
ELSEVIER Computational Geometry 11 (1998) 103-109

Computational
Geometry

Theory and Applications

The vertex set of a 0/1-polytope is strongly 7)-enumerable

Michael R. Bussieck, Marco E. Ltibbecke *
Department of Mathematical Optimization, Braunschweig University of Technology, Pockelsstrafle 14,

D-38106 Braunschweig, Germany

Communicated by D. Avis; submitted 24 September 1997; accepted 28 February 1998

Abstract

In this paper, we discuss the computational complexity of the following enumeration problem: given a rational
convex polyhedron P defined by a system of linear inequalities, output each vertex of P. It is still an open question
whether there exists an algorithm for listing all vertices in running time polynomial in the input size and the
output size. Informally speaking, a linear running time in the output size leads to the notion of 79-enumerability
introduced by Valiant (1979). The concept of strong 79-enumerability additionally requires an output independent
space complexity of the respective algorithm. We give such an algorithm for polytopes all of whose vertices are
among the vertices of a polytope combinatorially equivalent to the hypercube. As a very important special case, this
class of polytopes contains all 0/1-polytopes. Our implementation based on the commercial LP solver CPLEX 1 is
superior to general vertex enumeration algorithms. We give an example how simplifications of our algorithm lead
to efficient enumeration of combinatorial objects. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Vertex enumeration; Convex polyhedra; 0/1-polytopes; Strong 79-enumerability; Computational
complexity

1. Preliminaries

In this paper, we discuss the computational complexity of the following problem which is known as
the vertex enumeration problem: given a rational convex polyhedron P = {x ~ Qn I Ax ~ b} defined by
a system of m linear inequalities, compute the vertex set of P.

The framework for the computational complexity analysis of counting problems dates back to the
late seventies when it was formally introduced by Valiant [10]. In a recently electronically published
classification of enumeration problems Fukuda [4] improves on these basic concepts in order to take
into account the explicit generation of objects. We emphasize the distinction between counting and
enumeration because we do not ask for the bare number of vertices but for listing each particular vertex.

* Corresponding author. E-mail: M.Luebbecke@tu-bs.de.
1 CPLEX is a registered trademark of ILOG, Inc.

0925-7721/98/$ - see front matter © 1998 Elsevier Science B.V. All rights reserved.
PII: S0925-7721 (98)00021-2

104 M.R. Bussieck, M.E. Liibbecke / Computational Geometry 11 (1998) 103-109

Following the lines of [4,10], we will now state fundamental definitions needed in the paper. Denote by
22 an alphabet, say {0, 1}, and by 22* the set of all strings over 27, i.e., r * consists of all finite sequences
of zeros and ones, and the empty string. The notation Ixl is used for the size of x if x is a set, and its
length if x is a string (size and cardinality of a set are conceptually distinct, but can be thought of as the
same in this context). Formally, a relation R is a Boolean function R : 27* × r * ~ {0, 1}. An instance
of the enumeration problem associated with a relation R is to list all members of the enumeration set
{Y I R(x, y) = 1}, for a given x, assuming that this set is finite.

In general, the size of {y I R(x, y) = 1} is exponential in Ixl so it is reasonable to take into account
both, the input size and the output size, when talking about computational complexity issues in the
context of enumeration problems. An algorithm for solving the enumeration problem associated with a
relation R is called polynomial (respectively linear) if and only if its running time is polynomial in Ix l
and polynomial (respectively linear) in I{Y I R (x, y) = 1 }1 for all x. Obviously, one cannot do better than
linear in the output size. We will use the notion of 79-enumerability o f a relation R, respectively of the
corresponding enumeration sets, if there exists a linear algorithm which solves the enumeration problem
associated with R. Fukuda et al. [5] strengthened this concept in order to consider the by no means trivial
requirement that already output elements of an enumeration set must not be kept in memory. A compact
algorithm is one which solves the enumeration problem associated with R for all x in space complexity
polynomial in Ixl and the largest size lYl of output objects y.

Definition 1. A relation R, respectively the enumeration set for a given x, is called strongly 7 9-
enumerable if there exists a linear, compact algorithm which solves the enumeration problem associated
with R.

As in [5], we define a relation that embeds the vertex enumeration problem in the more general context.
Given a system Ax <~ b of m linear inequalities, we denote by aix <~ bi the ith row. For the reason of
convenience we identify the ith inequality with its index i. We say that a subset V c {1 m} of
inequalities is vertex defining for the polyhedron P = {x 6 Q" I Ax <~ b} if and only if the set

{x ~ P I a ix = bi for all i ~ V, a i x < bi for all i ~ V}

consists of a single point.
The vertex relation RV is defined by Rv([A, b], V) -- 1 if and only if V is vertex defining for

the associated polyhedron P. The vertex enumeration problem is the enumeration problem associated
with Rv. We remark that it is not known whether there exists a polynomial algorithm for this
enumeration problem in the general case, let alone whether Rv is (strongly) 7~-enumerable. The first
79-enumerability result is by Valiant [10] who described a general algorithm which was recently adapted
to the vertex enumeration problem by Fukuda et al. [5]. Unfortunately, their backtracking approach
needs an N'P-complete decision problem to be solved for each output. Provan [8] gives algorithms
to list the vertices of polyhedra associated with network linear programs and their duals. Each of his
algorithms has running time which is quadratic in the output, and does not require that the polyhedron
be either simple or bounded. A major result is the so-called reverse search technique by Avis and
Fukuda [2] which constitutes a constructive proof for the strong P-enumerability of Rv when P is
simple.

M.R. Bussieck, M.E. Liibbecke / Computational Geometry I1 (1998) 103-109 105

2. Vertex enumeration for a special class of polytopes

In this section we describe a property of the input that enables us to prove strong 7>-enumerability
of the associated vertex relation. We denote by P[] the class of polytopes which are combinatorially
equivalent to a hypercube of appropriate dimension. In other words, there is a bijection between the
faces of a hypercube and pD 6 p~ that preserves the inclusion relation, or, loosely speaking, each P~
is a squashed cube. We subsume in a class /7 of polytopes all polytopes that can be generated using
the following procedure: given an arbitrary P[] ~ pD, take the convex hull of an arbitrary subset of the
vertices of P[]. An example construction in dimension three is depicted in Fig. 1. Similarly to the linear
description {x ~ Qn I 0 ~< x ~< l} of a hypercube we can describe every P~ 6 pcJ as

{x e Q n l L x <<. l, Ux<~u} , whereL, U e Q ~×~,

and each vertex of pD is uniquely determined by an appropriate choice of exactly n inequalities
satisfied with equality. Note that this requirement implies the assumption that pD has dimension n.
Geometrically, we have n pairs of inequalities that represent opposite facets of pp . For the sake of
simplicity, let us assume without loss of generality that two rows with common index form such a pair.
Algebraically, every partition ~ (_J H of {1 n} defines a vertex v of P:~ via L~v = Ic and Uuv = uu,
i.e.,

rank Uu = n, (1)

where Lc denotes the rows of L indexed by/2. Considering a polytope P = {x ~ Qn I Ax <. b} in class
/7 we can always, at least theoretically, find a boundary PQ ~ pD and add the corresponding linear
description to that of P. This redundant input becomes necessary because our algorithm relies on the
description of pD which we are not able to specify efficiently in advance. By construction, the location
of each vertex of P is already determined by Lx <. l, Ux <. u, whereas its feasibility is solely defined by
Ax <~ b. To put it more formally, we require that

/I ll /
Rv , V = l =, Rv , V fq {m + l , m + 2n} = 1 (2)

uJ u

for all V __. { 1 , m + 2n }. This is the key property we will exploit in our algorithm. Given a linear
description of both, P and a corresponding pD 6 P=, the pseudo code reads as follows.

7

6 5q 6

1 iiiii!ii!Iiiiiiiililil 3 iiiiiiiiiLiii!i!iiiiii ", :: 3
_ 1

Fig. 1. From a hypercube via a polytope in class prn to a polytope in class/7.

106 M.R. Bussieck, M.E. Liibbecke / Computational Geometry 11 (1998) 103-109

Algorithm 1 (Vertex enumeration for polytopes in class 17)
begin enum(£,/4, j)

/* initial call with £ ------/4 -- 0, j = 0 */
if {x ~ Q~ [Ax <~ b, Lzzx = l£, Uux = uu} ~ 0 then

i f j = n t h e n

output the vertex defined by/~ and/4;
else/* j < n */

call enum(£ t_J {j + 1},/4, j + 1);
call enum(£, /4 U {j + 1}, j + 1);

endif
endif

end.

Theorem 2 (Correctness). Given the linear description {x ~ Qn I Ax <~ b} of a polytope P ~ 17 and
the linear description {x ~ Qn [Lx <~ l, Ux <~ U} of an appropriate pD ~ p[] Algorithm 1 called with
£ - / 4 =- 0 outputs each vertex of P exactly once.

Proof. Observe the following hereditary property of polytopes P 6 H: the intersection of P with a facet
of a corresponding P[] gives again a polytope F 6 17. Since F is bounded, checking the existence of
a vertex Vv of F is equivalent to checking the existence of a feasible point in F which can be done by
solving a linear program. By construction, v¢ is a vertex of P itself.

At the very depth of the recursion, when j = n, the sets £ and H clearly form a partition of { 1 n }. It
follows by (1) and Av <~ b that LLv = lL, Uuv = uu defines a vertex v of P. Since all feasible partitions
are constructed in a binary tree manner, each partition, and consequently each vertex, is reached only
once.

On the other hand, let v be a vertex of P. Algorithm 1 obtains the corresponding partition £, H since
for all £ ' c £, H' __c H the set {x 6 ~n [Ax <~ b, L£,x = lc,, Uu,x = uu,} is nonempty. []

Theorem 3 (Complexity). Algorithm 1 has running time O(v . n • TLp), where v denotes the cardinality
of the output set {x [Rv(', x) = 1} and TLp denotes the time complexity of performing a feasibility check.
Apart from some indices Algorithm 1 only needs to store the linear description of P and P[] which is
O((m + n)n).

Proof. As stated above, each vertex is reached exactly once, so the running time of Algorithm 1 is linear
in v. Since the maximal depth of recursion is n, for each output we need to solve at most n linear programs
of size [A I L [U, b ll l u] in binary representation for the feasibility tests. No additional memory apart from
the input size is needed. []

Considering polynomial time algorithms for linear programming (cf. [9]) our central result now
follows immediately from Theorems 2 and 3.

Corollary 4. Given the linear description {x ~ Qn [Ax <<, b} of apolytope P ~ 17 and the linear descrip-
tion {x ~ Qn I Lx <~ l, Ux <~ u} of an appropriate pD ~ p[] the vertex relation Rv([AILIU, b[llu], .) is
strongly P-enumerable.

M.R. Bussieck, M.E. Liibbecke / Computational Geometry 11 (1998) 103-109 107

This corollary does not only generalize former special case 79-enumerability results, e.g., for the
bipartite matching polytope [6] or certain 0/1-polytopes described by equalities [7] (a 0/1-polytope is
one, all of whose vertices have coordinates zero or one). It also applies to the huge class of polytopes
associated with combinatorial optimization problems. Taking the unit hypercube {x • Qn I 0 ~< x ~< 1 } as
boundary pD, whose linear description is of size polynomial in the size of [A, b], we immediately have
a special case result which is of interest by itself.

Corollary 5. The vertex relation Rv([A, b], .) is strongly 79-enumerable for all linear descriptions
[A, b] defining an arbitrary O/1-polytope.

Note that in this case we completely circumvent all trouble with artificially enlarged, and hence
redundant input. We emphasize that these statements do not measure the complexity of combinatorial
optimization or enumeration problems, since the input size of such problems is totally different from
that discussed in this paper. To set an example, consider the problem #HAM of listing all Hamiltonian
cycles in a graph G with n nodes and m edges. Even if we had the linear description of the corresponding
traveling salesperson polytope, which is a 0/1-polytope, Corollary 5 would have said nothing about an
efficient solution to #HAM. Not only that the size of this linear description is exponential in n and m,
even worse, we know from computational complexity theory that it is most unlikely that one ever finds a
complete such linear description.

An implementation of Algorithm 1 is straight forward, especially when a fast LP code is available. Our
special case program z e r o n e that dumps the vertex set of a 0/1-polytope is based on the commercial
LP solver CPLEX. It is publicly available via anonymous ftp. 2

We prefer not to give comparative computational results because a comparison with more general
algorithms such as the double description method or the reverse search technique is obviously unfair. On
an HP9000/735-125 workstation we listed, e.g., the 1,048,580 vertices of the unit hypercube of dimension
20 in less than twenty minutes and the 5,040 vertices of the bipartite matching polytope for a graph with
two times seven nodes in about eight minutes. The benefit of our implementation clearly is its memory
usage being independent from the output. Furthermore it is well suited to performing a frequent task when
designing combinatorial optimization models, namely enumerating all integral vertices of polytopes P
lying in a unit hypercube even when nothing is known about the 0/1-property of P.

3. Enumeration of particular combinatorial objects

Hitherto, we considered an algorithm that takes as input linear descriptions of polytopes. In this section
we illustrate by example the derivation of algorithms for the enumeration of combinatorial objects that
work directly on the problem rather than on the associated polytope.

Let G = (N, A) be a connected directed graph with n nodes and m arcs. Introducing a variable xij
for each arc (i, j) a 0/1 network flow in G is a function x : A --+ Q that satisfies flow conservation and
feasibility,

E xik -- Z Xkj = bk for all k • U and 0 <~ x <~ 1, (3)
(i,k) (k,j)

2 The relevant U R L is ftp : / / ftp. math. tu-bs, de/pub/software/zerone, tar. gz.

108 M.R. Bussieck, M.E. Liibbecke / Computational Geometry 11 (1998) 103-109

where bk ~ Z denotes the demand in node k e N, see [1] for details on network flows. It is well known [9]
that each feasible integral flow corresponds to a vertex of the polytope P defined by (3). Consequently,
the vertex enumeration problem for P is equivalent to listing all integral 0/1 flows in G. An adaptation
of Algorithm 1 to the latter problem is sketched in the following pseudo code. We label the variables xij
by 0, 1 or free, i.e., 0 ~< xij ~< 1, depending on the flow value on the corresponding arc already fixed to
zero/one or not.

Algorithm 2 (Enumeration of integral 0/1 flows in a graph G)
begin enum(G, b, x)

/* initial call with x labeled free, G is given with node demand b */
if A = 0 then

output x;
else if (G, b) contains an integral 0/1 flow then

(i, j) := next arc labeled free;
call enum(update(G, b, x, (i, j) , 0));
call enum(update(G, b, x, (i, j) , 1));

endif
end.

function update(G, b, x, (i, j) , k)
/* construction of a stage dependent auxiliary graph */
begin

label xij with k;

A := A \ {(i, j)}; /* delete arc (i, j) from G */
bi : = bi + k; bj : = bj - k; /* update demand */
return (G, b, x);

end;

Corollary 6. Given as input a graph G with n nodes and m > 0 arcs and node demand vector b,
Algorithm 2 enumerates each integral 0/1 f low in G exactly once in time O (f • m • min{mn 2/3, m3/2}),
where f denotes the number o f output flows.

Proof. We observe that each fixation of an xij to zero or one, and thus the construction of the resulting
auxiliary graph, corresponds to the restriction of a flow feasibility constraint 0 ~< xij or xij ~< 1 in (3) to
equality. Then, the correctness of the algorithm follows from Theorem 2. Finding out whether a graph
contains an integral 0/1 flow can be done solving a maximum flow problem in O(min{mn 2/3, m3/2}) [1].
For each output we have to perform O(m) such existence tests, and the assertion follows. []

4. Condusions and open problems

In this paper we presented an algorithm for solving the vertex enumeration problem for polytopes P
with the property that all vertices are among the vertices of a polytope that is combinatorially equivalent
to a hypercube. We proved that the time complexity of the algorithm is polynomial in the input size and
linear in the number of output vertices while its space complexity is polynomial in the input size only. In

M.R. Bussieck, M.E. Liibbecke / Computational Geometry 11 (1998) 103-109 109

other words, we proved the strong T~-enumerability of the vertex set of all polytopes with the property
described above.

The simplicity of our algorithm arises from the fact that we theoretically know a linear description
of the convex hull p cz of all possible vertices to be listed and only need a feasibility test for each
output which amounts to solving a linear program. An efficient procedure to actually construct the linear
description on an appropriate P [] would result in strong 7~-enumerability results being independent from
the particular description L, U and l, u but is not known to the authors. However, for 0/1-polytopes
there is no difficulty at all since we always have an appropriate P[]. Beyond this, our algorithm allows
simplifications that lead to efficient enumeration of combinatorial objects.

Unfortunately, we have no immediate generalization of Algorithm 1 at hand. We conjecture that a
backtracking approach does not allow proving more general 3O-enumerability results. Such proofs require
the use of strict inequalities in the algorithm which seem to constitute a major difficulty, see [7] for
example problems and [5] for a general result. Particularly in combinatorial optimization, it is desirable
to characterize strong T'-enumerable facet sets. Considering the polar polyhedron p0 of P is of no help
here because the property P 6 / 7 generally does not imply p0 6 / 7 as one easily checks in dimension
three. Recently, Bremner et al. [3] proposed a polynomial algorithm for facet enumeration on a particular
family of polytopes when a polynomial algorithm for vertex enumeration for each subset of facet defining
halfspaces of a polytope in the family is known. It would be interesting if their method, in combination
with Algorithm 1, led to an efficient implementation for listing all facets of polytopes in class/7.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows - Theory, Algorithms and Applications, Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[2] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and
polyhedra, Discrete Comput. Geom. 8 (1992) 295-313.

[3] D. Bremner, K. Fukuda, A. Marzetta, Primal-dual methods for vertex and facet enumeration, in: Proceedings
of the 13th Annual ACM Symposium on Computational Geometry, 1997.

[4] K. Fukuda, Note on new complexity classes gA/'T', C79 and CC7 ~, Paper electronically available at URL
http://www.ifor.math.ethz.ch/ifor/staff/fukuda/ENP_home/ENP_note.html, June 1996.

[5] K. Fukuda, T.M. Liebling, E Margot, Analysis of backtrack algorithms for listing all vertices and all faces of
a convex polyhedron, Computational Geometry 8 (1997) 1-12.

[6] K. Fukuda, T. Matsui, Finding all the perfect matchings in bipartite graphs, Appl. Math. Lett. 7 (1994) 15-18.
[7] M.E. Ltibbecke, Algorithmen zur Enumeration aller Ecken und Facetten konvexer Polyeder, Master's Thesis,

Department of Mathematical Optimization, Braunschweig University of Technology, July 1996.
[8] J.S. Provan, Efficient enumeration of the vertices of polyhedra associated with network LP's, Math.

Programming 63 (1994) 47--64.
[9] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, 1986.

[10] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. 8 (3) (1979) 410-
421.

