
Automatic Decomposition

and Branch-and-Price—A Status Report

Marco E. Lübbecke

RWTH Aachen University, Operations Research, Kackertstraße 7,
D-52072 Aachen, Germany

marco.luebbecke@rwth-aachen.de

Abstract. We provide an overview of our recent efforts to automatize
Dantzig-Wolfe reformulation and column generation/branch-and-price
for structured, large-scale integer programs. We present the need for
and the benefits from a generic implementation which does not need any
user input or expert knowledge. A focus is on detecting structures in
integer programs which are amenable to a Dantzig-Wolfe reformulation.
We give computational results and discuss future research topics.

1 Modeling with Integer Programs

Integer programming offers undeniably a powerful and versatile, yet industrially
relevant approach to model and solve discrete optimization problems from vir-
tually all areas of scientific and practical applications. To get an impression on
modeling, consider a simple combinatorial optimization problem, the bin packing
problem. We are given n items of size ai, i = 1, . . . , n, which have to be packed
into a minimum number of bins of capacity b each. A standard integer program
for this problem is built on binary variables xij ∈ {0, 1} to decide whether item
i is packed in bin j or not. It is common that a single variable imposes relatively
little structure on the overall solution. The model is as follows.

min

n∑

j=1

yj (1a)

n∑

j=1

xij = 1 i = 1, . . . , n (1b)

n∑

i=1

aixij ≤ b j = 1, . . . , n (1c)

xij ≤ yj i, j = 1, . . . , n (1d)

xij , yj ∈ {0, 1} i, j = 1, . . . , n (1e)

We call this the original formulation. Every item has to be packed because of
the set partitioning constraint (1b); whenever a bin is used it has to be opened

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 1–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M.E. Lübbecke

via the logical implication (1d); and no bin is overpacked because of the knap-
sack constraint (1c). The objective function (1a) reflects the goal of minimizing
the number of opened bins. Note that n bins always suffice. A few remarks are
in order. We observe that there is a symmetry w.r.t. the bins, that is, for a
given solution (x̄, ȳ) and a permutation σ of the bin indices, we get essentially
“the same” solution with the same objective function value by replacing x̄ij by
x̄iσ(j) and ȳj by ȳσ(j). Also note that there are rather “local” constraints (1c),
namely those concerning the packing of a single bin; and there are “global”
constraints (1b), namely those which ensure that for every item we open some
bin. In particular, there is a knapsack problem to solve for each bin (which is
NP-hard, but a computationally very easy combinatorial optimization problem),
and the “individual” solutions to the knapsack problems are linked by a “coor-
dinating” constraint which enforces a global structure in the overall solution.
This is typical for many practical situations in which decisions are taken in a
distributed way, but which in fact need synchronization in order to achieve a
global goal (this is a feature which brings optimal solutions to such decision
problems way out of reach of human planners). Examples are vehicle routing,
crew and machine scheduling, location problems, and many more.

A standard solver does not “see” this concept of constructing a complex solu-
tion out of easier building blocks either, as a branch-and-bound algorithm works
“everywhere” on the overall solution simultaneously by construction. One way to
make these partial solutions “visible” to the solver is by formulating a different
model which is based on “more meaningful” variables. For bin packing, we could
base a model on binary variables λpj ∈ {0, 1} which represent whether or not
we pack an entire configuration or pattern p in bin j. A pattern is a collection
of items that respects the knapsack capacity and therefore “knows” about the
local constraints. All patterns for bin j are collected in a set Pj , and with the
shorthand notation i ∈ p to state that pattern p contains item i, the new model
reads as follows.

min

n∑

j=1

∑

p∈Pj

λpj (2a)

n∑

j=1

∑

p∈Pj :i∈p

λpj = 1 i = 1, . . . , n (2b)

∑

p∈Pj

λpj ≤ 1 j = 1, . . . , n (2c)

λpj ∈ {0, 1} j = 1, . . . , n, p ∈ Pj (2d)

Constraint (2b) has the same role as constraint (1b) before: we must be sure
that among all patterns for all bins, every item is contained in exactly one of
those selected. The convexity constraint (2c) is new and ensures that at most
one pattern is chosen per bin (a bin may also be “empty,” that is, closed). No
knapsack constraint is needed any more, at the expense of the fact that, for each



Automatic Decomposition and Branch-and-Price—A Status Report 3

bin, we essentially enumerated all feasible solutions to the knapsack constraint.
After all, this is what we wanted. From a solution to this model we can uniquely
reconstruct a solution to the original model (1) via xij =

∑
p∈Pj :i∈p λpj , that is,

summing over all patterns for bin j that contain an item i. The new model (2)
is still symmetric in the bins as all sets of patterns are identical for all bins. This
symmetry could be eliminated by noting that we only need to ensure that for
each item some pattern is selected; exactly which bin is used is not of importance.
This leads us to an aggregated version of model (2).

min
∑

p∈P

νp (3a)

∑

p∈P :i∈p

νp = 1 i = 1, . . . , n (3b)

νp ∈ {0, 1} p ∈ P (3c)

A binary variable νp represents whether we select a pattern p or not. Set P
contains all feasible patterns, but no longer any information on bin indices. This
is also true for the aggregated variables νp =

∑n
j=1 λpj . As a consequence of the

symmetry breaking, there is no unique reconstruction of an original solution to
model (1) from a solution to model (3). Of course, one could have formulated a
set partitioning model like (3) for the bin packing problem without going through
the above reformulations, and this is what often happens.

2 Dantzig-Wolfe Reformulation

There is a major reason for favoring models (2) or (3) over model (1): the former
is usually stronger in the sense that the linear relaxation, i.e., relaxing variable
domains from {0, 1} to [0, 1], gives a tighter bound on the integer optimum.
Intuitively, this is because the “more meaningful” variables in (3) impose more
structure on the overall solution because a part of all original constraints (the
“local” knapsack constraints) is already fulfilled with integrality. The theoretical
reason is that model (2) is derived from (1) via a Dantzig-Wolfe reformulation.

A sketch of this reformulation is as follows (see e.g., [3] for details). Consider
an original integer program of the form

min{ctx : Ax ≥ b, Dx ≥ d, x ∈ Z
n
+} . (4)

The polyhedron X := conv{x ∈ Z
n
+ : Dx ≥ d} gives an inspiration for the “more

meaningful” variables. We assume that X is bounded, but this is no restriction.
We express x ∈ X as a convex combination of the (finitely many) extreme points
P of X , which leads to an equivalent extended formulation

min{ctx : Ax ≥ b, x =
∑

p∈P

λpp,
∑

p∈P

λp = 1, λp ≥ 0, x ∈ Z
n
+} . (5)



4 M.E. Lübbecke

The reformulation (5) contains the so-called master constraints Ax ≥ b, the
convexity constraint, and the constraint linking the original x variables to the
extended λ variables. In general, model (5) has an exponential number (in n) of
λ variables, so its LP relaxation needs to be solved by column generation [3].
That is, one starts with a small subset of λ variables and iteratively adds more
variables of negative reduced cost until no such variables can be identified. The
pricing subproblem to check whether there exist variables with negative reduced
cost is a minimization problem of a linear objective function over X , so it can
be solved again as an integer program. The column generation process needs to
be invoked in every node of the branch-and-bound tree, yielding a branch-and-
price algorithm. Special care must be taken when deciding on how to branch on
fractional variables [4,16,17].

In the classical setting, k disjoint sets of constraints are reformulated, namely
when the matrix D has a block-diagonal form

D =

⎛

⎜⎜⎜⎝

D1

D2

. . .

Dk

⎞

⎟⎟⎟⎠ , (6)

whereDi ∈ Q
mi×ni , i = 1, . . . , k. In other words,Dx ≥ d partitions inDixi ≥ di,

i = 1, . . . , k, where x = (x1, x2, . . . , xk), with an ni-vector x
i, i = 1, . . . , k. Every

Dixi ≥ di is individually Dantzig-Wolfe reformulated. We call k the number of
blocks of the reformulation. A matrix of the form

⎛

⎜⎜⎜⎜⎜⎝

D1

D2

. . .

Dk

A1 A2 · · · Ak

⎞

⎟⎟⎟⎟⎟⎠
(7)

with Ai ∈ Q
m�×ni , i = 1, . . . , k is called bordered block-diagonal, see Fig. 1(b). It

is this form we would like to see in the coefficient matrix of an integer program
in order to apply a Dantzig-Wolfe reformulation.

Depending on your background, the following may or may not apply to you:
you regularly formulate models like (1) (but cannot solve even moderately sized
instances); you have already noticed that going from model (1) to model (2) is
by application of a Dantzig-Wolfe reformulation (but you don’t know of what use
this knowledge may be to you, practically speaking); you would like to implement
your own column generation and branch-and-price code and use it to optimally
solve models like (2) or (3) (but you don’t know whether it is worth the time
and considerable effort); you already have your branch-and-price code running
(but don’t want to change and adapt it every time you consider a new problem).
You are any of this kind? Read on. . .



Automatic Decomposition and Branch-and-Price—A Status Report 5

3 In Need for an Automatic Decomposition

In 2004, when collecting material for “the primer” [3], we learned about François
Vanderbeck’s efforts to write a generic branch-and-price code BaPCod [12], and
we were fascinated by the idea ever since. Vanderbeck developed important con-
tributions [11,13,14,15], so that not only a Dantzig-Wolfe reformulation could
be performed according to a user specification but also branching was done in a
generic way. Further generic decomposition codes became available like DIP [10]
and within the G12 project [9]. However, none of these codes could be used by
someone not knowledgeable in decomposition techniques as the user needs to
propose how the input integer program is to be decomposed. It is still up to the
modeler which constraints Dx ≥ d she considers as “local,” that is, to be re-
formulated. Sometimes the choice may be rather obvious as in our introductory
example, but sometimes there is more freedom, and thus more freedom to make
mistakes, and one needs to know what one is doing.

It simply felt wrong that there are the well-understood and in many special
cases successfully applied concepts of Dantzig-Wolfe decomposition, column gen-
eration, and branch-and-price, but they are not “out-of-the-box” usable e.g., to
“everyday” OR practitioners, despite the availability of generic implementations.
And yet those who ran their own codes often needed to start all over with every
new application.

In order to close the last—but maybe most crucial—gap, we made first ex-
periments in [2] with detecting matrix structures suited for reformulation (see
Section 4). At that time, this detection and our generic branch-and-price code
GCG (see Section 5) were not merged into one project, but results were encour-
aging. Testing on general mixed integer programs was very nice and gave a
successful proof-of-concept, but diverted our attention from the true target in-
stances of this research: those which bear structure. In this talk, we report on
experiments with automatic detection of decomposable matrix structures, and
generic branch-and-price on a suitable test set of “structured” instances.

4 Recognizing Matrix Structures for Decomposition

The typical matrix structure for which Dantzig-Wolfe decomposition was pro-
posed is a bordered block-diagonal form (7). With a little experience with the
technique and an automatic recognition of types of constraints (like set parti-
tioning constraints, knapsack constraints, and the like) one can come up quite
easily with a suggestion for a decomposition. This works well for standard prob-
lems, but may fail for “unknown” problems. Then, a possibility is to exploit a
folklore connection between matrices and graphs [5].

Given amatrixA, construct a hypergraphH = (V,R∪C) as follows.With every
aij �= 0 associate a vertex vij ∈ V . For every row i introduce a hyperedge ri ∈ R
which contains exactly all vertices vrij ∈ V that correspond to non-zero entries
of the row; analogously introduce a hyperedge cj ∈ C for every column j. When
H partitions into several connected components, the matrix A is a block-diagonal
matrix, with a bijection between blocks in A and connected components in H .



6 M.E. Lübbecke

Hypergraph H can also be used to detect a bordered block-diagonal form.
Without the rows in the “border” the remaining matrix is block-diagonal. Thus,
a removal of (a minimum number of) hyperedges from R such that the remaining
graph partitions into connected components reveals a bordered block-diagonal
form in A (with a minimum number of rows in the border). The problem is NP-
hard and we experimented with heuristics to solve it. Figure 1 shows a matrix
as given in the original model, and a structure detected with this minimum
hypergraph partitioning approach.

(a) original 10teams (b) detected structure

Fig. 1. (a) Matrix structure directly from the LP file (10teams) and (b) with a bordered
block-diagonal structure detected by our algorithm

The algorithm needs as input the number k of connected components we look
for in H . Thus, in practice, we check for different small numbers of k. As the
results sometimes look artificial, we suggest that a more tailored hypergraph
partitioning algorithm should be sought, exploiting the fact that H is extremely
sparse and of degree 2. In a different line of research we replace hypergraph
partitioning by hypergraph clustering, which eliminates the need to specify the
number of blocks (connected components, clusters) beforehand. Experimentation
with these alternatives is still under way, but preliminary results look plausible.

5 Towards a Standalone Solver

Based on the discussion above, we developed GCG [6] (“generic column gener-
ation”) which is based on the SCIP framework [1] which is free for academic
purposes (scip.zib.de). Together with the LP file describing the integer pro-
gram, GCG takes as input a second file (“the decomposition”) describing which
constraints belong to the master problem and which to the blocks, respectively.
Alternatively, several of the matrix structure detection algorithms only sketched
above are applied to the instance. GCG then performs a Dantzig-Wolfe refor-
mulation according to a “best guess” (in addition one can specify whether the
so-called convexification or discretization approach should be applied); identi-
fies identical blocks, and aggregates them (the same as going from model (2)

scip.zib.de


Automatic Decomposition and Branch-and-Price—A Status Report 7

to model (3)); performs column generation on the given decomposition; main-
tains both formulations (the original in the x-variables, and the extended in the
λ-variables) which allows branching and cutting plane separation on the origi-
nal variables; it has specialized branching rules like Ryan/Foster branching and
generic primal heuristics [7,8]; and overall GCG uses SCIP’s rich functionality of
being a state-of-the-art MIP solver (like availability of pseudo-costs, pre-solving,
propagation techniques, etc.). This turns the branch-price-and-cut framework
SCIP into a branch-price-and-cut solver [6]. A first stable version is about to be
released as this abstract goes to press.

6 Discussion

What are the goals of our project? Certainly, expecting a decomposition code
to beat a state-of-the-art branch-and-cut code on the average instance is not
realistic. On the other hand, anything but outperforming the general-purpose
solver on instances that contain a decomposable problem structure would be
a failure. Thus, the art remains to tell the instances that are amenable to a
Dantzig-Wolfe reformulation from those which are not. And so we are back at
the most important and most interesting algorithmic challenge: to efficiently and
reliably detect “structure” in an instance or conclude that “none” is contained.

This is an area which may not only produce new and improved algorithms,
e.g., for partitioning/clustering the graph underlying a coefficient matrix. We
also need a much better theoretical understanding of what makes a good “struc-
ture” to look for, and we believe that this will give us insights into how to set
up a good integer programming model in the first place. It is this algorithm
engineering feature which makes this project so interesting to us: to improve
the design of a long-known algorithm, letting computational experiments guide
our way. We hope that our work contributes to closing the gap between the
algorithm on paper and its usefulness to a non-expert in practice.

Acknowledgments. I enjoyed discussions with Michael Bastubbe, Martin
Bergner, Alberto Ceselli, Jacques Desrosiers, Fabio Furini, Gerald Gamrath,
Marc Pfetsch, and Emiliano Traversi on automated decompositions. This project
was supported by the German Science Foundation’s (DFG) priority program
1307 “algorithm engineering,” under contracts LU 770/4-1 and LU 770/4-2,
within the project “generic decomposition algorithms for integer programs.”

References

1. Achterberg, T.: SCIP: Solving constraint integer programs. Math. Programming
Computation 1(1), 1–41 (2009)

2. Bergner, M., Caprara, A., Furini, F., Lübbecke, M.E., Malaguti, E., Traversi,
E.: Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation. In:
Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 39–51.
Springer, Heidelberg (2011)



8 M.E. Lübbecke

3. Desrosiers, J., Lübbecke, M.: A primer in column generation. In: Desaulniers,
G., Desrosiers, J., Solomon, M. (eds.) Column Generation, pp. 1–32. Springer,
Heidelberg (2005)

4. Desrosiers, J., Lübbecke, M.: Branch-price-and-cut algorithms. In: Cochran, J. (ed.)
Encyclopedia of Operations Research and Management Science. John Wiley &
Sons, Chichester (2011)

5. Ferris, M., Horn, J.: Partitioning mathematical programs for parallel solution.
Math. Programming 80, 35–61 (1998)

6. Gamrath, G., Lübbecke, M.E.: Experiments with a Generic Dantzig-Wolfe De-
composition for Integer Programs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049,
pp. 239–252. Springer, Heidelberg (2010)

7. Joncour, C., Michel, S., Sadykov, R., Sverdlov, D., Vanderbeck, F.: Column gener-
ation based primal heuristics. In: International Conference on Combinatorial Opti-
mization (ISCO). Electronic Notes in Discrete Mathematics, vol. 36, pp. 695–702.
Elsevier (2012)

8. Lübbecke, M., Puchert, C.: Primal heuristics for branch-and-price algorithms. In:
Operations Research Proceedings 2011. Springer (to appear, 2012)

9. Puchinger, J., Stuckey, P., Wallace, M., Brand, S.: Dantzig-Wolfe decomposition
and branch-and-price solving in G12. Constraints 16(1), 77–99 (2011)

10. Ralphs, T., Galati, M.: DIP – decomposition for integer programming (2009),
https://projects.coin-or.org/Dip

11. Vanderbeck, F.: On Dantzig-Wolfe decomposition in integer programming and ways
to perform branching in a branch-and-price algorithm. Oper. Res. 48(1), 111–128
(2000)

12. Vanderbeck, F.: BaPCod – a generic branch-and-price code (2005),
https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod

13. Vanderbeck, F.: Implementing mixed integer column generation. In: Desaulniers,
G., Desrosiers, J., Solomon, M. (eds.) Column Generation, pp. 331–358. Springer
(2005)

14. Vanderbeck, F.: A generic view of Dantzig-Wolfe decomposition in mixed integer
programming. Oper. Res. Lett. 34(3), 296–306 (2006)

15. Vanderbeck, F.: Branching in branch-and-price: A generic scheme. Math. Program-
ming 130(2), 249–294 (2011)

16. Vanderbeck, F., Wolsey, L.: Reformulation and decomposition of integer programs.
In: Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt,
G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer Programming 1958–2008.
Springer, Berlin (2010)

17. Villeneuve, D., Desrosiers, J., Lübbecke, M., Soumis, F.: On compact formulations
for integer programs solved by column generation. Ann. Oper. Res. 139(1), 375–388
(2005)

https://projects.coin-or.org/Dip
https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod

	Automatic Decomposition and Branch-and-Price—A Status Report
	Modeling with Integer Programs
	Dantzig-Wolfe Reformulation
	In Need for an Automatic Decomposition
	Recognizing Matrix Structures for Decomposition
	Towards a Standalone Solver
	Discussion
	References




