. When considering struc-
tures like triangulations, the crossing number is precisely
one more than the maximum number of triangles inter-
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cationsqueries(which by themseles have applications
in polygoncontainmentjmplicit hiddensurfaceremoval,

polygonplacementetc.). Thetheoreticallybestperform-
ing datastructurefor ray tracingin two dimensionsis

basedon a triangulationof the scene;seeHershbeger
andSuri[11]. Agarwal, Aronov, andSuri [2] investigate
thestabbinghumberof triangulationsn threedimensions,
wherethestabbeabjectsaresimplices.Held, Klosowski,

andMitchell [10] investigatecollision detectionin a vir-

tual reality environment;again,we have adependengon

the stabbingnumber

Extremalpropertiesof crossingnumberswere con-
sideredby Welzl [25] andby Matousek[17, who shaved
thatary planarsetof n pointshasa spanningreewith a
crossinghumberof O(4/n), andthereareexamplesequir
ing acrossingnumberof Q(y/n). Anothervariantis stud-
ied by deBerg andvanKreveld[5]: Thestabbingnumber
of a decompositiorof a rectilinearpolygon P into rect-
anglesis the maximumnumberof rectanglesntersected
by ary axis-parallelsggmentthat lies completelyinside
of P; they prove thatarny simplerectilinearpolygonwith
n verticesadmitsa decompositiorwith stabbingnumber
O(logn), andthey give an exampleof a simplerectilin-
ear polygon for which ary decompositiorhas stabbing
numberQ(logn). They generalizetheir resultsto rec-
tilinear polygonswith rectilinearholes. Shevchuk [23]
shavsthatin d dimensionsaline canstabtheinteriorsof
O(nl9/21) Delaunayd-simplices. This implies, in partic-
ular, thata Delaunaytriangulationin the planemay have
linearstabbingnumber

Despiteof this interestby a fair numberof notewor-
thy researchergherehave beenno resultsor conjectures
whatso&er on the compleity of stabbingproblems. In
fact, resolvingthe complexity of stabbingproblemshas
beenone of the original 30 outstandingopen problems
of computationalgeometryon the list that wasfirst pre-
sentecby Mitchell andO’Rourke in [19], basedon mary
yearsof precedingdiscussionandinformal sureys. An
up-to-dateand expandediist is maintainedby Demaine,
Mitchell, and O’Rourke and can be found on the inter-
net [6]. In additionto the opencompleity status,the
readershouldtake note that stabbingproblemshave de-
fied all attemptsfor obtaininggood combinatoriallower
boundsandnothingis known aboutapproximationpther
thanthe factorO(y/n) thatcanbe deducedrom Welzl's
work.

Our Work. In this paperwe presenthefirst general
algorithmic study of stabbingproblems. We resole the
openproblemof compleity for variousstructures;our
techniqueis quite general,andit seemsclearthatit can
be extendedo otherversions.We alsodescribea general
techniquebasedon Linear ProgrammingLP) thatyields

goodlowerboundsandis closelyrelatedto anopenprob-
lem from anothemprominentlist, this time from the com-
binatorial optimizationcommunity[14, 15]. As a con-
sequenceywe areableto deducean extensionof theiter-
atedroundingtechniquelevelopedby Jainfor generalized
Steinernetwork problems[12]; makingadditionaluseof
the geometricstructureof the problem,we getthe basis
for constant-&ctor approximations.Finally, we demon-
strateby acomputationastudyonvariousbenchmarlsets
thatour LP-basedpproachs alsopracticallyuseful ,both
for solving problemsapproximatelyor optimally, by con-
sideringinteger programmingP).

Ourresultsin detail:

¢ We prove that decidingwhethera point set hasa
perfect matching of axis-parallelstabbingnumber
5 is an NP-completeproblem; we also extend this
resultto generaktabbingnumber

e We give an NP-completenesgroof for finding a
spanningtree of axis-parallelor generalstabbing
numberandhint atahardnes@rooffor axis-parallel
or generakrossingnumber

¢ We prove that finding a triangulationof minimum
axis-parallecrossingnumberis NP-hard.

e We describean LP-basedlassof lower boundsthat
canbe evaluatedin polynomialtime. From a theo-
retical point of view, we usethe ellipsoid method,;
the existenceof a stronglypolynomialalgorithmfor
a closelyrelatedclassof problemsis subjectto an
openproblemfrom thelist [14, 15)].

¢ We giveresultson thestructureof fractionalvertices
of the resulting LP-relaxation: For matching, we
shav that there always is an edgewith weight at
least1/5, while for spanningtrees,there always is
an edgewith weight greaterthan 1/3. This allows
applying an iteratedroundingtechnique,similar to
the one developedby Jain for generalizedSteiner
network problemshis shouldimply constant-&ctor
approximations.

e We describethe resultsof a computationalstudy
Using a diverseset of benchmarkinstancegbased
on TSPLIB, Solomons vehicle routing problems,
andtwo differenttypesof randominstancesjve are
ableto computeoptimal and nearoptimal solutions
for instancesup to several hundredpoints. This
demonstratethatour LP-basedpproachs goodnot
only in theory (wherewe geta polynomial running
time basedon the ellipsoid method), but also for
actuallysolvinginstancesn practice(wherewe use
the simplex method). Resultsindicate far better
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approximationquality than the theorically possible
factorsof 5 or 3, respectiely.

It shouldbenotedthatour positive (LP-basedyesults
do notmake any assumptionsnthestructureof thepoint
set: They canbe usedfor point setsin degenerataswell
asin generalposition, and can be appliedto ary family
of stabbinglines that can be evaluatedby considering
a subsetof polynomially mary representaties. On the
other hand, the point setsconstructedin our hardness
proofsmake useof collinearpoints.

The rest of this paperis organizedas follows. Af-
ter somebasicdefinitionsand notationin Section2, we
give sketchesof our varioushardnesgroofsin Section3,
with detailsomittedfrom this extendedabstract.In Sec-
tion 4, we describeour LP-basedapproacHor construct-
ing bounds.Section5 presentaniteratedroundingtech-
niguefor matchingandspanningreeproblemsgtheresult-
ing algorithmsappearto be constant-fctor approxima-
tions. Section6 presentsa detailedcomputationaktudy
on perfectmatchingsof low stabbingnumber Final con-
cludingthoughtsandmiscellaneousesultsandproblems
arepresentedn Section?.

2 Preliminaries

In the following, we considera planar point set P of
cardinalityn. Whendealingwith matchingswe assume
thatn is even,if necessarypy omitting oneof the points.

Givena setof line sgmentsL, the stabbingnumber
of aline £ is the numberof sggmentsof L thatareinter-
sectedby £. The stabbingnumberof L is the maximum
stabbingnumberover all lines ¢; the axis-pamllel stab-
bing numberof L is the maximumstabbingnumberover
all axis-parallellines £. In the restof this paper the set
L will ariseas a matching,spanningtree, or triangula-
tion of a planarpoint setP, andour objectve is to find
suchastructureof minimumstabbinghumber We denote
by St-Maty (P) theminimum stabbingnumberamongall
matchingsof P, and by St-Mag(P) the minimum axis-
parallelstabbingnumberof all matchingof P. Similarly,
we denoteby St-Trey (P) the minimum stabbingnum-
ber of all spanningtreesof P, by St-Tex(P) the mini-
mum axis-parallelstabbingnumberof all spanningtrees
of P; by StA g4 (P) the minimum stabbingnumberof alll
triangulationsof P, andby StA »(P) the minimum axis-
parallelstabbingnumberof all triangulationof P.

If we are not interestedin the numberof line sey-
mentsin L encounteredy a line £, but in the number
of connectedccomponentf LN ¢, we get the crossing
number For matchingsfrees,andtriangulationsywe use
the analogousabbreviations Cr-Maty (P), Cr-Maty(P),
Cr-Tre 4 (P), Cr-Tre 2(P), Cr-A 4 (P), Cr-A »(P). Note

that stabbingandcrossingnumberor deptharethe same
for matchings.

3 Complexity

In this sectionwe give proofs and proof sketchesthat
virtually all variantsof minimum stabbingproblemsare
NP-hard. Our techniqueis rathergeneraland shouldbe
applicableto other variantsas well. In this extended
abstractwe give only proof sketches;full detailscanbe
foundin thefull versionof the paper

3.1 Matchings

THEOREM 3.1. Deciding whetherSt-Map(P) <5 is a
strongly NP-completgroblem.

Proof. We prove the theoremby using a reductionfrom

3SAT [9]. Assumewe have aBooleanexpressiordenoted
by B(xo,X1,...,X—1) With n variablesand k clausesof

threeliterals. We constructa set of points P that has
a matchingM of stabbingnumber5 if and only if the
Boolean expressioncan be satisfied. For the overall

layoutseeFigurel. Notethe collinearsetsof pointsthat
functionas“barriers”: As they alreadyrequirea stabbing
numberof 5, they mustnot be crossecby additionalline

segments,thusimposinga clear combinatorialstructure
thatis exploitedin the proof.

Eachvariablegadgetallows two feasiblematchings;
the particularchoicerepresents truth assignmenfor a
particularvariable,which in turn imposesrequirements
on how the literal gadgetsn the respectie columnsmay
bechosenClausesrerepresentedy threeliteral gadgets
in the samerow; the overall constructionmpliesthatthe
stabbingnumberof the row of a clauseis at mostfive,
iff at leastoneliteral gadgetin this row contributesonly
onestabbedine sgment,meaninghatatleastoneliteral
satisfiegheclause. m|

COROLLARY 3.1. Ther is no a-approximation algo-
rithm for St-Map(P) witha < 6/5.

COROLLARY 3.2. ComputingSt-Maty (P) is a weakly
NP-haid problem.

Proof. We apply a perturbationtechnique similar to the
onein [8]. Usethe sameconstructiorasfor the hardness
proof for the axis-parallelcase.Considerthe grid formed
by the coordinatesof the resultingpoint set. This grid
is modifiedsuchthattheinterpointdistancedetweerthe
points of the samegadgetare @(8”2). Furthermore the
restof thegrid is perturbeddy powersof €, suchthatonly
axis-parallelinescanstabmorethantwo gadgetsNow it
is easyto seethatonly axis-parallelinesarecritical. O
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Figurel: Overall layoutfor St-Mag(P).

3.2 Spanning Trees. The basicconstructionfor shav-
ing hardnes®f finding a spanningreeof minimum stab-
bing numberis very similar to the onefor matchings.As

before, we usebarriersto restrict possibleconnections:

We make useof thearrangemerghown (in horizontalori-
entation)in Figure2.

LEMMA 3.3. Let S be the arrangementof 3k points
shownin Figure 2, and let P O S haveno other points
in the horizontal strip indicatedby shading If P hasa
spanningreeT with stabbingnumberc+ 1, thenno edge
of T crossesheshadedegion.

FW TS

a

Figure 2: A barrier gadget: (a) In a spanningtree of
stabbingnumberc+ 1, no line sggmentmay crossthe
shadedregion. (b) Symbolfor the barrier gadget;the
dottedline indicateshe blockedstrip.

The variablegadgetdook asin Figure3. Note the
use of barrier gadgets,and the remaining numbersof
segmentshatmay crosstheinduceddottedlines.

LEMMA 3.4. Let S bethe arrangementof points shown
in Figure 3, with barrier gadgets placed and sizedas
indicated,and let P O S. Thenany spanningtree of P
that has stabbingnumberat mostk + 1 useseither the
two“true” or thetwo “false” edges.

The overall layout of the constructionis shavn in
Figure4. For proving hardnes®f finding a spanningree
of minimumcrossinghumberwe usethefollowing barrier
gadget.For a proof notethateachelementary? x 2 cycle
of the gadgetmusthave at leastone edgenot presentin
a tree; then the claim follows by pigeonholeprinciple.
Finally, the NP-hardnesgroof for all directionsfollows
againby making only the axis-paralleldirectionsto be
critical.

(c-1)%2

—

Figure 5: A barrier gadgetfor shoving hardnessof
minimizing the crossingnumberof a spanningree.
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Figure3: A gadgetfor variablex;: (a) In a spanningtreeof stabbingnumberk + 1, eitherthe “true” or the “false”
settingis chosen(b) Symbolfor thevariablegadget.

o symbol for literals

I_I false literal
:I true literal

Figure4: Theoveralllayoutfor thehardnesprooffor spanningrees.nis thetotalnumberof variablesk asufficiently
large number;in questionis the existenceof a spanningreewith stabbingnumberk+ 1. Shavn is therepresentation
of the3SAT instance(x1 VX2 VX3) A (X1 VX2 VX3) A (X1 VX2 V X3), for n= 3.
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LEMMA 3.5. Let Sbethek x (c—1)2 + ¢ arrangement
of pointsshownin Figure 5, andlet P D S. If P hasa
spanningtree T with crossingnumberc, thenno other
edee of T crossesheshadedegion.

Summarizingwe state:

THEOREM 3.2. It is NP-had to determineSt-Tex(P),
St-Tey (P), Cr-Tre 2(P), or Cr-Tre g (P).

3.3 Triangulations. We usethefollowing terminology
A horizontalline is a setof pointsthatareon a horizontal
line. A verticalline is a setof pointsthatareon a vertical
line. A row consistsof two horizontal lines, and the
(empty) spacebetweenthem. A columnconsistsof two
verticallines,andthe (empty)spacebetweerthem.

LEMMA 3.6. Considera row consistingof two horizon-
tal linesin P, havinga and b points, respectively The
horizontalstabberof thisrowencountesatleasta+b— 2
trianglesin anytriangulationof P.

A detailedproof canbe foundin thefull paper The
lemmaanalogouslyholdsfor two verticallines thatform
a column. Whena row consistsof two horizontallines
that have Cr-A »(P) + 2 points altogetherwe call it full
or fully triangulated.In atriangulationthat achievzesthe
lower boundof the lemmathis row hasthe propertythat
all edgesalongthehorizontallineshaveto bepresentThe
sameappliesto full columns,andthisis theway how we
will usethelemma.

THEOREM 3.3. Finding Cr-A »(P) is NP-hard.

Theproofis basednanothereductionof 3SAT. The
mechanicof gadgetds similar to our previous two re-
ductions. Detailscanbe foundin the full versionof the
paper SeeFigure 6 for a schematidayout of a repre-
sentingpoint setP for the 3SAT instanceB(X o,X1,X2) =
(Xo VX1V X2) A (Xo VX1V X2) A (XoV X1V X2).

4 Linear Programsfor Stabbing

4.1 Linear Programsand St-MafP). Thinking of P
asthe vertex setV of a straight-lineembeddedomplete
graphG = (V,E), ahandsomeepresentationf a perfect
matchingM is by its edgeincidencevectorx € {0,1}F,
wherex; = 1if ij € M andx;; = 0 otherwise.For SC V
denoteby 6(S) ={ij €e E|i € Sj ¢ S}. Thefollowing
linear inequalitiesare necessarilysatisfiedfor a perfect

matchinggivenby x.

(4.1) > xj=lVieV
ijed(i)

(4.2) S %j>1VSCV, |§ odd
ijed(s)

(4.3) x>0

In a seminalpaperEdmonds[7] showved that this poly-
hedraldescriptionis also sufficient in the sensethat the
extremepointsof the polytopell definedby (4.1)-(4.3)
areexactly the incidencevectorsof perfectmatchingsin
G. Despitethe factthatthereareexponentiallymary so-
called blossominequalities(4.2) one can solve a linear
programover 1 in stronglypolynomialtime [4].

Now we wishto minimizethe stabbinghumberk and
addto
(4.4)

xj <k  Vstabbindine £(d) in directiond.

ij:ijNe(d)£0
In principle, thereareinfinitely mary constraintsof this
type, even for one direction. Note, however, that when
sweepinga stabbingine in directiond the stabbingnum-
berchange®nly ata vertex. Thereforewe only needto
checka linearnumberof linesin eachdirection. For the
samereason;all” directionsreduceto the O(n?) combi-
natorialdirectionsdeterminedy all pairsof verticesof G.
Whenrequiringintegrality of x andminimizingkin there-
sulting integer programyields exactly St-MatP). When
integrality is relaxedto (4.3), this linear programminge-
laxationgivesa lower boundon St-Mat(P). The solution
x will in generabefractional,andwe speakof fractional
stabbingnumberin this context.

TheresultingLP canbesolvedin weaklypolynomial
time by meanf theellipsoidmethod18]: Separatingi-
olatedblossominequalitiess possiblen polynomialtime
[20], andthereareonly polynomiallymary stabbingcon-
straints. It shouldbe notedthat this is closelyrelatedto
anotherwell-consideredpenproblem:[14, 15 asksfor
a strongly polynomial algorithm for finding an optimal
matchingn thepresencef asinglegeneral’budget’con-
straint,whichis ageneralersionof stabbingconstraints.
This illustratesthat giving a strongly polynomial algo-
rithm for our classof LPs may not be an easytask,even
thoughit is the intersectionof two well-behared polyhe-
dra. This difficulty hasbeenknown for otherclassesof
intersectingoolyhedrg22].

4.2 Linear Programs and St-Te(P). Thereare sevr-
eralpolynomial-sizdormulationsfor spanningrees[16].
However, eventhoughexponentialin size,the following
cut-based_P formulationturnsout to have someparticu-
larly usefulproperties:
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Figure6: Overall layoutfor Cr-A »(P). Clausesre(XoV X1 V X2), (Xo VX1V X2), and (Xo V X1 V X2), with xo = false
andx; = x = true. Arrows indicatefull rows andcolumns light or darkshadingndicatestrue or falsevariablesand

literals.
(4.5) Xij= n-1
i€
(4.6) Xij > 1VSCyV,
i€
(4.7) xj <IS—1VscV,
ij€E(9)
(4.8) X> 0
with the additionalstabbingconstraints
(4.9)
Xij <k V stabbingdine £(d) in directiond.
ij:jA(d)7£0

Again, solving this LP when minimizing k can be
achievedin (weakly) polynomialtime.

5 Iterated Rounding

Key ingredientsof the linear programsdescribedn the
previoussectionareconstrainthaving acutstructue: We

of vertices, there is a guaranteedower bound on the
size of a cut. Integer programsof this type have been
calledgenemlizedSteinernetworkproblems It is known
thattheseproblemsdo not tendto have nicely structured
fractionalvertices.Thisdoesnotgetbetterin thepresence
of stabbingconstraints. In the full paperwe provide
exampleswith edgesof rather small fractional weight.
This prohibitsa straightforvard approximatiorby simply
roundingup afractionalsolution.

A very elggant generaltechniquethat overcomes
thesedifficulties and achieses a 2-approximationalgo-
rithm for generalizedteinemetworks problemswaspre-
sentedby Jainin [12]: Basedon a polyhedralargument,
heestablishedhatary fractionalsolutionof ageneralized
Steinernetwork LP musthave an edgeof weightat least
1/2. Fromthis, hederivedanapproximatioralgorithmby
iteratively roundingup the weight of the heaviestedges,
andre-solvingthe LP with thesefixed edgeweights.

It is naturalto considersuchanapproactfor our LPs
for deriving approximationmethodsfor stabbingprob-
lems, in particularfor matchingsand spanningtrees,as

require that for ary set from a given fam"y of subsets the Stabbingconstraintsalso have cut structure. How-
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ever, Jains crucial lemmaguaranteein@ heary edgein

five; asthetotal weightfor eachvertex is 1, the claim fol-

afractionalsolutiondoesno longerapplyin the presence lows. To seethe claim for spanningtrees,note that the

of stabbingconstraints:Figure 7 shavs a matchingin-

stancefor which the optimalfractionalaxis-parallelstab-
bing numberis achieved by a uniquesolutionwith maxi-
mumedgeweight1/3.

1/3

Figure 7: An optimal fractional solutionwith maximum
edgeweight1/3.

However, using additionalgeometricproperties,we
canstill establisHower bounds.Our proofsarebasedon
thefollowing lemmas.

LEMMA 5.1. For any even set of pointsin the plane
there is a fractional perfectmatcing x of minimumstab-
bing numbey sud that the supportgraph of x is planar.
Sud a fractional matding can be foundin polynomial
time

LEMMA 5.2. For anysetof pointsin theplane thereis a
fractional spanningtree x of minimumstabbingnumbey
sud that the support graph of x is planar Sud a
fractional spanningtreecanbefoundin polynomialtime

Both proofsuseanuncrossing-exchangeargument.

Note that the proof for Lemmab.1 requiressomeextra
carebecaus®f theblossominequalities A detailedproof
canbefoundin thefull paper Theproofof Lemmab.2is
almostcompletelyanalogous.

THEOREM 5.1. For any evensetof pointsin the plane
thereis a fractional perfectmatding x of minimumstab-
bing numberthat hasan edge of weightat least1/5. For
any setof pointsin the planeg there is a fractional span-
ning treex of minimumstabbingnumberthat hasan edge
of weightmore than1/3.

Proof. For both problems, considera fractional vertex
with a planarsupportgraph. To seethe claim for match-
ings, notethattheremustbe a vertex with degreeat most

total edgeweightis n — 1, andthe numberof edgess at
most3n — 6, implying that the averageweight is larger
than1/3. o

Thissetghestagefor aniteratedroundingprocedure:
At eachiteration,fix the weightof an edgeof maximum
fractionalweightto 1, andresole thelinearprogram.in
eachiteration,thenumberof edgeswith fractionalweight
is reduced,so we get an overall polynomial methodfor
finding anintegral solution.

It shouldbenotedthateventhoughthekey ingredient
for aniteratedroundingprocedureis provided by Theo-
rem 5.1, thereis still one elementmissingfor establish-
ing thatthesepolynomialalgorithmsareindeedconstant-
factorapproximationalgorithms: As the objective func-
tion is a maximum,not a sum, we still needan extra ar
gumentto assureghatJain’s overallapproactdoesindeed
work. We arehopefulthatthisargumentcanbecompleted
[13]. Asweshaw in thefollowing Section6, the practical
performanceseemdo beevenbetterthanthetheoretically
possibleguaranteesf 5 and3.

6 Computational Results

Test suite. We compileda test suite of variousin-
stanceson which we evaluatedour LP/IP approaches
andtheiteratedroundingtechniquefor St-Map(P). The
suite includesten instanceswith up to 442 points from
the TSPLIB[21]; the C-class(“clustered”) of Solomons
instancesof the vehicle routing problem [24] with 100
pointseach;25 regulargridswith 20 to 360 points,based
on grids of size5 x 5 up to 20 x 20 in which 20% ran-
domly choserpointsareremoved; anda setof instances
with up to 100randompointsin the plane.Tablesl and2
displayour preliminaryresultson a Pentiumlll 700MHz
PCwith 1GB mainmemoryrunningLinux. LPsandIPs
aresolvedby CPLEX8.0,CPUtimesarelistedin seconds.
Tableentriesbearingthe 1 signindicatean exceedingof
our CPUtime limit of four hoursfor solvingthelP, i.e.,
computingthe exactoptimum.

Somebrief obsewations. In LP solutionsvariables
may assumeaatherarbitrary fractionaland small values;
thisis alsotruewhenblossominequalitiesareadded.The
colinearityof pointsin the grid instancegnablesisto re-
ducethe numberof stabbingconstraintsresultingin sig-
nificantly reducedcomputationtimes. The clusteringof
pointsin thevehicleroutinginstanceohviously facilitate
the LP/IP solutionprocessaswasto be expected.How-
ever, this obsenationis interestingin practicewherethe
datais usuallywell structurecasopposedo randomlydis-
tributed.



Instance LPopt LPCPU IPopt IPCPU iter.rounding
ulysses22  1.992308 0.01 2 0.05 2
berlin52 2.815158 0.52 4 8.86 5
lin105 5.500000 1.21 infeas. T 7
bier127 4.330856 5.64 infeas. T 5
ul59 15.000000 1.76 infeas. T 15
ts225 13.750000 5.37 infeas. T 16
tsp225 11.500000 62.06 infeas. T 12
a280 10.500000 55.12 <12 T 13
lin318 8.113143 131.54 <12 T 11
pch442 16.500000  270.03 <19 T 18
cl01 7.000000 0.10 7 1.75 8
c102 7.000000 0.10 7 1.75 8
c103 7.000000 0.10 7 1.75 8
cl04 7.000000 0.10 7 1.75 8
c105 7.000000 0.10 7 1.75 8
c106 7.000000 0.10 7 1.75 8
cl07 7.000000 0.10 7 1.75 8
c108 7.000000 0.10 7 1.75 8
c201 6.000000 0.50 6 2.00 7
c202 6.000000 0.45 6 2.00 7
c203 6.000000 0.46 6 1.95 7
c204 6.000000 0.46 6 1.95 7
c205 6.000000 0.46 6 1.95 7
c206 6.000000 0.46 6 1.92 7
c207 6.000000 0.46 6 1.95 7
c208 2.953237 0.58 T 5

Table 1: Comparisorof boundsfor St-Mab(P) anditer-
atedrounding: TSPLIB andclusterednstances.

Instance LPopt LPCPU [IPopt IPCPU iter rounding
gridsa 2.500000 0.00 3 0.01 3
grid5b 2.750000 0.00 3 0.02 3
grid5¢c 2.750000 0.01 3 0.02 4
grid5d 2.000000 0.00 3 0.03 3
gridse 2.500000 0.00 3 0.02 3
grid8a 5.003205 0.04 6 0.17 6
grid8b 5.125000 0.05 6 0.21 6
grid8c 5.000000 0.04 5 0.12 6
gridad 5.428571 0.04 6 0.19 7
grid8e 5.403226 0.04 6 0.29 6
grid10a 4.250000 0.12 5 0.68 6
grid10b 4.250000 0.10 5 0.40 6
grid10c 5.250000 0.11 6 245.28 6
grid10d 4.500000 0.07 5 13.58 6
grid10e 5.000000 0.03 5 1.36 6
gridl5a 6.000000 0.73 6 8.40 7
grid15b 7.500000 0.47 8 9.90 8
grid15c 6.000000 1.00 6 3.27 6
grid15d 6.500000 0.24 7 T 7
grid15e 6.750000 0.74 7 3.91 7
grid20a 9.166667 15.38 <11 T 12
grid20b 9.250000 20.99 <11 T 11
grid20c 9.500000 8.70 <11 T 11
grid20d 9.500000 26.69 <11 T 11
grid20e 10.000000 20.43 <11 T 12
rand10a 1.750000 0.00 2 0.01 2
rand10b 1.833333 0.00 2 0.00 2
rand10c 1.750000 0.00 2 0.01 2
rand10d 1.700000 0.00 2 0.01 2
rand10e 1.812500 0.00 2 0.01 2
rand50a 2.594823 0.25 3 19.83 5
rand50b 2.628112 0.23 3 191 4
rand50c 2.668918 0.23 4 30.77 4
rand50d 2.661581 0.22 4 15.99 4
rand50e 2.789609 0.33 4 25.54 5
rand100a  3.376247 5.57 T 6

Table2: Comparisorof the LP/IP boundsfor St-Map(P)
anditeratedrounding:grid andrandominstances.

Thestabbinghumberobtainedrom iteratedrounding
is often very closeto the LP lower bound, andin our
experimentsit is never off the optimal value by more
thanafactorof 2; typically, it is muchbetter andmostly
within about20% of the optimum. We obserne that the
“bad moves” aremadeonly in the final iterationsof the
iteratedrounding. For instance about100 iterationsare
neededor 1in318 (with 318 points), the LP optimumis
at8.113,andthe LP valueexceeds9.0000nly in the last
ten iterations,wherea value of 11 is reached. We also
experimentedwith a “one good shot at once” approach
thatis basedon the factthat eachfractionalvertex is the
corvex combinationof perfectmatchings,by finding a
maximumweight perfectmatchingin the supportgraph
of the LP solution. This usuallygivesevenbetterfeasible
solutionsthanfor iteratedrounding (with one exception
in our testsuite of problems). This techniquecertainly
deseresfurtherevaluationbothfrom acomputationaand
from a theoreticalpoint of view, anda discussiorwill be
includedin thefull paper

The stabbingconstraintsseemto completelydestry
the polyhedralstructureof the matchingpolytope. Half
of the TSP instancesare infeasible (becauseof an odd
numberof points),andthisis not detectedy the CPLEX
IP solver within 4 hours. Iteratedroundingterminates
in this casewith a non-perfectmatchingwith one point
unmatched.

Eventhoughour prototypesarenotyetreadyto solve
even larger instancesthey may sene asa good starting
point for the developmentof anindustrialstrengthcode.
We planto includemorecomputationatesults,in partic-
ularfor St-Maty (P) andSt-Trex(P), in thefull paper We
alsoplantestswith IP formulationsfor triangulations.

7 Notesand Conclusion

We have shawvn that variousversionsof stabbingprob-
lemsareNP-hard,anddemonstratetion anlIP/LP-based
approachmaybeusefulfor solvingandapproximatingn-
stances.We expecta numberof extensionsof this work
andhopeto includemoredetailsandresultsin aforthcom-
ing full journalversion.Herewe only mentiona number
of otheraspectshatarealsopossible.

Clearly the mostinterestingopenproblemis a proof
thatour iteratedroundingtechniques indeeda constant-
factorapproximatioralgorithm,with aperformanceguar
anteeof 5 for matchingsand3 for spanningrees.

Another interestingquestionis to decidethe exis-
tenceof structuref smallconstanstabbingnumber As
the hardnessroof for decidingthe existenceof a match-
ing of stabbinghumbers illustrates thisis still notaneasy
task.Fromsomesolvablespecialcasesye only noteone:
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THEOREM 7.1. St-Tey(P)=2 and St-Maty(P)=2 can
bedecidedn polynomialtime

Onemayalsoaskfor the average insteadof the max-
imum stabbingnumber andrefer to the averageover all
possiblelines intersectinga setof line segments,instead
of just a combinatorialsetof representaties. This, how-
ever, amountsto solving problemsof minimum length,
with all implicationsto hardnessndapproximation.

THEOREM 7.2. Asetofline sggmentdhiasminimumaver
age (axis-paallel, resp.) stabbingnumbey iff the overall
Euclidean(Manhattan,resp.) lengthof all line segments
is minimum.

Finally, the closelyrelatedquestionof investigating
maximum stabbing-independestubsets,.e., subsetsof
lines with stabbingnumberl1, may be interestingin its
own right.
subsetsnay alsobe a combinatorialapproacHor getting
approximatiormethoddor stabbingproblems.
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