
Noname manuscript No.
(will be inserted by the editor)

Avoiding redundant columns by adding classical Benders cuts to column

generation subproblems

Marco E. Lübbecke · Stephen J. Maher · Jonas T. Witt

Abstract When solving the linear programming (LP) relaxation of a mixed-integer program (MIP)

with column generation, columns might be generated that are not needed to express any integer optimal

solution of the MIP. Such columns are called strongly redundant and the dual bound obtained by solving

the LP relaxation is potentially stronger if these columns are not generated. We introduce a sufficient

condition for strong redundancy that can be checked by solving a compact LP. Using a dual solution

of this compact LP we generate classical Benders cuts for the subproblem so that the generation of

strongly redundant columns can be avoided. The potential of these cuts to improve the dual bound

of the column generation master problem is evaluated computationally using an implementation in

the branch-price-and-cut solver GCG. While their efficacy is limited on classical problems, the cuts’

usefulness is significantly demonstrated on structured models, when a temporal decomposition can be

applied.

Key words: Benders decomposition, Dantzig-Wolfe reformulation, domain reduction, column generation

1 Introduction

Dantzig-Wolfe reformulation is a mathematical programming technique that exploits model structure

within mixed integer programs (MIPs). Models that are particularly suitable for its application exhibit

SJM was support by the Engineering and Physical Sciences Research Council (EPSRC) grant EP/P003060/1.

Marco E. Lübbecke · Jonas T. Witt
Lehrstuhl für Operations Research, RWTH Aachen University
E-mail: {marco.luebbecke,jonas.witt}@rwth-aachen.de

Stephen J. Maher
Department of Management Science, Lancaster University
E-mail: s.maher3@lancaster.ac.uk

2 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

a constraint matrix with a bordered block diagonal form, such as

min
∑
k∈K

cTk x
k (1a)

s. t.
∑
k∈K

Akx
k ≥ b (1b)

Dkx
k ≥ dk ∀k ∈ K (1c)

xk ∈ Znk

≥0 ∀k ∈ K . (1d)

In the original model (1), we have a set K of disjoint subsystems, as given by constrains (1c), which

in particular do not share any variables. The subsystems are linked by constraints (1b).

Consider subsystem k ∈ K from problem (1) and the corresponding feasible region defined as Xk =

{xk ∈ Znk

≥0, Dkx
k ≥ dk}. All feasible solutions in Xk can be written as a binary combination of integer

points {xp}p∈Pk ⊆ Xk and non-negative integer combination of integer rays {xr}r∈Rk ⊆ Xk

xk =
∑
p∈Pk

xpλp +
∑
r∈Rk

xrλr,
∑
p∈Pk

λp = 1 ∀k ∈ K, λ ∈ ZPk∪Rk

≥0 , (2)

where both, P k and Rk , are finite sets [17]. This type of reformulation is called the discretization

approach [22].

Vanderbeck and Savelsbergh [23] refer to the xp and xr as generators of Xk . Each generator corre-

sponds to a variable/column in the Dantzig-Wolfe reformulated model. Throughout this paper, we will

sometimes refer to solutions x̄k ∈ Xk as columns, although solution x̄k is multiplied with Ak in order to

obtain the corresponding column. Since every subsystem (1c) ignores all the other constraints, a solution

in Xk (embedded in the original space) need not be feasible for the original (1). The generators/columns

leading to such infeasible solutions are redundant in the sense that the corresponding variables take a

zero value in all integer solutions to (1). Reducing the domain of Xk , and thus eliminating, or more

accurately avoiding the generation of, redundant columns, is the primary focus of this paper.

A Dantzig-Wolfe reformulation of (1), using the above discretization approach is performed by sub-

stituting xk with (2) and applying the transformations cj = cTk xj and aj = Akxj for all j ∈ P k ∪ Rk .

Benders cuts to avoid redundant columns 3

This results in the reformulation of (1) given by the following master IP

min
∑
k∈K

∑
p∈Pk

cpλp +
∑
r∈Rk

crλr

 (3a)

s. t.
∑
k∈K

∑
p∈Pk

apλp +
∑
r∈Rk

arλr

 ≥ b (3b)

∑
p∈Pk

λp = 1 ∀k ∈ K (3c)

λ ∈ ZP∪R
≥0 . (3d)

The reformulated model (3) usually consists of an exponential number of so-called master variables,

as given by the large cardinalities of P =
⋃

k∈K P k and R =
⋃

k∈K Rk . This necessitates employing a

delayed column generation algorithm to even only solve the LP relaxation. One starts with a restricted

master LP by replacing P k and Rk with P̄
k ⊆ P k and R̄

k ⊆ Rk , respectively, for all k ∈ K in (3), and

dropping the integrality constraints on the variables. Additional variables with negative reduced cost for

the restricted master LP—either points or rays to append to P̄
k

and R̄
k
, respectively—are identified

by solving a subproblem (or pricing problem) for each subsystem k. Denoting π as the dual values

associated with constraints (3b) and πk
0 as the dual value associated with constraint (3c) for subsystem

k, the subproblem for k ∈ K is given by

min (cTk − πTAk)xk − πk
0 (4a)

s. t. Dkx
k ≥ dk (4b)

xk ∈ Znk

≥0 . (4c)

The column generation algorithm terminates when (4) solves to have a non-negative optimum for

all k ∈ K . This indicates that for each k ∈ K no feasible solution of Xk corresponds to a column in

the restricted master LP with a negative reduced cost. If the solution to the restricted master LP is

fractional, then branch-and-price [2] is employed to find an integer optimal solution.

A characteristic of Dantzig-Wolfe reformulation is that most master variables are zero in an integer

solution. In particular, it can be observed from (2) that for each k ∈ K exactly one λp, p ∈ P k , is

required to express any integer solution to the original MIP, including any integer optimal solution.

Given an optimal integer solution Vanderbeck and Savelsbergh [23] characterize all columns that are not

required to express this solution as redundant :

Definition 1 (Redundant column [23]) A column is redundant when the master IP admits an

optimal integer solution that can be expressed without this column.

4 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

It could be advantageous to avoid the generation of redundant columns while solving (3). In fact, solving

(3) by column generation and avoiding all redundant columns would result in a root node dual bound that

closes the entire integrality gap. Even though this is maybe too much to aim for in practice, the potential

dual bound improvement from reducing the domains of the Xk motivates the research presented in this

paper.

Our paper is structured as follows: The remainder of this section presents the related literature and

our contribution. Section 2 uses the special case |K | = 2 of problem (1) to formally describe redundant

columns and the methods proposed to identify and eliminate the corresponding generators from the

subproblem. We present the more practically and computationally relevant alternative definition of

strong redundancy. We extend our proposals to the general case in Section 3. The algorithm developed to

replace the pricing stage of the column generation algorithm is described in Section 4. Section 5 presents

our computational results to assess the effectiveness of the proposed approach. Finally, in Section 6 we

conclude and point to directions for future research.

1.1 Related Work

Several concepts of redundant columns have been used in the context of column generation, and—

the closely related—Lagrangian relaxation. Lübbecke and Desrosiers [16] discuss the weaker concept

of columns that are redundant for the LP relaxation. This includes the idea by Sol [19] whereby a

column is redundant if the corresponding constraint of the dual problem is redundant. Vanderbeck and

Savelsbergh [23] are among the first to present general ideas of redundancy in the context of integer

solutions. They suggest that the generation of redundant columns can be avoided with the addition of

variable bounds to the subproblem that are implied from the master problem constraints. Gamrath and

Lübbecke [12] extend the ideas of Vanderbeck and Savelsbergh [23] by performing domain propagation

in the original problem to derive the bound changes for the subproblem.

When the reduced costs of the original variables can be computed, or at least bounded, reduced cost

fixing can be used to eliminate variables from the subproblem altogether. Specifically, variables from the

original problem, and thus from the subproblem, are fixed to zero if their reduced cost is greater than

the current optimality gap. This results in implicitly fixing all columns for the restricted master LP that

have non-zero coefficients corresponding to the fixed original variables. Beasley [3] and Ceria et al. [4]

both employ this approach within a Lagrangian-based heuristic. An example of reduced cost fixing in the

context of column generation is presented by Hadjar et al. [13]. Their approach is limited to subproblems

formulated as shortest path problems. Extending that work, Irnich et al. [14] provide one of the most in

depth investigations of reduced cost fixing for column generation. They again specialize to the case where

the subproblem is a variant of a shortest path problems that can be formulated as an LP. Fahle and

Sellmann [?] and Fahle et al. [7] present constraint propagation techniques from constraint programming

Benders cuts to avoid redundant columns 5

to identify original variables that can be fixed to zero in the subproblems. The domain propagation

techniques presented by Gamrath and Lübbecke [12] can in turn be viewed as a generalization of the

approach of Fahle and Sellmann [?] and Fahle et al. [7].

Desrosiers and Lübbecke [6] give an example in which the objective function value of the subproblem

can be bounded by the dual bound obtained from the current restricted master LP in the form of an

“objective function cut”. This precludes columns from being generated that would violate this bound.

1.2 Our Contribution

All the authors above report that avoiding the generation of redundant columns, by either method, in-

creased the root node dual bound and improved the overall efficiency of the column generation algorithm.

However, these methods are limited, with the exception of domain propagation presented by Gamrath

and Lübbecke [12], in their general applicability since they have been developed to solve specific problem

types—mainly vehicle routing, knapsack, and airline crew assignment problems. In particular, a general

implementation that could be tested across applications is missing. In this paper we attempt to address

this lack of research by investigating how to generically reduce the subproblem domain in order to avoid

the generation of redundant columns.

Our contributions are as follows: While it is computationally impractical to eliminate all redundant

columns, we expect that the elimination of a subset still helps achieving a tighter root node relaxation.

To this end, we (a) define the practically more relevant notion of strongly redundant columns. We

then (b) devise a systematic method for the identification and elimination of such columns, that (c)

is based on a novel integration of Benders decomposition and Dantzig-Wolfe reformulation. In fact,

using non-trivial inequalities to reduce the subproblem domain offers more generality than all the above

mentioned approaches. We (d) provide a generic implementation that is planned to be made available to

the academic community. It is used in (e) a detailed computational study to evaluate the improvements

in the root node dual bounds for reformulated problems.

2 Strongly Redundant Columns

Definition 1 states that a column is redundant if there exists an optimal integer solution that can be

expressed without this column. This definition of redundancy fundamentally depends on a reference

optimal solution—making identifying redundant columns as difficult as solving the original problem.

Thus, we would like to relax this dependency by proposing the following definition.

Definition 2 (Strongly redundant column) A column is strongly redundant if all optimal integer

solutions to the master IP can be expressed without this column, i.e., the corresponding master variable

is set to zero in all optimal integer solutions.

6 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

Clearly, strongly redundant columns are also redundant (see Definition 1). While previous approaches

were developed to eliminate redundant columns, they are in fact eliminating only strongly redundant

columns. An example is the fixing of original variables to zero if their reduced cost is strictly greater

than the current optimality gap. Master LP solutions expressed using columns with non-zero coefficient

corresponding to such original variables would have an objective function value better than the optimum,

which cannot be and thus such columns do not appear in any optimal solution. Although Definition 1 is

more general, this suggests that Definition 2 is more practically relevant.

2.1 Identifying Strongly Redundant Columns

Consider the special case of (1) with |K| = 2:

min cT1 x
1+ cT2 x

2 (5a)

s. t. A1x
1+A2x

2 ≥ b (5b)

D1x
1 ≥ d1 (5c)

D2x
2 ≥ d2 (5d)

x1 ∈ Zn1

≥0 (5e)

x2 ∈ Zn2

≥0 . (5f)

This special case is used throughout this section to simplify the discussion related to the identification

redundant columns and the methods proposed to avoid their generation. We extend our methods to the

general case in Section 3.

Assume that a Dantzig-Wolfe reformulation is applied to the original problem (5) using the dis-

cretization approach, resulting in the master IP (3) (with |K | = 2) and a subproblem in form of (4). For

the following results, recall that Xk = {xk ∈ Znk

≥0, Dkx
k ≥ dk} defines the set of feasible solutions Xk

to Problem (4) for subsystem k.

Strongly redundant columns for the master IP (3) can be characterized as follows:

Lemma 1 Given a column x̄1 ∈ X1 and the optimum z∗ of the original problem (5). Column x̄1

is strongly redundant if and only if there does not exist any x̄2 ∈ X2 with A1x̄
1 + A2x̄

2 ≥ b and

cT1 x̄
1 + cT2 x̄

2 ≤ z∗.

Proof By Definition 2, column x̄1 is strongly redundant if the corresponding master variable is set to

zero in all optimal solutions to the master IP (3) (with |K | = 2). Since the optimum z∗ of the original

problem (5) is equal to the optimum of the master IP (3) (with |K | = 2), this holds if and only if there

does not exist any x̄2 ∈ X2 with A1x̄
1 +A2x̄

2 ≥ b and cT1 x̄
1 + cT2 x̄

2 ≤ z∗.

Symmetrically, we can check whether x̄2 ∈ X2 is redundant. For ease of exposition we will only

consider the case used in Lemma 1, i.e., the redundancy of columns in X1.

Benders cuts to avoid redundant columns 7

We can identify redundant columns using the following verification IP that is formulated to be

infeasible if and only if the column x̄1 ∈ X1 is strongly redundant:

min cT2 x
2 (6a)

s. t. A2x
2 ≥ b−A1x̄

1 (6b)

D2x
2 ≥ d2 (6c)

cT2 x
2 ≤ z∗ − cT1 x̄1 (6d)

x2 ∈ Zn2

≥0 . (6e)

Note that verification IP (6) could be formulated as a feasibility problem since constraint (6d) makes the

objective function unnecessary. However, the objective function will be important for results presented

later in this section.

We state the desired properties of the verification IP as a lemma:

Lemma 2 Given a column x̄1 ∈ X1 and the optimum z∗ of the original problem (5). Column x̄1 is

strongly redundant if and only if Problem (6) is infeasible.

Proof Follows directly from Lemma 1.

Checking strong redundancy of a column with Lemma 2 is called the redundancy check. Even though

x̄1 is fixed, proving infeasibility or finding a feasible solution to (6) can still be as difficult as solving the

original problem (5).

We can reduce the effort required to perform a redundancy check by relaxing the verification IP,

which corresponds to relaxing the redundancy check. We state this as a lemma:

Lemma 3 Given a column x̄1 ∈ X1 and a relaxation of Problem (6). If the given relaxation of Prob-

lem (6) is infeasible, column x̄1 is strongly redundant.

Proof Clearly, if the given relaxation of Problem (6) is infeasible, Problem (6) itself is infeasible and

hence, by Lemma 2, column x̄1 is strongly redundant.

Note that Lemma 3 states only a sufficient condition for strongly redundant columns, while the

condition in Lemma 2 is also necessary. Hence, with Lemma 3 we can only identify a subset of strongly

redundant columns. We expect, however, that avoiding even only the generation of a subset of strongly

redundant columns suffices to improve the dual bound obtained from the master LP.

Any relaxation of Problem (6) can be used in Lemma 3 to obtain a sufficient condition for strong

redundancy. The following relaxation proves particularly useful. We first relax integrality on the x2

variables. Next, to eliminate the need for finding the optimum z∗ of the original problem (5) we replace

z∗ with the best known primal bound z̄UB for the original problem (5). This primal bound is finite

8 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

e.g., when primal heuristics were successful, but could initially be infinite. The resulting relaxation of

verification IP (6), called verification LP , is given by

min cT2 x
2 (7a)

s. t. A2x
2 ≥ b−A1x̄

1 (7b)

D2x
2 ≥ d2 (7c)

cT2 x ≤ z̄UB − cT1 x̄ (7d)

x2 ∈ Rn2

≥0 . (7e)

Using verification LP (7) and Lemma 3, the following sufficient condition for identifying strongly re-

dundant columns can be specified.

Theorem 1 Given a column x̄1 ∈ X1 and an upper bound z̄UB on the optimum z∗ of the original

problem (5). If Problem (7) is infeasible, column x̄1 is strongly redundant.

Proof First, by removing the integrality constraints on x2 the resulting problem is the LP relaxation of

verification IP (6). By Lemma 3, column x̄1 is strongly redundant if the LP relaxation of verification

IP (6) is infeasible. Second, since z∗ is replaced by z̄UB in (6d) it is sufficient to prove that cT1 x̄
1+cT2 x̄

2 >

z̄UB implies cT1 x̄
1 + cT2 x̄

2 > z∗; this holds because z̄UB ≥ z∗.

2.2 Avoiding the Generation of Strongly Redundant Columns

To simplify the description of methods for avoiding the generation of strongly redundant columns, we

will use the following alternative notation for verification LP (7):

min cT2 x
2 (8a)

s. t. B̃x2 ≥ b̃− Ãx̄1 (8b)

cT2 x
2 ≤ z̄UB − cT1 x̄1 (8c)

x2 ∈ Rn2

≥0 , (8d)

where

Ã :=

A1

0

 , B̃ :=

A2

D2

 , b̃ :=

 b

d2

 .

Benders cuts to avoid redundant columns 9

The dual of verification LP (8) will be helpful for the following methods and results:

max wT
(
b̃− Ãx̄1

)
+ wc

(
cT1 x̄

1 − z̄UB
)

(9a)

s. t. wT B̃ − wccT2 ≤ cT2 (9b)

w ∈ Rm
≥0 (9c)

wc ∈ R≥0 . (9d)

Let T c denote the set of dual rays of verification LP (8), i.e., the set of solutions to the homogenous

version of the dual problem (9)

T c := {(w̃, w̃c) ∈ Rm+1
≥0 : w̃T B̃ − w̃ccT2 ≤ 0} . (10)

Farkas’ Lemma [9] connects the feasibility of verification LP (8) (and hence, the redundancy of x̄)

with the existence of certain dual rays. It states that Problem (8) is infeasible if and only if there exists

a dual ray (w̃, w̃c) ∈ T c of verification LP (8) with positive dual objective function value, i.e., with

w̃T (b̃− Ãx̄1) + w̃c(cT1 x̄
1 − z̄UB) > 0 . (11)

Hence, solution x̄1 inducing an infeasible instance of verification LP (8) can be eliminated from the

corresponding subproblem (4) by adding

w̃T (b̃− Ãx1) + w̃c(cT1 x
1 − z̄UB) ≤ 0 , (12)

which corresponds to a classical Benders feasibility cut. Inequality (12) is called a subproblem cut. It can

only be violated by solutions to the subproblem corresponding to strongly redundant columns:

Theorem 2 Let (w̃, w̃c) ∈ T c be a dual ray of Problem (8). Inequality (12) is valid for all solutions

x̄1 ∈ X1 corresponding to columns that are not strongly redundant.

Proof Let x̄1 ∈ X1 be a solution to the subproblem corresponding to a column that is not strongly

redundant. Hence, x̄1 induces a feasible instance of (8) and the corresponding dual problem (9) is

bounded, i.e., the objective function value of all dual rays in T c are non-positive. In particular, this

holds for the given dual ray (w̃, w̃c), i.e., Inequality (12) holds for x̄1.

We will distinguish between two types of dual rays (w̃, w̃c) ∈ T c: Dual rays with w̃c = 0, corresponding

to instances of verification LP (8) that remain infeasible when Inequality (8c) is removed, and dual rays

with w̃c > 0, only occurring in instances of verification LP (8) that are feasible when Inequality (8c) is

removed.

10 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

When generating Inequality (12) using a dual ray of the first type, the variable corresponding to x̄1

is set to zero in all feasible solutions to the master IP. In this case the resulting Inequality (12) is called

a feasibility (subproblem) cut.

Dual rays of the second type can also occur if the variable corresponding to x̄1 is not set to zero

in all feasible solutions to the master IP. Nevertheless, taking the objective function into account by

considering Inequality (8c), we can conclude that it is set to zero in all optimal solutions to the master

IP. In this case, Inequality (12) is called an optimality (subproblem) cut and can be written as

cT1 x
1 +

w̃

w̃c
(b̃− Ãx1) ≤ z̄UB . (13)

The reader may note that in our quest to avoid the generation of (strongly) redundant columns, as

a by-product, we additionally avoid certain columns from one subproblem that are incompatible with

solutions of another, when using feasibility subproblem cuts.

2.3 An Alternative Way to Avoid Generating Strongly Redundant Columns

Remember that feasibility subproblem cuts are generated if verification LP (8) remains infeasible when

Inequality (8c) is removed. Hence, it suffices to consider the following problem:

min cT2 x
2 (14a)

s. t. B̃x2 ≥ b̃− Ãx̄1 (14b)

x2 ∈ Rn2

≥0 , (14c)

and the corresponding dual of (14):

max wT
(
b̃− Ãx̄1

)
(15a)

s. t. wT B̃ ≤ cT2 (15b)

w ∈ Rm
≥0 . (15c)

Analogously to Problem (8), we define the set of dual rays of Problem (14), i.e., the set of solutions to

the homogenous version of the dual problem (15) as

T := {w̃ ∈ Rm
≥0 : w̃T B̃ ≤ 0} . (16)

Note that column x̄1 ∈ X1 is strongly redundant if Problem (14) is either (i) infeasible or (ii) feasible

but the corresponding objective function value is greater than the best known upper bound z̄UB .

On the one hand, if Problem (14) is infeasible, feasibility cuts can be generated from its dual rays.

Let w̃ ∈ T be a dual ray of an infeasible instance of (14); the corresponding cut takes the form of a

Benders cuts to avoid redundant columns 11

feasibility cut (12) with w̃c = 0, i.e.,

w̃T (b̃− Ãx̄1) ≤ 0 . (17)

Theorem 3 Let w̃ ∈ T be a dual ray of (14). Inequality (17) is valid for all solutions x̄1 ∈ X1

corresponding to columns that are not strongly redundant.

Proof Let x̄1 ∈ X1 be a solution to the subproblem corresponding to a column that is not strongly

redundant. Hence, x̄1 induces a feasible instance of Problem (8). Furthermore, Problem (14) is feasible

and the corresponding dual problem (15) is bounded, i.e., the objective function value of all dual rays

in T is non-positive. In particular, this holds for the given dual ray w̃, i.e., Inequality (17) holds for x̄1.

On the other hand, if Problem (14) is feasible, a dual solution to (14) can be used to generate a cut

similar to (13). Let S be the set of dual solutions to (14) (the set of feasible solutions to the dual (15)),

i.e.,

S := {w̃ ∈ Rm
≥0 : w̃T B̃ ≤ cT2 } . (18)

Assume that x̄1 induces a feasible instance of (14). By applying weak duality, each dual solution w̃

to (14) induces a lower bound on the optimum of (14), i.e.,

min
{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Rn2

≥0

}
≥ w̃(b̃− Ãx̄1) . (19)

Furthermore, it is possible to derive a lower bound on the optimum z∗ of the original problem (5) from

Equation (19):

z∗ ≥ cT1 x̄
1 + min

{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Zn2

}
(20a)

≥ cT1 x̄
1 + min

{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Rn2

}
(20b)

≥ cT1 x̄
1 + w̃(b̃− Ãx̄1) . (20c)

Given an upper bound z̄UB on the optimum z∗ of (5) and a dual solution w̃ ∈ S of Problem (14), we

can derive the following inequality:

cT1 x
1 + w̃(b̃− Ãx1) ≤ z̄UB . (21)

Such inequalities, because of their form and role being similar to optimality cuts (13), are also called

optimality (subproblem) cuts.

Theorem 4 Let w̃ ∈ S be a dual solution of (14). Inequality (21) is valid for all solutions x̄1 ∈ X1

corresponding to columns that are not strongly redundant.

Proof Let x̄1 ∈ X1 be a solution to the subproblem corresponding to a column that is not strongly

redundant. Hence, x̄1 induces a feasible instance of (8). Furthermore, Problem (14) is feasible and x̄1 is

12 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

part of an optimal integer solution to the original problem (5):

z∗ = cT1 x̄
1 + min

{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Zn2

}
.

With (20) and z̄UB ≥ z∗ this implies:

z̄UB ≥ z∗

= cT1 x̄
1 + min

{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Zn2

}
≥ cT1 x̄

1 + w̃(b̃− Ãx̄1) .

Thus, Inequality (21) holds for x̄1.

Instead of using verification LP (8), we can use Problem (14) to perform the relaxed redundancy

check for each column. Thus, we also call Problem (14) verification LP. The only difference between the

two is the omission of the upper bound constraint (8c). Subproblem cuts (12) are generated using dual

rays of infeasible instances of verification LP (8); subproblem cuts (17) and (21) are generated using dual

rays of infeasible instances and dual solutions to feasible instances of (14), respectively. In the following

we prove the equivalence of subproblem cuts generated using verification LPs (8) and (14). We start

with the feasibility cuts.

Theorem 5 Let x̄1 ∈ X1. There exists a dual ray (ũ, ũc) ∈ T c of Problem (8) with ũc = 0 satisfying

ũ(b̃− Ãx̄1) + ũc(cT1 x̄
1 − z̄UB) > 0 (23)

if and only if there exists a dual ray w̃ ∈ T of Problem (14) satisfying

w̃T (b̃− Ãx̄1) > 0 .

Proof When fixing variable wc to zero in the dual problem (9), the resulting problem is equivalent to

the dual problem (15). Hence, the set of dual rays T of Problem (15) is identical to the set {ũ : (ũ, ũc) ∈

T c, ũc = 0}. This proves the theorem.

We next show the equivalence of optimality cuts derived from verification LPs (8) and (14).

Theorem 6 Let x̄1 ∈ X1. There exists a dual ray (ũ, ũc) ∈ T c of Problem (8) with ũc > 0 satisfying

ũ(b̃− Ãx̄1) + ũc(cT1 x̄
1 − z̄UB) > 0 (24)

if and only if there exists a dual solution w̃ ∈ S of Problem (14) satisfying

cT1 x
1 + w̃(b̃− Ãx1) > z̄UB . (25)

Benders cuts to avoid redundant columns 13

Proof Let (ũ, ũc) ∈ T c be a dual ray of Problem (8) with ũc > 0 satisfying (24). We define w̃ :=
ũ
ũc .

Obviously, w̃ ≥ 0 holds. Furthermore, a ray of problem (9), given by ũT B̃ − ũccT2 ≤ 0, implies

w̃T B̃ =
ũT B̃

ũc
≤ ũccT2

ũc
= cT2 .

Hence, solution w̃ is a dual solution of Problem (14), i.e., w̃ ∈ T . By construction, Inequality (25) holds.

Let w̃ ∈ S be a dual solution of Problem (14) satisfying (25). We define ũc := 1 and ũ := w̃.

Obviously, ũc ≥ 0 and ũ ≥ 0 hold. Furthermore, Equation (15b) implies

ũT B̃ − ũccT2 = w̃T B̃ − cT2 ≤ 0 .

Hence, (ũ, ũc) is a dual ray of Problem (8). By construction, Inequality (23) holds.

Although the sets of optimality cuts generated by solving the verification LPs (8) and (14) are equally

strong (c.f. Theorem 6), there is a difference between these optimality cuts: Optimality cuts generated by

solving verification LP (14) maximize the violation of the considered solution x̄1, while optimality cuts

generated by solving verification LP (8) in general do not. Note that the violation of Inequality (13) is

increased if the corresponding objective function value of Problem (15), the dual of verification LP (14),

is increased; this objective function value is maximized if verification LP (14) is minimized.

By maximizing the violation at the considered solution, we expect to obtain stronger optimality cuts,

which are violated by potentially more solutions x1 ∈ X1. This is why we will focus on the alternative

method to generate subproblem cuts for the remainder of this paper.

3 Generalization of Proposed Methods

In this section, we consider generalizations of the proposed methods to problems with multiple subprob-

lems in Section 3.1 and problems with continuous variables in Section 3.2.

3.1 Multiple subproblems

The methods developed for avoiding the generation of redundant columns in Sections 2.1–2.2 focus on

the special case of the original problem (1) with |K| = 2. From our presentation it should be clear how

these generalize to |K| > 2. For completeness, we state the identification of redundant columns and

the methods for avoiding their generation in the general case. We also present the general formulation

of verification LP used for the redundancy check and the form of the subproblem cuts. Further, we

restate Theorems 1, 3, and 4 with respect to the general formulation of Problem (1). We focus on

the generalization of subproblem cuts obtained by solving verification LP (14). The generalization of

subproblem cuts obtained by solving verification LP (8) can be accomplished analogously.

14 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

Consider the k-th subproblem (4) for some k ∈ K and the column corresponding to some solution

x̄k ∈ Xk . The redundancy of x̄k can be evaluated by checking the conditions of Theorem 1. This is

achieved by solving the following LP, which is a generalization of verification LP (14):

z ′′(x̄k) = min
∑

k′∈K\{k}

cTk′xk
′

(26a)

s. t.
∑

k′∈K\{k}

Ak′xk
′
≥ b−Ak x̄

k (26b)

Dk′xk
′
≥ dk′ ∀k′ ∈ K\{k} (26c)

xk
′
∈ Rnk′

≥0 ∀k′ ∈ K\{k} . (26d)

We will also call Problem (26) verification LP. Note that it includes all constraints related to subproblems

k′ ∈ K with k′ 6= k. Constraints (26b) correspond to the linking constraints (1b); the variables xk ,

however, are fixed to the values of x̄k .

The dual of verification LP (26), is given by

max (w0)T (b−Ak x̄
k) +

∑
k′∈K\{k}

(wk′
)T dk′ (27a)

s. t. (w0)TAk′ + (wk′
)TDk′ ≤ cTk′ ∀k′ ∈ K\{k} (27b)

w0 ∈ Rm
≥0 (27c)

wk′
∈ Rmk

≥0 ∀k′ ∈ K\{k} . (27d)

The generalization of Theorem 1 to the case with more than two subproblems can be stated as

follows:

Theorem 7 Given a column x̄k to the k-th subproblem (4) and an upper bound z̄UB on the optimum

of the original problem (1). Column x̄k is strongly redundant if one of the following conditions holds:

(i) Problem (26) is infeasible,

(ii) for the optimum z ′′(x̄k) of Problem (26) it holds that

z̄UB − cT1 x̄k < z ′′(x̄k) .

Proof Can be proven analogously to Theorem 1, using variants of Lemma 2 and Lemma 3 for multiple

subproblems.

Analogously to Theorem 1, Theorem 7 can be used to identify strongly redundant columns. Similar

to the procedure explained in Section 2.2, the generation of such columns can then be avoided by using

the dual solutions and dual rays of verification LP (26) to construct classical Benders cuts.

Benders cuts to avoid redundant columns 15

Let Sk be the set of all dual solutions and let T k be the set of all dual rays of verification LP (26),

i.e.,

Sk :=
{
w =

(
w0, (wk′

: k′ ∈ K \ {k})
)

: (27b)− (27d)
}

(28a)

T k :=
{
w =

(
w0, (wk′

: k′ ∈ K \ {k})
)

: (27c)− (27d), (28b)

(w0)TAk′ + (wk′
)TDk′ ≤ 0 ∀k′ ∈ K\{k}

}
. (28c)

Given a dual ray w̃ ∈ T k of verification LP (26). Inequality (17) can be generalized as follows:

(w̃0)T (b−Ak′xk) +
∑
k′∈K
k′ 6=k

(w̃k′
)T dk′ ≤ 0 . (29)

Theorem 8 Let k ∈ K be fixed, and let w̃ ∈ T k be a dual ray of Problem (26). Inequality (29) is valid

for all solutions x̄k ∈ Xk corresponding to columns that are not strongly redundant.

Proof Can be proven analogously to Theorem 3.

Given a dual solution w̃ ∈ T k of verification LP (26), we can analogously generalize Inequality (21)

as follows:

cTk′xk
′
+ (w̃0)T (b−Ak′xk

′
) +

∑
k′∈K
k′ 6=k

(w̃k′
)T dk′ ≤ z̄UB . (30)

Theorem 9 Let k ∈ K be fixed, and let w̃ ∈ Sk be a dual solution of Problem (26). Furthermore,

let z̄UB be a primal bound for (1). Inequality (30) is valid for all solutions x̄k ∈ Xk corresponding to

columns that are not strongly redundant.

Proof Can be proven analogously to Theorem 4.

3.2 Mixed-Integer Programs

When applying the discretization form of Dantzig-Wolfe reformulation to a MIP, one obtains integrality

constraints on sums of λ-variables [23]: For each integer x-variable, there exists an integrality constraint

in the reformulated problem for the sum of λ-variables corresponding to subproblem solutions with the

same solution value for this particular integer x-variable. Notice that the reformulated problem (3) for

IPs contains integrality constraints for each individual λ-variable. Hence, Theorem 7 can be extended to

MIPs by only fixing the integer x-variables of a given solution x̄k in verification LP (26) and by adding

the constraints Dkx
k ≥ dk to verification LP (26).

16 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

4 Algorithm for Avoiding the Generation of Redundant Columns

Identifying and then, subsequently, avoiding the generation of redundant columns involves a modification

to the pricing stage of the column generation algorithm. Briefly, the solutions found by the subproblem are

checked for strong redundancy, using the methods previously described, and if redundant a subproblem

cut is generated. Algorithm 1, presented in Section 4.1, describes the modified pricing iteration that

includes the redundancy check based on Theorem 7. Note that we use the alternative method to generate

subproblem cuts, presented in Section 2.3.

To better explain the connection between the many different mathematical programs introduced in

the previous sections, a diagram of their relationship in the method for identifying redundant columns

and avoiding their generation is given in Figure 1. The different mathematical programs are variants of

problems that commonly arise in the context of Dantzig-Wolfe reformulation and Benders decomposition.

Given a solution x̄k to the k-th subproblem for some k ∈ K , we can interpret solving verification LP (26)

as solving the partial LP relaxation (PLP) of the original problem (OP) from Figure 1 with partially fixed

solution xk = x̄k . This gives a lower bound (which might be infinite if verification LP (26) is infeasible)

on the optimum of the original problem with partially fixed solution xk = x̄k . Given an upper bound

Original Problem

min
∑
k∈K

cTk x
k

s. t.
∑
k∈K

Akx
k ≥ b

Dkx
k ≥ dk ∀k ∈ K
xk ∈ Znk

≥0 ∀k ∈ K

(OP)

Restricted master LP

min
∑
k∈K

∑
p∈P̄ k

cpλp +
∑
r∈R̄k

crλr


s. t.

∑
k∈K

∑
p∈P̄ k

apλp +
∑
r∈R̄k

arλr

 ≥ b
∑
p∈P̄ k

λp = 1 ∀k ∈ K

λ ∈ RP̄ ∪R̄
≥0

(RMLP)

subproblem for chosen k

min (cTk − πTAk)xk − πk
0

s. t. Dkx
k ≥ dk
xk ∈ Znk

≥0

(PP-k)

Subproblem cuts for k

0 ≥ (w̃0)T (b−Ak′xk) +
∑
k′∈K
k′ 6=k

(w̃k′
)T dk′

z̄UB ≥ cTk′xk
′
+ (w̃0)T (b−Ak′xk

′
) +

∑
k′∈K
k′ 6=k

(w̃k′
)T dk′

(CUT)

Partial LP relaxation

min cTk x
k +

∑
k′∈K
k′ 6=k

cTk′xk
′

s. t. Ak x̄
k +

∑
k′∈K
k′ 6=k

Ak′xk
′
≥ b

Dk′xk
′
≥ dk′ ∀k′ ∈ K \ {k}

Dkx
k ≥ dk

xk
′
∈ Rnk′

≥0 ∀k′ ∈ K \ {k}

xk ∈ Znk

≥0

(PLP)

DW reformulation;

relax λ ∈ ZPk∪Rk

≥0

choose P̄
k ⊆ P k ,

R̄
k ⊆ Rk for k ∈ K

Choose some k ∈ K ;

relax xk
′ ∈ Znk′

≥0 for k′ ∈ K \ {k}
duals π and πk

0 for chosen k

fix xk

dual solution w̃/
dual ray w̃

avoid generating redundant columns
by adding feasibility/optimality cuts

Fig. 1: An overview of various problems, and their relationship, used in the column generation algorithm
and the generation of the subproblem cuts.

Benders cuts to avoid redundant columns 17

on the optimum (or given that verification LP (26) is infeasible), we can generate a subproblem cut for

the k-th pricing problem using a dual ray or a dual solution as depicted by (CUT) in Figure 1.

4.1 Modified Pricing Iteration

As in a regular column generation pricing iteration, the output of Algorithm 1 is a set of negative

reduced cost columns. If no such columns exist, then the empty set is returned—indicating that the

current solution to the restricted master LP is optimal for the master LP.

The main steps of Algorithm 1 are as follows: First, subproblems (4) (potentially including some

subproblem cuts) are solved. Then, all found columns x̄k with negative reduced cost are checked for

strong redundancy by solving the corresponding verification LP (26). If verification LP (26) is infeasible

or the optimum is sufficiently large, we can construct a subproblem cut that is violated by x̄k and add

it to the k-th subproblem (4). Otherwise, we add x̄k to the set of columns that will be added to the

Data: Upper bound z̄UB , subproblems (4) (potentially including some subproblem cuts).

Result: Set C of columns having negative reduced cost or C = ∅ if none exist.

C := ∅ // set of columns that will be added to restricted master LP

rk := True ∀k ∈ K // store if subproblem k was refined/needs resolve

do

C0 := ∅ // set of potential columns that will be added to C

// (re)solve subproblems

for k ∈ K do

if rk = True then

Solve the k-th subproblem (4) and add columns x̄k with negative reduced cost to C0

rk := False // subproblem k was solved

end for

// check columns in C0 for redundancy

for x̄k ∈ C0 do

C0 := C0 \ {x̄k}
Solve verification LP (26) with optimum z ′′

if verification LP (26) is infeasible then

Construct feasibility cut and add it to the k-th subproblem (4)

rk := True // subproblem k was refined

else if z̄UB − cTk x̄k < z ′′ then

Construct optimality cut and add it to the k-th subproblem (4)

rk := True // subproblem k was refined

else

C := C ∪ {x̄k} // column x̄k passed relaxed redundancy check

C0 := C0 \ {x̄k}

end for

// exit loop if C contains some columns or no subproblem was refined

while C = ∅ and there exists some k ∈ K with rk = True

return C

Algorithm 1: Pricing iteration with redundancy check.

18 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

restricted master LP. Finally, we repeat this procedure: All subproblems that were changed by adding

subproblem cuts in the previous round are resolved. If no subproblem cuts can be generated for the set

of found columns with negative reduced cost, the algorithm terminates.

We remark that in each pricing iteration, the current upper bound z̄UB can be used to strengthen

the previously generated optimality cuts. Hence, the right hand side of the optimality cuts is updated

whenever an improved upper bound is found.

5 Computational Results

We implemented the generation of subproblem cuts (see Algorithm 1) in the branch-price-and-cut solver

GCG [12] that extends SCIP [1]. We used a development version of GCG 2.1.4, which is based on a

development version of SCIP 5.0.1. Furthermore, we used CPLEX 12.7.1.0 as LP solver for the restricted

master LP and as MIP solver for the subproblems.

Two different settings are used for these experiments: The first is Default , which is the default

parameter settings for GCG, and the second is Subcuts, which is Default but with the generation of

subproblem cuts—as described in Algorithm 1—enabled. In Subcuts, the subproblem cuts are only

generated for the subproblems while solving the root node of the branch-and-price tree. For both settings

the subproblems are first solved heuristically using a gap limit of 20% and a node limit of 1000 nodes. If

no negative reduced cost columns are found using the heuristic pricing, the subproblems are then solved

to optimality.

All computations were performed on a cluster consisting of Xeon L5630 Quad Core 2.13 GHz pro-

cessors with 16 GB DDR3 RAM. The time limit used for all experiments is 3600 seconds.

5.1 Classical Instances

Classical problems for which Dantzig-Wolfe reformulation applies well were used for the initial computa-

tional experiments evaluating the potential of the subproblem cuts. Test instances were collected for bin

packing, cutting stock, vertex coloring, capacitated p-median, generalized assignment, and single-source

capacitated facility location problems. In this initial set of computational experiments on classical prob-

lem, (almost) no subproblem cuts were generated. While this is an undesired result, it is valuable in

highlighting a limitation to the proposed methods and the subproblem cuts, and it also gives an insight

into the nature of (strong) redundancy.

An explanation for the inability to generate subproblem cuts can be easily seen when considering the

bin packing problem (similar arguments apply to the other classical problem classes). In the bin packing

problem a set of n items is given, each having some positive weight ai, i ∈ {1, . . . , n}, and a set of n

bins, all having the same capacity. The goal is to pack the items into bins such that the capacity of the

Benders cuts to avoid redundant columns 19

bins is not exceeded and the number of used bins is minimized. The classical textbook model reads

min

n∑
j=1

yj (31a)

s. t.

n∑
j=1

xij = 1 ∀i = 1, . . . , n (31b)

n∑
i=1

aijxij ≤ b · yj ∀j = 1, . . . , n (31c)

xij , yj ∈ {0, 1} ∀i, j = 1, . . . , n , (31d)

where xij for i, j ∈ {1, . . . , n} equals 1 to indicate that item i is packed in bin j, and 0 otherwise. Further,

yj for j ∈ {1, . . . , n} indicates whether bin j is used (yj = 1) or not (yj = 0). Constraints (31c) are

knapsack constraints that ensure that the capacity of each bin is not exceeded and constraints (31b) are

set partitioning constraints enforcing that each item is packed in exactly one bin. When Dantzig-Wolfe

reformulation is applied to (31), the knapsack constraints (31c) are chosen as subproblem constraints,

yielding one subproblem for each bin. Since the bins are identical, the subproblems can be aggregated.

Suppose we are given a column, which corresponds to a packing of a bin, and we solve the corre-

sponding verification LP (26) by choosing some bin k in the original problem as representative. Then

verification LP (26) corresponds to fractionally packing all items that are not in the fixed packing into

the other bins. Since finding such a packing is possible under mild conditions (the total weight of un-

packed items should not exceed the total capacity of all other bins), verification LP (26) is usually

feasible. Hence, Condition (i) of Theorem 7 is not satisfied and hence no feasibility subproblem cuts can

be generated. Furthermore, the original LP relaxation of the bin packing problem is very weak, meaning

that Condition (ii) of Theorem 7 is usually not satisfied; hence, (almost) no optimality subproblem cuts

can be generated.

This explanation is particular to our methods but it may be inherent to the notion of (strong)

redundancy. In the textbook models with classical decompositions that comprise many subproblems, a

column generated from a single subproblem is very rarely not complemented to a feasible master problem

solution with columns from other pricing problems. For objective functions that simply sum the master

variables, there may be many optimal solutions, making it more unlikely for a column not to appear in

any optimal solution. Even if it does not, it might not be generated in the subproblems and thus no

subproblem cut would be generated.

5.2 Temporal Decompositions

The computational experiments on classical instances highlighted that structure in the decomposition

and dependency between the subproblems is necessary for the generation of subproblem cuts. A type of

decomposition where such structure and dependency is exhibited is the temporal decomposition. Thus,

20 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

to evaluate the potential of the subproblem cuts, the proposed methods have been applied when solving

instances from lot sizing and unit commitment problems on which a temporal decomposition has been

performed.

Temporal decompositions exploit a time-dependant structure between variable subsystems. There

are two major types of temporal decompositions: period and horizon decompositions. A period decom-

position is characterized by each subproblem being formed of a subsystem from a single time period.

Alternatively, in horizon decompositions each subproblem comprises subsystems from multiple, consecu-

tive time periods. Figure 3 illustrates the temporal structure of lot sizing and unit commitment problems.

A period decomposition for unit commitment problems is obtained by choosing the constraints that only

belong to one period (blue constraints in Figure 2a) as subproblem constraints and all other constraints

(orange and red constraints in Figure 2a) as master constraints, resulting in one subproblem per pe-

riod. A horizon decomposition with horizon k is obtained by choosing the constraints that belong to k

consecutive periods as well as some related linking constraints as subproblem constraints. Particularly,

the first k periods will form the first subproblem, the second k periods the second subproblem, etc., re-

sulting in one subproblem for every consecutive k periods. Constraints that only link periods belonging

to the same subproblem are also chosen as subproblem constraints (some of the orange constraints in

Figure 2a). In the horizon decomposition with horizon 2 for the example illustrated in Figure 2a, the

orange constraints linking the first and the second period as well as the ones linking the third and the

fourth period are chosen as subproblem constraints, as indicated by the black rectangles. Analogously,

by replacing linking constraints with linking variables, we can apply horizon decomposition to lot sizing

problems, as depicted in Figure 2b.

We remark that there is a difference between horizon decompositions for unit commitment and

lot sizing problems: In lot sizing problems, horizon decompositions are applied by introducing linking

global constraints

period 1

period 2

period 3

period 4

Unit commitment problems.

period 1

period 2

period 3

period 4

Lot sizing problems.

Fig. 3: Figure illustrating the temporal structure in the constraint matrix of the unit commitment and
lot sizing problems. The horizon decomposition with horizon 2 is indicated by the black rectangles: Each
black rectangle corresponds to a subproblem.

Benders cuts to avoid redundant columns 21

variables between different subproblems, whereas horizon decompositions for unit commitment problems

introduce linking constraints instead.

A particular interest in temporal decomposition comes from recent successes reported when such a

Dantzig-Wolfe reformulation is applied to lot sizing and unit commitment problems. Previously, temporal

decomposition has been applied to single-level capacitated lot sizing problems with setup times [21] in

order to obtain a period decomposition [5, 18]. More generally, temporal decompositions are applied to

lot-sizing problems to obtain horizon decompositions [10]. As mentioned by de Araujo et al. [5], these

decompositions can also be applied to multi-level capacitated lot sizing problems with setup times.

Similar decompositions can also be applied to unit commitment problems. In particular Kim et al.

applied horizon decompositions [15] (called temporal decompositions in their paper) to linearized unit

commitment problems.

The test instances for the computational experiments presented in this paper consist of multi-level

lot sizing problems instances collected from Tempelmeier and Derstroff [20] and the unit commitment

instances collected from Frangioni [11]. For the multi-level lot sizing problems by Tempelmeier and Der-

stroff [20] we consider both period and horizon decompositions. In the computational experiments, the

test set including the period decomposition is labeled ls-Derstroff-period. Since there are only 4 time

periods, we restrict the horizon decompositions to have a horizon of 2. The corresponding test set is

labeled ls-Derstroff-horizon2. For the unit commitment problem, we apply horizon decompositions with

horizons 8 (uc-Frangioni-horizon8) and 12 (uc-Frangioni-horizon12) to linearized thermal unit commit-

ment instances from Frangioni [11], which consist of 24 planning periods.

5.2.1 Example of Subproblem Cuts for Lot Sizing Problems

The proposed methods for generating subproblem cuts employs a Benders-like cut generating LP. As

such, the generated cuts may take a form that does not have any practical meaning. However, for the Lot

Sizing Problem, after applying a temporal decomposition, the cut generating LP produces subproblem

cuts that have a practically meaningful form.

When considering temporal decompositions for lot sizing problem, each subproblem corresponds to

some consecutive subset of periods and each column that is generated by such subproblem represents

a possibly infeasible production plan for those periods. The subproblems are linked by demand or bal-

ance constraints. In the following, we will assume that period decomposition was applied, but similar

subproblem cuts exist for horizon decompositions.

Suppose the original lot sizing problem contains binary variables yit for each product i and each

period t with

yit =

1, if product i is produced in period t,

0, else .

22 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

These variables usually have setup times and costs. When solving verification LP (26) for a column

(corresponding to a production plan for period t), some of these variables are set to 0, which can result

in an infeasible problem. A subproblem feasibility cut for period t then forbids setting some of these

variables to 0; for some subset I ′ of products the subproblem feasibility cut has the form

∑
i∈I′

yit ≥ 1 .

Similar subproblem cuts can be generated with horizon decompositions. For this type of decomposition,

the cut is not associated with a single time period t, but a set of consecutive time periods Tk ⊆ T that

form a given horizon k.

5.2.2 Solving the Linear Programming Relaxation

Table 1 gives an overview of the computational results for solving the LP relaxation of the master

problem (3), called the master LP. This table contains the following columns: the number of instances

(ninst); the number of affected instances, i.e, instances in which subproblem cuts are generated (naff);

the average number of generated subproblem cuts per affected instance (ncuts); the number of instances

in which the master LP is solved within the time limit (nsol); the shifted geometric mean of master LP

solving time in seconds with a shift of 1 (time); the shifted geometric mean of the number of column

generation iterations for the master LP with a shift of 1 (iters); and the shifted geometric mean of the

gap closed in comparison to the original LP relaxation, i.e., the LP relaxation of the original problem (1)

(gapcl). The geometric mean displayed in the columns time, iters, and gapcl is computed over the

instances where the master LP was solved by both settings in the given time limit.

Subproblem cuts are generated on the majority of the instances from all test sets (c.f. Table 1,

Column naff). Furthermore, a relative large number of subproblem cuts are found on these instances

(c.f. Table 1, Column ncuts). When comparing Default and Subcuts, it can be observed that the number

of instances in which the master LP can be solved within the time limit is almost identical (c.f. Table 1,

Column nsol). For most other instances, only a small increase in the solution time for the master LP is

observed. The exceptions to this are the unit commitment instances using horizon decompositions with

horizon 8, reporting a large increase in the solution time for the master LP. Finally, it can be observed

that with Subcuts the number of pricing iterations increases on lot sizing instances from the Derstroff

test set, whereas it decreases on all other test sets.

An important observation from Table 1 is that the addition of the subproblem cuts results in an

increase to the root node dual bound across many of the considered instances. For the Derstroff test

sets, ls-Derstroff-period and ls-Derstroff-horizon2, an increase in the dual bound of 5.59% and 3.16%,

respectively, is observed on average. A similar result is also shown for the uc-Frangioni-horizon8 and

uc-Frangioni-horizon12 instances, reporting an average increase in the dual bound of 5.12% and 0.07%.

Benders cuts to avoid redundant columns 23

overall Default Subcuts
ninst naff ncuts nsol time iters gapcl nsol time iters gapcl

ls-Derstroff-period 81 59 30.20 80 1.61 39.85 8.10 81 2.43 40.36 13.69
ls-Derstroff-horizon2 81 53 39.13 62 1.13 73.53 84.78 62 1.17 73.42 87.94
uc-Frangioni-horizon8 42 40 144.25 10 47.86 98.00 78.76 10 64.02 90.72 83.88
uc-Frangioni-horizon12 42 36 36.14 10 39.90 50.65 97.97 10 48.07 50.01 98.04

Table 1: Computational results when solving the master LP of the lot sizing and unit commitment
instances using Default and Subcuts.

These results demonstrate the ability of the subproblem cuts to improve the master LP dual bounds on

structured integer programs.

It must be noted that the Default settings for GCG includes the domain propagation method of

Gamrath and Lübbecke [12]. Thus, the results presented here demonstrate an improvement over the

only other general method for avoiding the generation of redundant columns provided in the literature.

This suggests that the subproblem cuts are stronger than the variable bounds derived from performing

domain propagation on the original problem.

The methods proposed in this paper introduce extra work in the pricing stage of the column gen-

eration algorithm to avoid the generation of redundant columns. While an increase in the dual bound

is achieved, this comes at the cost of an increased time to solve the root node of the restricted master

LP. It can be seen in Table 1 that using Algorithm 1 in the pricing stage increases the time to solve

the root node of the restricted master LP for all test sets. Unfortunately, this cost is unavoidable when

generating subproblem cuts. Ideally, the extra work to increase the dual bound will aid in solving the

restricted master LP to integer optimality, which is evaluated in Section 5.2.3.

Interestingly, the results show that only feasibility cuts are generated on all tested instances. Even

if we provide the optimum z∗ instead of an z̄UB when generating the subproblem cuts. This could be

explained by weak original LP relaxations and hence, “weak” verification LPs (26). In this setting, it

appears that even by fixing a column from one pricing problem the objective function value of verification

LP is never greater than the objective value of the integer optimal solution. This observation highlights

a potential direction of future work to investigate alternative relaxations of verification IP to improve

the strength of the subproblem cuts.

The improved dual bound on multi-level lot sizing and unit commitment instances is depicted in detail

in Figure 5. Except for the unit commitment instances using horizon decompositions of horizon 12, the

subproblem cuts close a large amount of the gap on several instances. Note that the gap that was closed

varies considerably, even on instances of the same test set. An interesting observation from Figure 5 is

that as the horizon period increases, the ability to improve the dual bound decreases. This could be

explained by the same reason why subproblem cuts are most effective when a temporal decomposition

is applied: An increased horizon period results in less subproblems, reducing the possibility of columns

causing infeasibilities between subproblems. Considering the uc-Frangioni-horizon12 instances, the total

24 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

20 40 60 80
instance

0.0

0.1

0.2

0.3

0.4

0.5
ga

p
of

 o
rig

 L
P

clo
se

d

default
subcuts

ls-Derstroff-period

10 20 30 40 50 60
instance

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

of
 o

rig
 L

P
clo

se
d

default
subcuts

ls-Derstroff-horizon2

2 4 6 8 10
instance

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

of
 o

rig
 L

P
clo

se
d

default
subcuts

uc-Frangioni-horizon8

2 4 6 8 10
instance

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

of
 o

rig
 L

P
clo

se
d

default
subcuts

uc-Frangioni-horizon12

Fig. 5: The gap of the original LP relaxation that was closed by Dantzig-Wolfe reformulation (blue) and
the additional gap that was closed by the generation of subproblem cuts (orange).

number of time periods is 24, so horizons of 12 means that there are only 2 subproblems. As such, within

each horizon period there will be no infeasibilities caused by the scheduling decisions between the time

periods. The infeasibilities caused by preceding scheduling decisions can only occur between the two

horizon periods—significantly limiting the number of subproblem cuts that can be generated, which is

shown in Table 1. A similar result is observed for the ls-Derstroff-horizon2 instances, shown in Figure 4b,

since there are only 4 time periods the horizon of 2 affords less opportunities to identify infeasibilities

between the periods. Thus, the results show that subproblem cuts are most useful when there are many

subproblems and the decomposition structure is such that fixing decisions from one subproblem causes

infeasibilities in the others.

5.2.3 Solving the Integer Program

Table 2 presents the computational results for solving the master problem (3) using a branch-price-and-

cut algorithm. Table 2 contains similar columns as Table 1 with the following differences: The Columns

nsol and time correspond to solving the problems to optimality instead of solving only the LP relaxation,

and Column nds specifies the geometric mean of the number of nodes in the branch-and-price tree on

instances solved in both settings.

Comparing Default and Subcuts, we observe a general decrease in the run times from the use of

the subproblem cuts. The largest absolute difference in the average run times is observed for the uc-

Frangioni-horizon8 test set, with a 16.04 second average decrease, where the largest relative decrease

(time(Default) − time(Subcuts)/time(Default)) is given by the ls-Derstroff-horizon2 test set (27.24%).

Benders cuts to avoid redundant columns 25

overall Default Subcuts
ninst naff nsol time nds gapcl nsol time nds gapcl

ls-Derstroff-period 81 59 56 72.50 865.69 8.10 56 68.08 793.79 13.69
ls-Derstroff-horizon2 81 53 58 13.62 35.06 84.78 58 9.91 18.97 87.94
uc-Frangioni-horizon8 42 40 6 95.15 6.56 78.76 6 79.11 4.52 83.88
uc-Frangioni-horizon12 42 36 8 31.86 1.32 97.97 8 34.59 1.32 98.04

Table 2: Computational results when solving the lot sizing and unit commitment instances by branch-
and-price using Default and Subcuts.

While a general decrease in the run times is observed, there are still instances where the addition of

the subproblem cuts has a negative effect. In particular, the uc-Frangioni-horizon12 test set exhibits an

average increase of 2.73 seconds. An important observation is that while the generation of subproblems

cuts may not always be effective, Algorithm 1 does not greatly affect the overall solving performance.

However, when the subproblem cuts are effective, avoiding the generation of redundant columns can

significantly improve the performance of the branch-and-price algorithm.

The benefit for improving the root node dual bound with the addition of subproblem cuts is shown

by a decrease in the number of branch-and-bound nodes to solve the instances. A large decrease is

observed for both lot sizing and uc-Frangioni-horizon8 test sets, with the largest relative decrease of

45.89% produced by the ls-Derstroff-horizon2 instances. This result demonstrates that the tighter root

node relaxation achieved by eliminating redundant columns can have an overall positive effect on the

performance of the branch-and-price algorithm.

5.2.4 Impact of Subproblem Cuts on the Difficulty of Subproblems

In this section, we turn our attention to the computational impact of generating subproblem cuts.

In particular, since more constraints are added to the subproblems, it is expected that these problems

become more difficult to solve. However, the addition of the subproblem cuts aims to eliminate generators

that correspond to redundant columns, as such, it may be possible to observe a decrease in the number

of pricing iterations. Average results for the complete test sets will be presented along with details for

specific instances to better demonstrate the effect of the addition of subproblem cuts has on the pricing

of new columns.

In Table 3 we display information on solution times of the subproblems. Table 3 contains the columns:

the geometric mean of the overall pricing times per instance (ptime), the number of column generation

pricing iterations (piters) and of the average pricing time per instance (avgptime).

We observe in Table 3 the generation of subproblem cuts only results in a small increase in the average

solving time of the subproblems. However, the magnitude of the increase in the subproblem solving time

depends greatly on the test set. Overall, the results in Table 3 suggests that the subproblem cuts do not

have a significant effect on the difficulty of the subproblems.

26 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

overall Default Subcuts
ninst naff ptime piters avgptime ptime piters avgptime

paper ls derstroff-period 81 59 1.3843 963.7515 0.0009 2.2779 971.8153 0.0014
paper ls derstroff-horizon2 81 53 1.0380 326.7728 0.0034 1.0851 327.7981 0.0035
uc-horizon8 42 42 66.1607 1049.2352 0.0870 67.1152 975.5090 0.0882
uc-horizon12 42 42 37.0855 184.6146 0.2287 46.5918 174.6371 0.3226

Table 3: subproblem statistics when solving the master LP of the lot sizing and unit commitment
instances using Default and Subcuts.

The exception to the preceding results is the uc-Frangioni-horizon12 test set, where a large increase

in the pricing time is observed. This result could be explained by the fact that the horizon of 12 time

periods results in an already more difficult subproblem compared to a horizon of 8 time periods, with

an average of 0.2287 and 0.087 seconds per pricing iteration respectively. Thus, the subproblem cuts

exacerbate the difficulty in solving the subproblems. Also, the subproblem cuts will add further linking

to the time periods within the selected horizon. As a result, these inequalities can destroy the separability

within the subproblems and affect the performance of the MIP solver. These results indicate that the

generation of subproblem cuts is most advantageous when the subproblem is not too difficult. Identifying

such limits of difficulty is the topic of future work.

In Figure 7, we depict the solution times of the subproblems with and without subproblem cuts and

the number of generated subproblem cuts. The subproblem solution times in Figure 7 is given by the dots

and crosses for the heuristic and exact pricing methods. Also, the columns in Figure 7 cumulatively show

the number of subproblem cuts generated. Note that the number of pricing rounds can differ between

the Default and Subcuts settings.

The results presented in Figure 7 verify the average results from Table 3 showing that there is little

difference between the subproblem solving times for Default and Subcuts in most iterations. The biggest

difference between the two settings is that after generating subproblem cuts in the beginning of the

column generation algorithm, for some instances the subproblem solving times can increase significantly

(c.f. Figure 6a and 6b), but then decrease to the solving times exhibited by Default . This behavior can

be explained by the importance of the subproblem cuts in the generation of non-redundant columns.

After the addition of some subproblem cuts, these constraints can become tight in an optimal solution

to the subproblems. Since these constraints are typically more numerically difficult than the original

problem constraints, and the fact that they link periods within each horizon, their existence affects the

run times for the subproblem. After the initial generation of subproblem cuts, less columns are found

to be redundant and fewer subproblem cuts are tight, leading to a decrease in the time for each pricing

iteration. Additionally, solution times can be large when solving the subproblems to optimality, which is

often the case in the last pricing iterations, if subproblem cuts have been added. However, this increase

in the subproblem solving times at the end of computation is similar for both Default and Subcuts.

Benders cuts to avoid redundant columns 27

0 10 20 30 40 50
pricing rounds (root node)

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

tim
e

in
 se

co
nd

s

default_heur
default_opt
subcuts_heur
subcuts_opt

0

5

10

15

20

25

30

ns
ub

cu
ts

G0241221-horizon2 (Derstroff)

0 20 40 60 80
pricing rounds (root node)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

tim
e

in
 se

co
nd

s

default_heur
default_opt
subcuts_heur
subcuts_opt

0

20

40

60

80

ns
ub

cu
ts

K0014535-horizon2 (Derstroff)

0 20 40 60 80 100
pricing rounds (root node)

0.01

0.00

0.01

0.02

0.03

0.04

0.05

tim
e

in
 se

co
nd

s

default_heur
default_opt
subcuts_heur
subcuts_opt

0

10

20

30

40

50

60

ns
ub

cu
ts

K5017113-horizon2 (Derstroff)

Fig. 7: Solution times (primary y-axis) and number of subproblem cuts (secondary y-axis) are depicted
in each pricing iteration (x-axis) on three lot sizing instances. Furthermore, we indicate whether the
subproblems were solved heuristically ({default,subcuts} heur) or optimally ({default,subcuts} opt).

28 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

Overall, the results show that the addition of subproblem cuts can improve the dual bound with little

increase in the solving times of the column generation subproblems.

6 Conclusions

Our methods for identifying redundant columns and avoiding their generation extends the work of

Vanderbeck and Savelsbergh [23] and Gamrath and Lübbecke [12]. Instead of only tightening variable

bounds in the subproblems, this work, to the best of the authors’ knowledge, is the first to propose a more

general approach that uses Benders-type inequalities to avoid the generation of a subset of redundant

columns using so-called subproblem cuts. Subproblem cuts are generated by exploiting classical Benders

cuts, which is a novel, interesting integration of Benders decomposition and Dantzig-Wolfe reformulation.

Although generating subproblem cuts, which are based on information from the master constraints

(i.e., on global information), is contrary to the decomposition principle, these cuts do not increase the

difficulty of the subproblem too significantly. The main benefit of generating subproblem cuts is a

stronger relaxation yielding tighter dual bounds. Initial experiments showed that it was not possible to

generate subproblem cuts on classical problem classes where Dantzig-Wolfe reformulation applies well.

Our investigations identified that the generation and addition of subproblem cuts problems is most

efficacious for problems exhibiting structure, in particular time-dependent structure. The computational

experiments show that the addition of subproblem cuts can achieve tighter dual bounds and an improved

performance for problems where a temporal decomposition is performed.

While the generation of subproblem cuts achieves an improvement in the dual bound, this improve-

ment is not as great as expected. There are two main explanations for this result. The first is, the

proposed methods to generate subproblem cuts are based on the LP relaxation of the original problem,

which can be much weaker than the master LP. This could be a major reason why no optimality cuts are

generated on the considered test instances. The second explanation is that we solve an individual LP for

each potentially new column, which can be time consuming if a large number of columns are generated.

If we would base the generation of subproblem cuts on a different, stronger relaxation (in combination

with Lemma 3), generating subproblem cuts would be even more time consuming, but we could obtain

even stronger dual bounds.

Given the potential of the proposed methods for avoiding the generation of redundant columns,

a promising and interesting area of future research is the investigation of alternative relaxations of

verification LP that could improve the computational performance. One direction of future research is

to use the master LP, instead of the original LP, in combination with Lemma 3 in order to generate

stronger subproblem cuts. In this case one would solve the verification LP using column generation,

which may not be very efficient. Furthermore, this presents the question on how to handle columns

that are generated while checking redundancy: should redundancy of these columns be checked as well

Benders cuts to avoid redundant columns 29

or should we just disregard these columns in the master LP? Finally, in the presented methods, only

classical Benders optimality and feasibility cuts are added to the subproblem. Another direction of future

research is to investigate the use of Benders decomposition enhancement techniques while generating

subproblem cuts.

References

1. T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1(1):1–41, 2009.

2. C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-and-price: column generation for

solving huge integer programs. Operations Research, 46(3):316–329, 1998.

3. J. E. Beasley. A Lagrangian heuristic for set-covering problems. Naval Research Logistics, 37(1):151–164, 1990.

4. S. Ceria, P. Nobili, and A. Sassano. A Lagrangian-based heuristic for large-scale set covering problems. Mathematical

Programming, 81(2):215–228, 1998.

5. S. A. de Araujo, B. D. Reyck, Z. Degraeve, I. Fragkos, and R. Jans. Period decompositions for the capacitated lot

sizing problem with setup times. INFORMS Journal on Computing, 27(3):431–448, 2015.

6. J. Desrosiers and M. Lübbecke. A primer in column generation. In G. Desaulniers, J. Desrosiers, and M. Solomon,

editors, Column Generation, pages 1–32. Springer, Berlin, 2005.

7. T. Fahle, U. Junker, S. E. Karisch, N. Kohl, M. Sellmann, and B. Vaaben. Constraint programming based column

generation for crew assignment. Journal of Heuristics, 8(1):59–81, 2002.

8. T. Fahle and M. Sellmann. Constraint programming based column generation with knapsack subproblems. In Journal

of Heuristics, pages 261–274, 1999.

9. J. Farkas. Theorie der einfachen Ungleichungen. Journal für die Reine und Angewandte Mathematik, 124:1–27, 1902.

10. I. Fragkos, Z. Degraeve, and B. D. Reyck. A horizon decomposition approach for the capacitated lot-sizing problem

with setup times. INFORMS Journal on Computing, 28(3):465–482, 2016.

11. A. Frangioni, C. Gentile, and F. Lacalandra. Tighter approximated MILP formulations for unit commitment problems.

IEEE Transactions on Power Systems, 24(1):105–113, Feb 2009.

12. G. Gamrath and M. E. Lübbecke. Experiments with a generic Dantzig-Wolfe decomposition for integer programs. In

P. Festa, editor, Experimental Algorithms, volume 6049 of Lecture Notes in Computer Science, pages 239–252, Berlin,

2010. Springer-Verlag.

13. A. Hadjar, O. Marcotte, and F. Soumis. A branch-and-cut algorithm for the multiple depot vehicle scheduling problem.

Operations Research, 54(1):130–149, 2006.

14. S. Irnich, G. Desaulniers, J. Desrosiers, and A. Hadjar. Path-reduced costs for eliminating arcs in routing and schedul-

ing. INFORMS Journal on Computing, 22(2):297–313, 2010.

15. K. Kim, A. Botterud, and F. Qiu. Temporal decomposition for improved unit commitment in power system production

cost modeling. IEEE Transactions on Power Systems, 33(5):5276–5287, 2018.

16. M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations Research, 53(6):1007–1023, 2005.

17. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley Interscience Series in Discrete

Mathematics and Optimization. Wiley, 1988.

18. C. M. O. Pimentel, F. P. e Alvelos, and J. M. V. de Carvalho. Comparing Dantzig-Wolfe decompositions and branch-

and-price algorithms for the multi-item capacitated lot sizing problem. Optimization Methods and Software, 25(2):299–

319, 2010.

19. M. M. Sol. Column Generation Techniques for Pickup and Delivery Problems. PhD thesis, Technische Universiteit

Eindhoven, Eindhoven, 1994.

20. H. Tempelmeier and M. Derstroff. A Lagrangean-based heuristic for dynamic multilevel multiitem constrained lotsizing

with setup times. Management Science, 42(5):738–757, 1996.

30 Marco E. Lübbecke, Stephen J. Maher, Jonas T. Witt

21. W. W. Trigeiro, L. J. Thomas, and J. O. McClain. Capacitated lot sizing with setup times. Management Science,

35(3):353–366, 1989.

22. F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-

and-price algorithm. Operations Research, 48(1):111–128, 2000.

23. F. Vanderbeck and M. W. P. Savelsbergh. A generic view of Dantzig-Wolfe decomposition in mixed integer program-

ming. Operations Research Letters, 34(3):296–306, 2006.

