
EXACT SEPARATION OF FORBIDDEN-SET CUTS ASSOCIATED WITH REDUNDANT PARITY CHECKS OF BINARY LINEAR CODES 1

Exact separation of forbidden-set cuts associated
with redundant parity checks of binary linear codes

Christian Puchert and Andreas M. Tillmann

Abstract—In recent years, several integer programming (IP)
approaches were developed for maximum-likelihood decoding
and minimum distance computation for binary linear codes. Two
aspects in particular have been demonstrated to improve the
performance of IP solvers as well as adaptive linear program-
ming decoders: the dynamic generation of forbidden-set (FS)
inequalities, a family of valid cutting planes, and the utilization
of so-called redundant parity-checks (RPCs). However, to date,
it had remained unclear how to solve the exact RPC separation
problem (i.e., to determine whether or not there exists any
violated FS inequality w.r.t. any known or unknown parity-
check). In this note, we prove NP-hardness of this problem.
Moreover, we formulate an IP model that combines the search
for most violated FS cuts with the generation of RPCs, and
report on computational experiments. Empirically, for various
instances of the minimum distance problem, it turns out that
while utilizing the exact separation IP does not appear to
provide a computational advantage, it can apparently be avoided
altogether by combining heuristics to generate RPC-based cuts.

Index Terms—computational complexity, linear codes, binary
codes, integer linear programming, Hamming weight

I. INTRODUCTION & PRELIMINARIES

THE well-known minimum distance computation problem
for binary linear codes, defined by a parity-check matrix

H ∈ {0, 1}m×n, can be stated as

min ‖x‖0 (1)
s.t. Hx = 0 mod 2, x 6= 0, x ∈ {0, 1}n,

where ‖·‖0 denotes the Hamming weight (i.e., number
of nonzeros). Similarly, the maximum-likelihood decoding
(MLD) problem is obtained by replacing the objective function
with γ>x, where γ is a (known) vector of negative log-
likelihoods (see, e.g., [1]). Both problem (1) and MLD are
NP-hard, see [2] and [3], respectively. For simplicity, we will
focus on (1) throughout, but emphasize that as we will mainly
deal with issues pertaining to the feasible set, the results are
also applicable in the MLD context.

Manuscript received April 7, 2020.
This work was conducted in the RWTH ERS Start-Up project “Efficient

exact maximum-likelihood decoding and minimum-distance computation for
binary linear codes” (Tillmann), funded by the Excellence Initiative of the
German federal and state governments.

C. Puchert was with the Chair of Operations Research at RWTH Aachen
University, Kackertstr. 7, 52072 Aachen, Germany (e-mail: puchert@or.rwth-
aachen.de), and is now with Ab Ovo Business and Software Solutions,
Düsseldorf, Germany.

A. M. Tillmann was with the Chair of Operations Research and the
Visual Computing Institute at RWTH Aachen University, Germany, and is
now with the Institute for Mathematical Optimization, Technische Universität
Braunschweig, Universitätsplatz 2, 38106 Braunschweig, Germany (e-mail:
a.tillmann@tu-bs.de).

Problem (1) (and analogously, the MLD problem) can be
rewritten in several ways (see, e.g., [4]–[8]); a fairly straight-
forward, and the most common generic approach (cf. [9]–[11])
is to reformulate (1) as the integer program

min 1>x (2)

s.t. Hx− 2z = 0, 1>x ≥ 1, x ∈ {0, 1}n, z ∈ Zn
≥0,

where 1 is the all-ones vector. Indeed, it is easily seen that the
auxiliary nonnegative integer variables z enforce the required
(even) codeword parity in all rows of the equality constraints.

Modern IP solvers are based on effective combination of the
branch-and-bound paradigm (creating subproblems by fixing
some variables and pruning parts of the resulting search tree,
e.g., if local objective bounds prevent further improvements
in the respective subtree) and the use of (linear) cutting
planes, i.e., inequalities that are valid for integral feasible
points but may be violated by fractional solutions of the
commonly employed linear programming (LP) relaxations.
Polyhedral investigations of the codeword polytope (i.e., the
convex hull of integer feasible points of (1)) in [7], [12]–[18]
(and other works) have identified, in particular, the following
class of valid inequalities to strengthen the LP relaxation
and to improve solver performance when tackling problems
like (2): ∑

j∈S
xj −

∑
j∈supp(h)\S

xj ≤ |S| − 1, (3)

where ∅ 6= S ⊂ supp(h) := {j ∈ {1, 2, . . . , n} : hj 6= 0} is
odd and h is a parity-check. These inequalities became known
as (odd) forbidden-set (FS) inequalities. It has been established
that for any given parity-check, at most one of the associ-
ated FS inequalities can be violated at a time (by a given
point) [19], and that if a violated one (called a cut) exists, it
can be found in polynomial time; the state-of-the-art method
for the latter is the sorting-based routine described in [20] (see
also [21]).

Moreover, several papers discussing IP or adaptive LP
approaches for (1) or MLD incorporate heuristics to find new
redundant parity-checks (RPCs)—i.e., some linear combina-
tions (over F2, i.e., in modulo-2 arithmetic) of rows of H—
that hopefully yield violated FS inequalities, see, for instance,
[19]–[22]. While some results exist on when such heuristics
will succeed in finding a cut that is violated by a given
(fractional) point (cf., e.g., [10], [19]), there is no general
guarantee for this. Indeed, it has often been claimed that the
problem of finding cut-inducing RPCs is intractable (see, e.g.,
[10], [19], [21]), but a formal proof of this statement appears
to be missing so far.

EXACT SEPARATION OF FORBIDDEN-SET CUTS ASSOCIATED WITH REDUNDANT PARITY CHECKS OF BINARY LINEAR CODES 2

In the following, we close this gap by providing an NP-
hardness proof of the RPC separation problem. Moreover,
we will introduce an IP model to solve it, i.e., to find a
maximally violated FS cut among all possible FS inequalities
w.r.t. all parity-checks, known or unknown (also allowing to
conclude that all FS inequalities are satisfied, should this be the
case), and assess its potential practical applicability in some
computational experiments with problem (2).

II. EXACT RPC CUT GENERATION/SEPARATION

Clearly, if for a given x∗ ∈ [0, 1]n, not all FS inequalities (3)
are satisified, there exists at least one parity-check h and odd
index set S ⊂ supp(h) such that the constraint violation

−|S|+ 1 +
∑
j∈S

x∗j −
∑

j∈supp(h)\S

x∗j > 0.

Thus, the RPC separation problem can be stated as follows:
Given x∗ ∈ [0, 1]n, find a valid parity-check that yields a
maximally violated FS cut, or conclude that all FS inequalities
are satisfied. This task can be formulated as the optimization
problem

max − |S|+ 1 +
∑
j∈S

x∗j −
∑

j∈supp(h)\S

x∗j (4)

s.t. h is a parity-check,
∅ 6= S ⊆ supp(h), |S| odd;

clearly, the optimal objective value is strictly larger than zero if
and only if a cut-inducing parity-check h exists. The objective
is the violation of the respective FS inequality associated
with h and an odd subset S of its support at the given point x∗,
and the optimization problem searches for the largest such
violation among all valid parity-checks.

With a few observations, we can turn the above abstract
optimization problem into an equivalent concrete IP: First, re-
call that parity-checks correspond to dual codewords, cf. [19];
thus, we can express the first constraint in terms of a generator
matrix G of the code (which can be obtained as a basis matrix
for the F2-nullspace of the given parity-check matrix H by
Gaussian elimination) as G>h = 0 mod 2 with h ∈ {0, 1}n.
To model the odd subsets S of supp(h), we introduce binary
variables s ≤ h with the constraint that 1>s is odd, i.e.,
1>s = 1 mod 2. The condition S 6= ∅ is then reflected as
1>s ≥ 1, and is automatically ensured by the previous odd-
sum constraint. The objective of (4) can be rewritten as

− |S|+ 1−
∑

j∈supp(h)

x∗j + 2
∑
j∈S

x∗j

=− 1>s+ 1− (x∗)>h+ 2(x∗)>(s)

=(2x∗ − 1)>s− (x∗)>h+ 1.

Assuming w.l.o.g. that rank(H) = m < n (so G ∈
{0, 1}n×(n−m) with rank n − m), with auxiliary integer
variables zh ∈ Zn−m

≥0 and zs ∈ Z≥0 to linearize the modulo-2

equations, we thus arrive at the RPC separation IP (equivalent
to (4))

max (2x∗ − 1)>s− (x∗)>h+ 1 (5)

s.t. G>h− 2zh = 0

1>s− 2zs = 1

s ≤ h
h, s ∈ {0, 1}n, zh ∈ Zn−m

≥0 , zs ∈ Z≥0.

(An alternative formulation that does not require knowledge,
or construction, of the generator matrix G can be obtained by
replacing the first equality constraint by h = H>w − 2zh

with w ∈ {0, 1}m and zh ∈ Zn
≥0; however, this variant has

m additional binary variables and m more integer variables.)
Our following result establishes that, in general, exact RPC

separation is computationally challenging:

Theorem 1. The RPC separation problem is NP-hard.

Proof. The NP-hardness is due to the fact that the separation
problem contains as a special case the task of finding the girth
of a binary matroid (i.e., the minimum distance problem (1)),
which is well-known to be NP-hard [2]: Let A ∈ {0, 1}m×n
be an arbitrary instance of the binary matroid girth problem;
w.l.o.g., we may assume rank(A) = m < n (over F2). With
x∗ := (1/2)1 and G> := A, the corresponding instance of
the RPC separation problem (in IP form (5)) collapses to

max
s,h∈{0,1}n

− 1
21
>h+ 1

s.t. Ah = 0 mod 2, s ≤ h, 1>s = 1 mod 2

⇔ 1− 1
2 min
h∈{0,1}n

{
1>h : Ah = 0 mod 2, h 6= 0

}
.

The latter minimization problem is precisely the girth problem
for the instance given by A, so unless P = NP, there cannot
exist a polynomial-time algorithm for the RPC separation
problem.

Remark 2. Note that, although the above proof shows hard-
ness of a separation problem for a large class of valid
inequalities for the minimum distance problem (1) (and others)
by exhibiting that very same problem as a special case, the
result is not implied by the general so-called “equivalence
of optimization and separation” (cf. [23]). Indeed, even if
all FS inequalities for all parity-checks (given and redundant
ones) were added to the IP model (2), its LP relaxation is not
guaranteed to yield an integral (binary) optimum point [24].

Moreover, using results from [25], NP-hardness of the
RPC separation problem can be seen to persist even if A
is restricted to be the parity-check matrix of an LDPC code.

Remark 3. The problem obtained by minimizing the RPC
separation IP’s objective (instead of maximizing it) is, in
fact, also NP-hard, as it contains the well-known max-cut
problem as a special case (similar to the problem of finding
a cycle of maximum weight in a binary matroid, cf. [13]);
we omit the proof for brevity. The fact that both maximizing
and minimizing the objective function over the feasible set
of the RPC separation problem are NP-hard indicates that
the hardness is inherent in the combinatorial constraints.

EXACT SEPARATION OF FORBIDDEN-SET CUTS ASSOCIATED WITH REDUNDANT PARITY CHECKS OF BINARY LINEAR CODES 3

(Similarly, the paper [26] gave a hardness-of-maximization
result complementing the intractability of the minimization
problem (1) shown later in [2].)

Naturally, given its inherent intractability as established
by Theorem 1, solving the RPC separation IP (5) will be
more challenging than running the heuristic schemes from,
e.g., [20], [21]. Ideally, the additional computational effort to
gain stronger cuts (and corresponding “optimal” new parity-
checks) could lead to a sufficient benefit in terms of search
space reduction (particularly, LP relaxation tightening) to
compensate for the increased runtime overhead that can be
expected. It is also worth pointing out that the IP (5) may
also be used in a heuristic fashion: any feasible solution with
positive objective value yields a violated FS inequality, so the
solving process may be terminated early as soon as the current
objective value turns positive, still providing a cut (although
not necessarily a most violated one).

III. COMPUTATIONAL EXPERIMENTS

We now turn to some numerical experiments, based on the
minimum distance IP (2), to assess the influence of separating
FS inequalities and redundant parity-checks in different ways.
We employ the open-source MIP solver SCIP [27] (with the
LP solver SoPlex that comes with it) and use a variety of
test instances from the Channel Code Database [28]. Our test
set consists of 27 parity-check matrices, of which 5 belong
to array codes, 3 to BCH/Hamming codes, 6 to LDPC codes,
2 to polar codes, one is the Tanner(3,5) code, 5 belong to
WiMax and 3 to WiMax-like codes, and 2 to WRAN codes.
The average matrix size is about 106×372, ranging from 8 to
588 rows (parity-checks) and from 32 to 1344 variables. For
brevity, we forego instance-specific details.

All experiments were carried out in single-thread mode on
a Linux machine with Intel Core i7-7700T CPUs (2.9 GHz,
8 MB cache) and 16 GB memory, using SCIP 6.0.2. We set a
time limit of 1 hour (3600 s) per instance.

The state-of-the-art separation routine from [20] for FS
inequalities associated with given parity checks is, in fact,
implemented in SCIP already (as part of the XOR constraint
handler). We extended the implementation by the best-known
RPC cut generation heuristics from [20] and from [21],
respectively, as well as by an exact separation routine based
on the RPC separation IP (5).

First, we used SCIP as a black-box, applied to the model (2);
by default, SCIP does not separate FS inequalities. Then, with
separation activated in the root node only, in every node, or
on every 5-th level of the branch and bound tree, respectively,
we tested the following solver variations:

1) exact separation of FS inequalities for existing parity-
checks according to [20] (“ZS”, for short),

2) ZS, followed by exact RPC cut separation via (5), if ZS
found no violated FS inequality (“ZSe”),

3) ZS, followed (if unsuccessful) by the RPC cut heuristic
from [20], followed (if also unsuccessful) by the exact
separation routine (“ZS+e”),

4) ZS, followed (if unsuccessful) by the RPC cut heuristic
from [20], then (if still unsuccessful) by that from [21],

Table I
OVERVIEW OF EXPERIMENTAL RESULTS.

solver variant gap (%) # solved nodes time (s)

SCIP default 15.92 21 74464.3 112.9

ZS (sepa. root only) 12.37 21 81829.1 116.9
ZS (sepa. always) 1.45 26 4394.1 84.1
ZS (sepa. freq. 5) 1.28 26 14518.6 70.9

ZSe (sepa. root only) 12.37 21 81833.0 117.1
ZSe (sepa. always) 1526.64 6 145.2 1562.4
ZSe (sepa. freq. 5) 557.50 10 836.8 837.7

ZS+e (sepa. root only) 12.37 21 81816.9 117.1
ZS+e (sepa. always) 12.63 19 1517.0 468.6
ZS+e (sepa. freq. 5) 12.25 21 7751.2 293.4

ZS++e (sepa. root only) 17.60 21 150529.4 182.8
ZS++e (sepa. always) 5.43 24 2564.8 128.5
ZS++e (sepa. freq. 5) 7.76 23 9256.5 108.9

and finally (if still unsuccessful) by the exact separation
routine (“ZS++e”).

We leave all of SCIP’s many other solver settings (w.r.t.
general-purpose heuristics, cutting planes, branching rules etc.)
at their respective default values. The solver also automatically
takes care of cutting plane management, i.e., we neither
force inequalities into the LP nor do we remove them by
hand, but let the solver decide how to handle and store cuts.
(Nevertheless, FS inequalities are given the highest separation
priority, so that the solver first tries to find cuts of this type.)

Table I presents average results over all instances, namely
the arithmetic mean optimality gap ((upper bound − lower
bound)/(lower bound)·100%), the number of instances (out
of 27) that were solved to optimality within the given time
limit, and the average number of processed branch-and-bound
(search tree) nodes as well as the average running times (in
seconds) of the different solver variants. For nodes and times,
we state shifted geometric mean values with shifts 100 and 10,
respectively, to mitigate the influence of easy instances.

First of all, the overview in Table I clearly confirms previous
studies: adding FS cuts during the solving process can signi-
ficantly help solve IPs like (2). While adding cuts only in the
root node can be seen to (adaptively) strengthen the original
LP relaxation, the effect becomes much more prominent when
parity-checks are also used to separate cuts in deeper levels of
the search tree. Comparing the “SCIP default” results with, in
particular, the “ZS” results, using (exact) separation of FS cuts
based on the known, original parity-checks allows for more
instances to be solved (thus also yielding a smaller average
optimality gap) in significantly shorter time.

The results also show that more is not necessarily better:
adding cuts at every search node does lead to the smallest
average number of nodes that are explored before certifying
optimality (or reaching the time limit), but apparently also
significantly increases the time needed to solve the many (LP)
subproblems during the branch-and-bound process. Separating
FS cuts only at every 5-th level of the search tree typically
yields results of comparable quality in a shorter average time,
despite requiring more nodes to be explored.

EXACT SEPARATION OF FORBIDDEN-SET CUTS ASSOCIATED WITH REDUNDANT PARITY CHECKS OF BINARY LINEAR CODES 4

The results incorporating the generation of redundant parity-
checks in order to find further violated FS inequalities are
somewhat ambiguous. Recall that we only ever used RPC-
based schemes if the basic FS cut separation failed. Thus,
the longer runtimes and less impressive gains in solution
quality of the variants “ZSe”, “ZS+e” and “ZS++e” compared
to “ZS” indicate that, on average, it does not pay off to
search for FS cuts by exploring RPCs if the originally given
parity-checks do not already yield such cuts. Nevertheless, it
is important to emphasize that this is an empirical average
statement only – indeed, e.g., for the Tanner(3,5) instance, the
fastest “ZS” version (in this case, the one separating FS cuts
in all nodes) solved the minimum distance problem in about
2029 s, whereas the “ZS++e” variant (also with separation in
every node) only took roughly 1417 s. Thus, our results do not
directly contradict earlier claims that RPC cuts help, although
their benefit does appear to be less pronounced when inte-
grating the corresponding separation schemes into a full MIP
framework rather than more basic branch-and-cut or adaptive
LP decoding procedures that had been explored before. (Recall
also that [19] already noted that the relative improvement
provided by RPC cuts decreases as the number of variables
increases, which might have played a role here as well.)

Finally, the results for “ZSe” and “ZS+e” show that, unfor-
tunately (though not unexpectedly, given Theorem 1), exact
RPC cut separation does not pay off, as the IP separation
subproblems are too hard in practice to be routinely solved
within a branch-and-cut framework for the original problem.
On the positive side, we note that in the variant “ZS++e”,
i.e., where exact RPC separation would only be used if both
state-of-the-art RPC cut heuristics failed, the separation IP (5)
was actually never called at all. Thus, although one cannot be
sure that the most violated cut was used, some violated cut
was always found without having to resort to exact separation.
Overall, however, the best results were still achieved by variant
“ZS” that did not use RPC cuts at all.

IV. CONCLUDING REMARKS

In this note, we formally proved computational intractability
of the RPC cut separation problem for binary linear codes.
Moreover, our numerical experiments demonstrated that an as-
sociated IP formulation is indeed too hard to solve in practice
to become useful during branch-and-cut methods. While our
empirical results further showed that by combining the existing
state-of-the-art RPC separation heuristics, the exact problem
never needed to be resorted to, they also suggested that, on
average, RPC cuts do not help improve the solution process
of a current powerful MIP solver compared to using only FS
cuts associated with the initial, known parity-checks.

REFERENCES

[1] S. C. Draper, J. S. Yedidia, and Y. Wang, “ML decoding via mixed-
integer adaptive linear programming,” in Proc. ISIT 2007, 2007, pp.
1656–1660.

[2] A. Vardy, “The Intractability of Computing the Minimum Distance of a
Code,” IEEE Trans. Inf. Theory, vol. 43, no. 6, pp. 1757–1766, 1997.

[3] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the
inherent intractability of certain coding problems,” IEEE Trans. Inf.
Theory, vol. 24, no. 3, pp. 384–386, 1978.

[4] A. B. Keha and T. M. Duman, “Minimum Distance Computation
of LDPC Codes Using a Branch and Cut Algorithm,” IEEE Trans.
Commun., vol. 58, no. 4, pp. 1072–1079, 2010.

[5] M. Punekar, F. Kienle, N. Wehn, A. Tanatmis, S. Ruzika, and H. W.
Hamacher, “Calculating the Minimum Distance of Linear Block Codes
via Integer Programming,” in Proc. ISTC 2010, 2010, pp. 329–333.

[6] A. Tanatmis, S. Ruzika, H. W. Hamacher, M. Punekar, F. Kienle, and
N. Wehn, “Valid Inequalities for Binary Linear Codes,” in Proc. ISIT
2009, 2009, pp. 2216–2220.

[7] K. Yang, X. Wang, and J. Feldman, “Cascaded Formulation of the
Fundamental Polytope of General Linear Block Codes,” in Proc. ISIT
2007, 2007, pp. 1361–1365.

[8] B. Kabakulak, Z. C. Taşkın, and A. E. Pusane, “A Branch-Price-and-Cut
Algorithm for Optimal Decoding of LDPC Codes,” arXiv:1803.04798
[cs.IT], 2018.

[9] M. Breitbach, M. Bossert, R. Lucas, and C. Kempter, “Soft-decision
decoding of linear block codes as optimization problem,” Eur. Trans.
Telecommun., vol. 9, no. 3, pp. 289–293, 1998.

[10] A. Tanatmis, S. Ruzika, H. W. Hamacher, M. Punekar, F. Kienle, and
N. Wehn, “A Separation Algorithm for Improved LP-Decoding of Linear
Block Codes,” IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3277–3289,
2010.

[11] S. Scholl, F. Kienle, M. Helmling, and S. Ruzika, “Integer Programming
as a Tool for Analysis of Channel Codes,” in Proc. SCC 2013, 2013,
pp. 1–6.

[12] F. Barahona and M. Grötschel, “On the cycle polytope of a binary
matroid,” J. Comb. Theory, Ser. B, vol. 40, no. 1, pp. 40–62, 1986.

[13] M. Grötschel and K. Truemper, “Decomposition and Optimization over
Cycles in Binary Matroids,” J. Comb. Theory, Ser. B, vol. 46, no. 3, pp.
306–337, 1989.

[14] A. Tanatmis, “Mathematical Programming Approaches for Decoding
of Binary Linear Codes,” Ph.D. dissertation, Technische Universität
Kaiserslautern, 2011, doctoral dissertation.

[15] R. H. Jeroslow, “On defining sets of vertices of the hypercube by linear
inequalities,” Discrete Math., vol. 11, no. 2, pp. 119–124, 1975.

[16] J. Feldman, M. J. Wainwright, and D. R. Krager, “Using Linear
Programming to Decode Binary Linear Codes,” IEEE Trans. Inf. Theory,
vol. 51, no. 3, pp. 954–972, 2005.

[17] M. Helmling, S. Ruzika, and A. Tanatmis, “Mathematical Programming
Decoding of Binary Linear Codes: Theory and Algorithms,” IEEE Trans.
Inf. Theory, vol. 58, no. 7, pp. 4753–4769, 2012.

[18] G. Lancia and P. Serafini, “The Parity Polytope,” in Compact Extended
Linear Programming Models, ser. EURO Advanced Tutorials on Oper-
ational Research. Springer, 2018, pp. 113–121.

[19] M. H. Taghavi and P. H. Siegel, “Adaptive Methods for Linear Pro-
gramming Decoding,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp.
5396–5410, 2008.

[20] X. Zhang and P. H. Siegel, “Adaptive Cut Generation Algorithm for
Improved Linear Programming Decoding of Binary Linear Codes,” IEEE
Trans. Inf. Theory, vol. 58, no. 10, pp. 6581–6594, 2012.

[21] H. Falsafein and S. R. Mousavi, “A Generator-Matrix-Based Approach
for Adaptively Generating Cut-Inducing Redundant Parity-Checks,”
IEEE Commun. Lett., vol. 20, no. 4, pp. 640–643, 2016.

[22] M. Miwa, T. Wadayama, and I. Takumi, “A Cutting-Plane Method Based
on Redundant Rows for Improving Fractional Distance,” IEEE J. Sel.
Areas Commun., vol. 27, no. 6, pp. 1005–1012, 2009.

[23] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, 2nd ed., ser. Algorithms and Combina-
torics. Heidelberg, Germany: Springer, 1993, vol. 2.

[24] J. Zumbrägel, V. Skachek, and M. F. Flanagan, “On the Pseudocodeword
Redundancy of Binary Linear Codes,” IEEE Trans. Inf. Theory, vol. 58,
no. 7, pp. 4848–4861, 2012.

[25] A. McGregor and O. Milenkovic, “On the Hardness of Approximating
Stopping and Trapping Sets,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1640–1650, 2010.

[26] S. C. Ntafos and S. L. Hakimi, “On the Complexity of Some Coding
Problems,” IEEE Trans. Inf. Theory, vol. 27, no. 6, pp. 794–796, 1981.

[27] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L.
Gottwald, G. Hendel, C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher,
M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt,
F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J. M. Viernickel,
M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig, “The SCIP
Optimization Suite 6.0,” Zuse Institute Berlin, ZIB-Report 18-26, 2018.

[28] M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika,
and N. Wehn, “Database of channel codes and ML simulation results,”
2019, www.uni-kl.de/channel-codes.

www.uni-kl.de/channel-codes

	Introduction & Preliminaries
	Exact RPC Cut Generation/Separation
	Computational Experiments
	Concluding Remarks
	References

