
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Enabling Research through the SCIP Optimization Suite 8.0

KSENIA BESTUZHEVA, MATHIEU BESANÇON, WEI-KUN CHEN, ANTONIA CHMIELA, TIM

DONKIEWICZ, JASPER VAN DOORNMALEN, LEON EIFLER, OLIVER GAUL, GERALD GAM-

RATH, AMBROS GLEIXNER, LEONA GOTTWALD, CHRISTOPH GRACZYK, KATRIN HALBIG,

ALEXANDER HOEN, CHRISTOPHER HOJNY, ROLF VAN DER HULST, THORSTEN KOCH,

MARCO LÜBBECKE, STEPHEN J. MAHER, FREDERIC MATTER, ERIK MÜHMER, BENJAMIN

MÜLLER,MARCE. PFETSCH,DANIEL REHFELDT, STEFFANSCHLEIN, FRANZISKA SCHLÖSSER,

FELIPE SERRANO, YUJI SHINANO, BORO SOFRANAC, MARK TURNER, STEFAN VIGERSKE,

FABIAN WEGSCHEIDER, PHILIPP WELLNER, DIETER WENINGER, and JAKOB WITZIG

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint
integer programming framework SCIP. The focus of this paper is on the role of the SCIP Optimization Suite in supporting research.
SCIP’s main design principles are discussed, followed by a presentation of the latest performance improvements and developments in
version 8.0, which serve both as examples of SCIP’s application as a research tool and as a platform for further developments. Further,
the paper gives an overview of interfaces to other programming and modeling languages, new features that expand the possibilities
for user interaction with the framework, and the latest developments in several extensions built upon SCIP.

CCS Concepts: • Theory of computation → Mixed discrete-continuous optimization; Parallel algorithms; Branch-and-bound;
•Mathematics of computing → Solvers;Mathematical software performance.

Additional Key Words and Phrases: Constraint integer programming, linear programming, mixed-integer linear programming,
mixed-integer nonlinear programming, optimization solver, branch-and-cut, branch-and-price, column generation, parallelization,
mixed-integer semidefinite programming

ACM Reference Format:
Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver
Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf
van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch,
Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian

Authors’ address: Ksenia Bestuzheva, bestuzheva@zib.de; Mathieu Besançon, besancon@zib.de; Wei-Kun Chen, chenweikun@bit.edu.cn; Antonia Chmiela,
chmiela@zib.de; Tim Donkiewicz, tim.donkiewicz@rwth-aachen.de; Jasper van Doornmalen, m.j.v.doornmalen@tue.nl; Leon Eifler, eifler@zib.de; Oliver
Gaul, oliver.gaul@rwth-aachen.de; Gerald Gamrath, gamrath@zib.de; Ambros Gleixner, gleixner@zib.de; Leona Gottwald, gottwald@zib.de; Christoph
Graczyk, graczyk@zib.de; Katrin Halbig, katrin.halbig@fau.de; Alexander Hoen, hoen@zib.de; Christopher Hojny, c.hojny@tue.nl; Rolf van der Hulst,
r.p.vanderhulst@utwente.nl; Thorsten Koch, koch@zib.de; Marco Lübbecke, marco.luebbecke@rwth-aachen.de; Stephen J. Maher, s.j.maher@exeter.ac.uk;
Frederic Matter, matter@mathematik.tu-darmstadt.de; Erik Mühmer, erik.muehmer@rwth-aachen.de; Benjamin Müller, benjamin.mueller@zib.de; Marc
E. Pfetsch, pfetsch@mathematik.tu-darmstadt.de; Daniel Rehfeldt, rehfeldt@zib.de; Steffan Schlein, steffan.schlein@rwth-aachen.de; Franziska Schlösser,
schloesser@zib.de; Felipe Serrano, serrano@zib.de; Yuji Shinano, shinano@zib.de; Boro Sofranac, sofranac@zib.de; Mark Turner, turner@zib.de; Stefan
Vigerske, svigerske@gams.com; Fabian Wegscheider, wegscheider@zib.de; Philipp Wellner, p.we@fu-berlin.de; Dieter Weninger, dieter.weninger@fau.de;
Jakob Witzig, witzig@zib.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-7018-7099
HTTPS://ORCID.ORG/0000-0002-6284-3033
HTTPS://ORCID.ORG/0000-0003-4147-1346
HTTPS://ORCID.ORG/0000-0002-4809-2958
HTTPS://ORCID.ORG/0000-0002-5721-3563
HTTPS://ORCID.ORG/0000-0002-5721-3563
HTTPS://ORCID.ORG/0000-0002-2494-0705
HTTPS://ORCID.ORG/0000-0003-0245-9344
HTTPS://ORCID.ORG/0000-0002-2131-1911
HTTPS://ORCID.ORG/0000-0001-6141-5937
HTTPS://ORCID.ORG/0000-0001-6141-5937
HTTPS://ORCID.ORG/0000-0003-0391-5903
HTTPS://ORCID.ORG/0000-0002-8894-5011
HTTPS://ORCID.ORG/0000-0001-8990-9912
HTTPS://ORCID.ORG/0000-0002-8730-3447
HTTPS://ORCID.ORG/0000-0003-1065-1651
HTTPS://ORCID.ORG/0000-0002-5324-8996
HTTPS://ORCID.ORG/0000-0002-1967-0077
HTTPS://ORCID.ORG/0000-0002-2635-0522
HTTPS://ORCID.ORG/0000-0003-3773-6882
HTTPS://ORCID.ORG/0000-0002-0499-1820
HTTPS://ORCID.ORG/0000-0003-1114-3800
HTTPS://ORCID.ORG/0000-0002-4463-2873
HTTPS://ORCID.ORG/0000-0002-4463-2873
HTTPS://ORCID.ORG/0000-0002-0947-7193
HTTPS://ORCID.ORG/0000-0002-2877-074X
HTTPS://ORCID.ORG/0000-0002-7892-3951
HTTPS://ORCID.ORG/0000-0002-2902-882X
HTTPS://ORCID.ORG/0000-0003-2252-9469
HTTPS://ORCID.ORG/0000-0001-7270-1496
HTTPS://ORCID.ORG/0000-0002-1333-8591
HTTPS://ORCID.ORG/0000-0003-2698-0767
https://orcid.org/0000-0002-7018-7099
https://orcid.org/0000-0002-6284-3033
https://orcid.org/0000-0003-4147-1346
https://orcid.org/0000-0002-4809-2958
https://orcid.org/0000-0002-5721-3563
https://orcid.org/0000-0002-2494-0705
https://orcid.org/0000-0003-0245-9344
https://orcid.org/0000-0002-2131-1911
https://orcid.org/0000-0002-2131-1911
https://orcid.org/0000-0001-6141-5937
https://orcid.org/0000-0003-0391-5903
https://orcid.org/0000-0002-8894-5011
https://orcid.org/0000-0001-8990-9912
https://orcid.org/0000-0001-8990-9912
https://orcid.org/0000-0002-8730-3447
https://orcid.org/0000-0003-1065-1651
https://orcid.org/0000-0002-5324-8996
https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0002-2635-0522
https://orcid.org/0000-0003-3773-6882
https://orcid.org/0000-0002-0499-1820
https://orcid.org/0000-0003-1114-3800
https://orcid.org/0000-0002-4463-2873
https://orcid.org/0000-0002-0947-7193
https://orcid.org/0000-0002-0947-7193
https://orcid.org/0000-0002-2877-074X
https://orcid.org/0000-0002-7892-3951
https://orcid.org/0000-0002-2902-882X
https://orcid.org/0000-0003-2252-9469
https://orcid.org/0000-0001-7270-1496
https://orcid.org/0000-0002-1333-8591
https://orcid.org/0000-0003-2698-0767

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Bestuzheva et al.

Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. 2022. Enabling Research through the SCIP Optimization Suite 8.0.
1, 1 (September 2022), 20 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The SCIP Optimization Suite comprises a set of complementary software packages designed to model and solve a large
variety of mathematical optimization problems: the modeling language Zimpl [34], the presolving library PaPILO, the
linear programming solver SoPlex [73], the constraint integer programming solver SCIP [2], which can be used as
a fast standalone global solver for mixed-integer linear and nonlinear programs and a flexible branch-cut-and-price
framework, the automatic decomposition solver GCG [23], and the UG framework for solver parallelization [57].

All six tools can be downloaded in source code and are freely available for members of noncommercial and academic
institutions. Development and bugfix branches of SCIP, SoPlex and PaPILO are mirrored under https://github.com/
orgs/scipopt on a daily basis. They are accompanied by several extensions for solving specific problem classes such as
the award-winning Steiner tree solver SCIP-Jack [22] and the mixed-integer semidefinite programming (MISDP) solver
SCIP-SDP [20]. This paper discusses the capacity of SCIP as a software and research tool and presents the evolving
possibilities for working with the SCIP Optimization Suite 8.0, both as a black-box toolbox and as a framework with
possibilties of interaction and extension.

Background. SCIP is a branch-cut-and-price framework for solving different types of optimization problems, most
importantly, mixed-integer linear programs (MILPs) and mixed-integer nonlinear programs (MINLPs). MINLPs are
optimization problems of the form

min 𝑐⊤𝑥

s.t. 𝐴𝑥 ≥ 𝑏,

𝑔
𝑘
≤ 𝑔𝑘 (𝑥) ≤ 𝑔𝑘 for all 𝑘 ∈ M,

𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 for all 𝑖 ∈ N ,

𝑥𝑖 ∈ Z for all 𝑖 ∈ I,

(1)

defined by 𝑐 ∈ R𝑛 , 𝐴 ∈ R𝑚 (ℓ)×𝑛 , 𝑏 ∈ R𝑚 (ℓ)
, 𝑔, 𝑔 ∈ R𝑚 (𝑛)

, 𝑔 : R𝑛 → R𝑚 (𝑛)
, 𝑥 , 𝑥 ∈ R𝑛 , the index set of integer variables

I ⊆ N B {1, . . . , 𝑛} and the index set of nonlinear constraints M B {1, . . . ,𝑚𝑛}. We assume that 𝑔 is specified in
algebraic form using basic expressions that are known to SCIP. The usage of R B R ∪ {−∞,∞} allows for variables
that are free or bounded only in one direction (we assume that no variable is fixed to ±∞). In the absence of nonlinear
constraints 𝑔 ≤ 𝑔(𝑥) ≤ 𝑔, the problem becomes an MILP.

SCIP is not restricted to solving MI(N)LPs, but is a framework for solving constraint integer programs (CIPs), a
generalization of the former two problem classes. The introduction of CIPs was motivated by the modeling flexibility
of constraint programming and the algorithmic requirements of integrating it with efficient solution techniques
available for MILPs. Later on, this framework allowed for the integration of MINLPs. Roughly speaking, CIPs are
finite-dimensional optimization problems with arbitrary constraints and a linear objective function that satisfy the
following property: if all integer variables are fixed, the remaining subproblem must form a linear or nonlinear program.

The core of SCIP coordinates a central branch-cut-and-price algorithm that is augmented by a collection of plugins.
The methods for processing constraints of a given type are implemented in constraint handler plugins. The default
plugins included in the SCIP Optimization Suite provide tools to solve MI(N)LPs as well as some problems from
Manuscript submitted to ACM

https://doi.org/XXXXXXX.XXXXXXX
https://github.com/orgs/scipopt
https://github.com/orgs/scipopt

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Enabling Research through the SCIP Optimization Suite 8.0 3

constraint programming, satisfiability testing and pseudo-Boolean optimization. In this way, advanced methods like
primal heuristics, branching rules, and cutting plane separators can be integrated using a pre-defined interface. SCIP
comes with many such plugins that enhance MI(N)LP performance, and new plugins can be created by users. This
design and solving process is described in more detail by Achterberg [1].

The core solving engine also includes PaPILO, which provides an additional presolving procedure that is called by
SCIP, and the linear programming (LP) solver SoPlex which is used by default for solving the LP relaxations within the
branch-cut-and-price algorithm. Interfaces to several external LP solvers exist, and new ones can be added by users.

The flexibility of this framework and its design, which is centered around the capacity for extension and customization,
are aimed at making SCIP a versatile tool to be used by optimization researchers and practitioners. The possibility
to modify the solving process by including own solver components enables users to test their techniques within a
general-purpose branch-cut-and-price framework.

The extensions of SCIP that are included in the SCIP Optimization Suite showcase the use of SCIP as a basis for the
users’ own projects. GCG extends SCIP to automatically detect problem structure and generically apply decomposition
algorithms based on the Dantzig-Wolfe or the Benders’ decomposition scheme. SCIP-SDP allows to solve mixed-integer
semidefinite programs, and SCIP-Jack is a solver for Steiner tree problems. Finally, the default instantiations of the UG
framework use SCIP as a base solver in order to perform branch-and-bound in parallel computing environments.

Examples of Works Using SCIP. A number of works independent of the authors of this paper have employed SCIP
as a research tool. Examples of such works include papers on new symmetry handling algorithms [16], branching
rules [7] and integration of machine learning with branch-and-bound based MILP solvers [48]. Further application-
specific algorithms have been developed based on SCIP, for example, specialized algorithms for solving electric vehicle
routing [13] and network path selection [11] problems. Many articles employ SCIP as an MINLP solver for problems
such as hyperplanes location [9], airport capacity extension, fleet investment, and optimal aircraft scheduling [15],
cryptanalysis problems [17], Wasserstein distance problems [12], and chance-constrained nonlinear programs [32].

Structure of the Paper. The paper is organised as follows. A performance evaluation of SCIP 8.0 and a comparison
of its performance to that of SCIP 7.0 is carried out in Section 2. The core solving engine is discussed in Section 3.
The interfaces and modeling languages are presented in Section 4. SCIP extensions that are included in the SCIP
Optimization Suite are discussed in Section 5, and Section 6 concludes the paper.

For a more detailed description of the new features introduced in SCIP Optimization Suite 8.0, and for the technical
details, we refer the reader to the SCIP Optimization Suite 8.0 release report [8].

2 PERFORMANCE OF SCIP 8.0 FOR MILP AND MINLP

In this section, we present computational experiments conducted by running SCIP without parameter tuning or
algorithmic variations to assess the performance changes since the 7.0 release. The indicators of interest are the number
of solved instances, the shifted geometric mean of the number of branch-and-bound nodes (shift 100 nodes), and the
shifted geometric mean of the solving time (shift 1 second).

2.1 Experimental Setup

We use the SCIP Optimization Suite 7.0 as the baseline, including SoPlex 5.0 and PaPILO 1.0, and compare it with the
SCIP Optimization Suite 8.0 including SoPlex 6.0 and PaPILO 2.0. Both were compiled using GCC 7.5, use Ipopt 3.12.13

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Bestuzheva et al.

Table 1. Performance comparison for MILP instances

SCIP 8.0+SoPlex 6.0 SCIP 7.0+SoPlex 5.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 1708 1478 231.3 3311 1445 271.3 4107 1.17 1.24
affected 1475 1424 173.8 2843 1391 209.7 3611 1.21 1.27

[0,tilim] 1529 1478 154.4 2512 1445 184.6 3167 1.20 1.26
[1,tilim] 1470 1419 185.9 2870 1386 223.8 3647 1.20 1.27
[10,tilim] 1361 1310 248.1 3612 1277 303.1 4661 1.22 1.29
[100,tilim] 1000 949 537.1 7270 916 702.6 10262 1.31 1.41
[1000,tilim] 437 386 1566.2 17973 353 2383.1 31707 1.52 1.76
diff-timeouts 135 84 2072.7 19597 51 5062.1 69354 2.44 3.54
both-solved 1394 1394 119.9 2048 1394 133.8 2330 1.12 1.14

as NLP subsolver built with the MUMPS 4.10.0 numerical linear algebra solver, CppAD 20180000.0 as algorithmic
differentiation library, and bliss 0.73 for detecting symmetry. The time limit was set to 7200 seconds in all cases.

The MILP instances are selected from the MIPLIB 2003, 2010, and 2017 [27] as well as the COR@L [37] instance
sets and include all instances solved by SCIP 7.0 with at least one of five random seeds or solved by SCIP 8.0 with at
least one of five random seeds; this amounts to 347 instances. The MINLP instances are similarly selected from the
MINLPLib1 with newly solvable instances added to the ones solved by SCIP 7.0 for a total of 113 instances.

All performance tests were run on identical machines with Intel Xeon CPUs E5-2690 v4 @ 2.60GHz and 128GB in
RAM. A single run was carried out on each machine in a single-threaded mode. Each optimization problem was solved
with SCIP using five different seeds for random number generators. This results in a testset of 565 MINLPs and 1735
MILPs. Instances for which the solver reported numerically inconsistent results are excluded from the presented results.

2.2 MILP Performance

Results of the performance runs on MILP instances are presented in Table 1. The “affected” subset contains instances
for which the two solver versions show different numbers of dual simplex iterations. Instances in the subsets [𝑡, tilim]
were solved by at least one solver version within the time limit and took least 𝑡 seconds to solve with at least one
version. “both-solved” and “diff-timeouts” are the subsets of instances that can be solved by both versions and by exactly
one version, respectively. “relative” shows the ratio of the shifted geometric mean between the two versions.

The changes introduced with SCIP 8.0 improved the performance on MILPs both in terms of number of solved
instances and time. The improvement is more limited on ‘both-solved’ instances that were solved by both solvers, for
which the relative improvement is only of 12 %. This indicates that the overall speedup is more due to newly solved
instances than to improvement on instances that were already solved by SCIP 7.0.

2.3 MINLP Performance

With the major revision of the handling of nonlinear constraints, the performance of SCIP on MINLPs has changed
considerably compared to SCIP 7.0. The results are summarized in Table 2. More instances are solved by SCIP 8.0 than
by SCIP 7.0, and SCIP 8.0 solves the instances for each of these subsets with a shorter shifted geometric mean time.
On the 386 instances solved by both versions, SCIP 8.0 requires fewer nodes and less time. The number of instances

1https://www.minlplib.org

Manuscript submitted to ACM

https://www.minlplib.org

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Enabling Research through the SCIP Optimization Suite 8.0 5

Table 2. Performance comparison for MINLP

SCIP 8.0+SoPlex 6.0 SCIP 7.0+SoPlex 5.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 558 454 39.1 2427 435 45.7 1845 1.17 0.76
affected 487 438 23.5 1748 419 28.4 1456 1.21 0.83

[0,tilim] 503 454 21.7 1585 435 25.9 1326 1.19 0.84
[1,tilim] 375 326 56.1 3994 307 71.0 3113 1.27 0.78
[10,tilim] 293 244 121.6 7450 225 169.3 5393 1.39 0.72
[100,tilim] 195 146 307.6 14204 127 433.9 6696 1.41 0.47
[1000,tilim] 153 104 466.9 23425 85 565.3 8382 1.21 0.36
diff-timeouts 117 68 451.4 29142 49 461.8 6275 1.02 0.22
both-solved 386 386 8.2 609 386 10.4 806 1.27 1.32

solved by only one of the two versions (diff-timeouts) is much higher than reported in previous release reports with
similar experiments, with 68 instances solved only by SCIP 8.0 and 49 instances solved only by SCIP 7.0. A performance
evaluation that focuses only on the changes in handling nonlinear constraints is given in Section 3.1.5.

3 THE CORE SOLVING ENGINE

This section presents the core solving engine, which includes the CIP solver SCIP, the MILP presolving library PaPILO,
and the LP solver SoPlex. It discusses SCIP’s MINLP framework in Section 3.1, which was completely reworked in the
8.0 release, and demonstrates the possibilities for implementing user’s own methodsusing the examples of two areas
that saw improvement with the 8.0 release, namely symmetry handling and primal heuristics in Sections 3.2 and 3.3.

The full list of new features introduced in SCIP 8.0 is the following: a new framework for handling nonlinear
constraints, symmetry handling on general variables and improved orbitope detection, a new separator for mixing cuts,
improvements to decomposition-based heuristics, the option to apply the mixed integer rounding procedure when
generating optimality cuts in the Benders’ decomposition framework, a new plugin type that enables users to include
their own cut selection rules into SCIP, and several technical improvements.

Further, the section provides an overview of the presolving library PaPILO and the LP solver SoPlex in Sections 3.4
and 3.5, and presents the new dual postsolving feature in PaPILO, which allowed for it to be integrated into SoPlex.

3.1 SCIP’s New MINLP Framework

A new framework for handling nonlinear constraints was introduced with the SCIP 8.0 release. The main motivation for
this change is twofold: First, it aims at increasing the reliability of the solver and alleviating numerical issues that arose
from problem reformulations. Second, the new design of the nonlinear framework reduces the ambiguity of expression
and structure types by implementing different kinds of plugins for low-level expressions that define expressions, and
high-level structures that add functionality for particular, often overlapping structures.

The main components of the new framework are the following: plugins representing expressions; a reimplemen-
tation of the constraint handler for nonlinear constraints, cons_nonlinear; nonlinear handler plugins that provide
functionality for high-level structures; a revision of the primal heuristic that solves NLP subproblems; revised interfaces
to NLP solvers; and revised interface to an automatic differentiation library. Moreover, SCIP 8.0 contains cutting plane
separators that work on nonlinear structures and interact with cons_nonlinear.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Bestuzheva et al.

3.1.1 New Expressions Framework. Algebraic expressions are well-formed combinations of constants, variables, and
various algebraic operations such as addition, multiplication, exponentiation, that are used to describe mathematical
functions. In SCIP, they are represented by a directed acyclic graph with nodes representing variables, constants, and
operators and arcs indicating the flow of computation.

With SCIP 8.0, the expression system has been completely rewritten. Proper SCIP plugins, referred to as expression
handlers, are now used to define all semantics of an operator. These expression handlers support more callbacks than
what was available for user-defined operators before. Furthermore, much ambiguity and complexity is avoided by
adding expression handlers for basic operations only. High-level structures such as quadratic functions can still be
recognized, but are no longer made explicit by a change in the expression type.

3.1.2 NewHandler for Nonlinear Constraints. For SCIP 8.0, the constraint handler for nonlinear constraints, cons_nonlinear,
has been rewritten and constraint handlers for quadratic, second-order cone, absolute power, and bivariate constraints
have been removed. Some functionalities of the removed constraint handlers have been reimplemented in other plugins.

An initial motivation for rewriting cons_nonlinear was a numerical issue which was caused by explicit constraint
reformulation in earlier versions. Such a reformulation can lead to a difference in constraint violation estimation in the
original and reformulated problems and, in particular, to a solution being feasible for the reformulated problem and
infeasible for the original problem. For example, this occurs in a problem where the constraint exp(ln(1000) +1+𝑥 𝑦) ≤ 𝑧

is reformulated as exp(𝑤) ≤ 𝑧, ln(1000) + 1 + 𝑥 𝑦 = 𝑤. On the MINLPLib library, this issue occurred for 7% of instances.
The purpose of the reformulation is to enable constructing a linear relaxation. In this process, nonlinear functions

are approximated by linear under- and overestimators. Since the formulas that are used to compute these estimators are
only available for “simple” functions, new variables and constraints were introduced to split more complex expressions
into adequate form [64, 70].

A trivial attempt to solve the issue of solutions not being feasible in the original problem would have been to add a
feasibility check before accepting a solution. However, if a solution is not feasible, actions to resolve the violation of
original constraints need to be taken, such as a separating hyperplane, a domain reduction, or a branching operation.
Since the connection from the original to the presolved problem was not preserved, it would not have been clear which
operations on the presolved problem would help best to remedy the violation in the original problem.

Thus, the new constraint handler aims to preserve the original constraints by applying only transformations that, in
most situations, do not relax the feasible space when taking tolerances into account. The reformulations that were
necessary for the construction of a linear relaxation are not applied explicitly anymore, but handled implicitly by
annotating the expressions that define the nonlinear constraints. Another advantage of this approach is a clear distinction
between the variables that were present in the original problem and the variables added for the reformulation. With
this information, branching is avoided on variables of the latter type. Finally, it is now possible to exploit overlapping
structures in an expression simultaneously.

3.1.3 Extended Formulations. Consider problems of the form (1), where the set of nonlinear constraints is non-empty,
and some constraints may be nonconvex. SCIP solves such problems to global optimality via a spatial branch-and-bound
algorithm. Important parts of the algorithm are presolving, domain propagation, linear relaxation, and branching. For
domain propagation and linear relaxation, extended formulations are used which are obtained by introducing slack
variables and replacing sub-trees of the expressions that define nonlinear constraints by auxiliary variables.

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Enabling Research through the SCIP Optimization Suite 8.0 7

These extended formulations have the following form:

min 𝑐⊤𝑥,

s.t. ℎ𝑖 (𝑥,𝑤𝑖+1, . . . ,𝑤𝑚) = 𝑤𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑥 ≤ 𝑥 ≤ 𝑥, 𝑤 ≤ 𝑤 ≤ 𝑤, 𝑥I ∈ ZI .

(MINLPext)

Here, 𝑤1, . . . ,𝑤𝑚 are slack variables, and ℎ𝑖 B 𝑔𝑖 for 𝑖 = 1, . . . ,𝑚. For each function ℎ𝑖 , subexpressions 𝑓 may be
replaced by new auxiliary variables𝑤𝑖′ , 𝑖′ > 𝑚, and new constraints ℎ𝑖′ (𝑥) = 𝑤𝑖′ with ℎ𝑖′ B 𝑓 are added. For the latter,
subexpressions may be replaced again. The result is referred to by ℎ𝑖 (𝑥,𝑤𝑖+1, . . . ,𝑤𝑚) for any 𝑖 = 1, . . . ,𝑚. That is, to
simplify notation,𝑤𝑖+1 is used instead of𝑤max(𝑖,𝑚)+1.

Example of an Extended Formulation. Consider constraint log(𝑥)2 + 2 log(𝑥) 𝑦 + 𝑦2 ≤ 4. SCIP may replace log(𝑥)
by an auxiliary variable𝑤2, since this results in a quadratic form𝑤2

2 + 2𝑤2𝑦 + 𝑦2, which is both bivariate and convex,
the former being well suited for domain propagation and the latter being beneficial for linearization. Therefore, the
following extended formulation may be constructed:

ℎ1 (𝑥,𝑦,𝑤2) B (𝑤2)2 + 2𝑤2𝑦 + 𝑦2 = 𝑤1,

ℎ2 (𝑥,𝑦) B log(𝑥) = 𝑤2, 𝑤1 ≤ 4.

3.1.4 Structure Handling. The construction of extended formulations is based on the information on what algorithms
are available for analyzing expressions of a specific structure. Following the spirit of the plugin-oriented design of
SCIP, these algorithms are added as separate plugins, referred to as nonlinear handlers. Nonlinear handlers can detect
structures in expressions and provide domain propagation and linear relaxation algorithms that act on these structures.
Unlike other plugins in SCIP, nonlinear handlers are managed by cons_nonlinear and not the SCIP core.

Nonlinear handlers for the following expression types are available in SCIP: quadratic expressions defined as sums
where at least one term is either a product of two expressions or a square expression, bilinear expressions, convex and
concave expressions, quotient expressions of the form (𝑎𝑦1 + 𝑏)/(𝑐𝑦2 + 𝑑) + 𝑒 , and expressions defined in terms of semi-
continuous variables. The second-order cone (SOC) nonlinear handler provides separation for SOC constraints. Finally,
the default nonlinear handler ensures that there always exist domain propagation and linear under/overestimation
routines for an expression and employs callbacks of expression handlers to provide the necessary functionalities.

Additional structures can be recognized for generating cutting planes to strengthen LP relaxations. Such structures
are handled by separator plugins. While separators are not restricted to nonlinear structures, the following separators
were introduced in SCIP 8.0 that work on MINLPs: the Reformulation-Linearization technique (RLT) [4–6] separator
adds RLT cuts for bilinear products and can additionally reveal linearized products between binary and continuous
variables; the principal minor separator works on a matrix 𝑋 = 𝑥𝑥⊤, where entries 𝑋𝑖 𝑗 represent auxiliary variables
corresponding to 𝑥𝑖𝑥 𝑗 , and enforces that principle 2 × 2 minors are PSD; and the intersection cuts separator for rank-1
constraints (disabled by default) adds cuts derived from the condition that any 2 × 2 minor of 𝑋 has determinant 0.

3.1.5 Performance Impact of Updates for Nonlinear Constraints. While Section 2.3 compared the performance of SCIP
7.0 and SCIP 8.0, this section takes a closer look at the effect of replacing only the handling of nonlinear constraints in
SCIP. That is, here the following two versions of SCIP are compared:

classic: the main development branch of SCIP as of 23.08.2021; nonlinear constraints handled as in SCIP 7.0;
Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Bestuzheva et al.

Table 3. Comparison of performance of SCIP with classic versus new handling of nonlinear constraints on MINLPLib.

Subset instances metric classic new both

all 5034 solution infeasible 481 49 20
failed 143 70 18
solved 2929 3131 2742
time limit 1962 1833 1598
memory limit 0 0 0

clean 4839 fastest 3733 3637 2531
mean time 75.9s 70.3s
mean nodes 2543 2601

new: as classic, but with the handling of nonlinear constraints replaced as detailed in this section and symmetry
detection extended to handle nonlinear constraints (see Section 3.2).

SCIP has been build with GCC 7.5.0 and uses PaPILO 1.0.2, bliss 0.73, CPLEX 20.1.0.1 as LP solver, Ipopt 3.14.4,
CppAD 20180000.0 and Intel MKL 2020.4.304 for linear algebra (LAPACK). Ipopt uses the same LAPACK and HSL MA27
as linear solver. All runs are carried out on machines with Intel Xeon CPUs E5-2660 v3 @ 2.60GHz and 128GB RAM in
a single-threaded mode. A time limit of one hour, a memory limit of 100000MB, an absolute gap tolerance of 10−6, and
a relative gap tolerance of 10−4 are set. All 1678 instances of MINLPLib (version 66559cbc from 2021-03-11) that can be
handled by both versions are used. Note that MINLPLib is not designed to be a benchmark set, since, for example, some
models are overrepresented. For each instance, two additional runs were conducted where the order of variables and
constraints were permuted. Thus, in total 5034 jobs were run for each version.

Table 3 summarizes the results. A run is considered as failed if the reported primal or dual bound conflicts with best
known bounds for the instance, the solver aborted prematurely due to a fatal error, or the solver did not terminate at
the time limit. Runs where the final solution is not feasible are counted separately. With the new version, for much
fewer instances the final incumbent is not feasible for the original problem, that is, the issue discussed in Section 3.1.2
has been resolved. For the remaining 49 instances, typically small violations of linear constraints or variable bounds
occur. Furthermore, the reduction in “failed” instances by half shows that the new version is more robust regarding the
computation of primal and dual bounds. Finally, the new version solves about 400 additional instances in comparision
to the classic one, but also no longer solves about 200 instances within the time limit.

Subset “clean” refers to all instances where both versions did not fail, i.e., either solved to optimality or stopped due
to the time limit. We count a version to be “fastest” on an instance if it is not more than 25% slower than the other
version. Mean times were computed as explained in the beginning of Section 2. Due to the increase in the number of
solved instances, a reduction in the mean time with the new version on subset “clean” can be observed, even though
the new version is fastest on less instances than the classic one.

Figure 1 shows performance profiles that compare both versions w.r.t. the time to solve an instance and the gap at
termination. The time comparison visualizes what has been observed in Table 3: the new version solves more instances,
but can be slower. The gap comparison shows that on instances that are not solved, often the new version produces a
smaller optimality gap than the classic version.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Enabling Research through the SCIP Optimization Suite 8.0 9

100 101 102

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

time factor to best (𝜏)

#i
ns
ta
nc
es

Time to solve

classic
new

100 101 102

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

gap factor to best (𝜏)

Gap at termination

classic
new

Fig. 1. Performance profiles with classic versus new handling of nonlinear constraints, showing the number of instances for which the

corresponding version was at most 𝜏 times worse (regarding time (left) or gap at termination (right)) than the best of both versions.

For the time plot, instances that were solved to optimality are considered. For the gap plot, instances that did not fail are considered.

3.2 Improvements in Symmetry Handling

Symmetries are known to have an adverse effect on the performance of MI(N)LP solvers due to symmetric subproblems
being treated repeatedly without providing new information to the solver. Since detecting all symmetries is NP-
hard [41], SCIP only detects symmetries that keep the formulation invariant.

SCIP’s symmetry handling framework can be used both as a black box and research tool. In the black box approach,
SCIP automatically detects and handles symmetries. If symmetries are known, users can tell SCIP about them by adding
specialized constraints. Customized code can include such constraints via API functions, but also black box SCIP can be
informed about symmetries via parsing them from files in SCIP’s CIP format. Moreover, SCIP facilitates research on
symmetries as it stores all symmetry information centrally in the symmetry propagator and provides implementations
of basic symmetry operations such as stabilizer computations.

For a permutation 𝛾 of the variable index set {1, . . . , 𝑛} and a vector 𝑥 ∈ R𝑛 , we define 𝛾 (𝑥) = (𝑥𝛾−1 (1) , . . . , 𝑥𝛾−1 (𝑛)).
We say that 𝛾 is a symmetry of (1) if the following holds: 𝑥 ∈ R𝑛 is feasible for (1) if and only if 𝛾 (𝑥) is feasible, and 𝑐⊤𝑥 =

𝑐⊤𝛾 (𝑥). The set of all symmetries forms a group Γ, the symmetry group of (1). If Γ is a product group Γ = Γ1 ⊗ · · · ⊗ Γ𝑘 ,
the variables affected by one factor of Γ are not affected by any other factor. In this case, SCIP can apply different
symmetry handling methods for each factor. The sets of all variables affected by a single factor are called components.

SCIP 7.0 was only able to handle symmetries of binary variables in MILPs using two paradigms: a constraint-based
approach or the pure propagation-based approach orbital fixing [39, 40, 46]. For a symmetry 𝛾 , the constraint-based
approach enforces that the variable vector 𝑥 is lexicographically not smaller than 𝛾 (𝑥). This is implemented via three
different constraint handler plugins. For single permutations 𝛾 , the symresack and orbisack constraint handlers use
separation and propagation [28] techniques for enforcing the lexicographic requirement, also c.f. [31]. Additionally, if
an entire factor Γ𝑖 of Γ has a special structure, the orbitope constraint handler applies specialized techniques [21].

SCIP 8.0 extends the symmetry handling framework. First, it allows to detect symmetries in MINLPs [72]. Second, in
SCIP 8.0, symmetries of general variables can be handled by inequalities derived from the Schreier-Sims table (SST
cuts) [36, 54]. These inequalities are based on a list of leaders ℓ1, . . . , ℓ𝑘 together with suitably defined orbits 𝑂1, . . . ,𝑂𝑘 ,
leading to inequalities 𝑥ℓ𝑖 ≥ 𝑥 𝑗 , 𝑗 ∈ 𝑂𝑖 , 𝑖 ∈ {1, . . . , 𝑘}. Users have a high degree of flexibility to control the selection of

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Bestuzheva et al.

orbits and can thus select the most promising symmetry handling strategy. Third, orbitope detection has been extended
to also detect suborbitopes, i.e., parts of the symmetry group that allow to apply orbitopes. Since adding suborbitopes
did not turn out to always be beneficial, SCIP adds suborbitopes according to a strategy that can combine suborbitopes
and SST cuts; adding SST cuts can be controlled by a user via parameters.

Furthermore, SCIP 8.0 contains improvements of previously available methods. First, if orbisack constraints interact
with set packing or partitioning constraints in a certain way, they are automatically upgraded to orbitopes. This upgrade
has been made more efficient. Second, the running time of the separation routine of cover inequalities for symresacks
has been improved from quadratic to linear by using the observation from [28] that minimal cover inequalities for
symresacks can be separated by merging connected components of an auxiliary graph. The new implementation exploits
that its connected components are either paths or cycles. Finally, propagation routines of the symresack and orbisack
constraint handler now find all variable fixings that can be derived from local variable bound information.

3.3 Primal Decomposition Heuristics

Most MILPs have sparse constraint matrices for which a (bordered) block-diagonal form might be obtained by permuting
the rows/columns of the matrix. Identifying such a form allows for potentially rendering large-scale complex problems
considerably more tractable. Solution algorithms or heuristics can be designed exploiting the underlying structure and
yielding smaller, easier problems. In this sense, a so-called decomposition identifies subsets of rows and columns that
are only linked to each other via a set of linking rows and/or linking columns, but are otherwise independent.

A decomposition consisting of𝑘 ∈ N blocks is a partitionD B (𝐷row, 𝐷col) with 𝐷row B (𝐷row
1 , . . . , 𝐷row

𝑘
, 𝐿row), 𝐷col B

(𝐷col
1 , . . . , 𝐷col

𝑘
, 𝐿col) of the rows/columns of the constraint matrix 𝐴 into 𝑘 + 1 pieces each, whereby it holds for all

𝑖 ∈ 𝐷row
𝑞1 , 𝑗 ∈ 𝐷col

𝑞2 that 𝑎𝑖, 𝑗 ≠ 0 implies 𝑞1 = 𝑞2. Rows 𝐿row and columns 𝐿col, which may be empty, are called linking

rows and columns, respectively.
In general, there is no unique way to decompose an MILP, and different decompositions might lead to different solver

behaviors. Users might be aware of decompositions and know which are most useful for a specific problem. Therefore,
since version 7.0 it is possible to pass user decompositions to SCIP [21]. A decomposition structure can be created using
the SCIP API, assigning labels to variables and/or constraints, and calling automatic label computation procedures if
necessary. Alternatively, SCIP also provides a file reader for decompositions in constraints.

In SCIP 7.0, the Benders decomposition framework and the heuristic Graph Induced Neighborhood Search were
extended to exploit user-provided decompositions, and a first version of the heuristic Penalty Alternating Direction
Method (PADM) [25, 55] was introduced. SCIP 8.0 comes with an improvement of PADM and provides another
decomposition heuristic Dynamic Partition Search (DPS) [8].

Improvement of Penalty Alternating Direction Method. PADM splits an MINLP into several subproblems according to
a given decomposition D with linking variables only, whereby the linking variables get copied and the differences
are penalized. Then the subproblems are alternatingly solved. For faster convergence, the objective function of each
subproblem has been replaced by a penalty term, and this replacement can lead to arbitrarily bad solutions. Therefore,
PADM has been extended by the option to improve a found solution by reintroducing the original objective function.

Dynamic Partition Search. The new primal construction heuristic DPS requires a decomposition with linking con-
straints only. The linking constraints and their sides are split by introducing vectors 𝑝𝑞 ∈ R𝐿row for each block
𝑞 ∈ {1, . . . , 𝑘}, where R𝐿row denotes the space of vectors with components indexed by 𝐿row, and requiring that the
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Enabling Research through the SCIP Optimization Suite 8.0 11

following holds:
𝑘∑︁

𝑞=1
𝑝𝑞 = 𝑏 [𝐿row] . (2)

To obtain information on subproblem infeasibility and speed up the solving process, the objective function is replaced
by a weighted sum of slack variables 𝑧𝑞 ∈ R𝐿row+ . For penalty parameter 𝜆 ∈ R𝐿row

>0 , each subproblem 𝑞 has the form

min 𝜆⊤𝑧𝑞,

s.t. 𝐴[𝐷row
𝑞 ,𝐷col

𝑞] 𝑥 [𝐷col
𝑞] ≥ 𝑏 [𝐷row

𝑞] ,

𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 for all 𝑖 ∈ N ∩ 𝐷col
𝑞 ,

𝑥𝑖 ∈ Z for all 𝑖 ∈ I ∩ 𝐷col
𝑞 ,

𝐴[𝐿row,𝐷col
𝑞] 𝑥 [𝐷col

𝑞] + 𝑧𝑞 ≥ 𝑝𝑞,

𝑧𝑞 ∈ R𝐿
row

+ .

(3)

From (3), it is apparent that the correct choice of 𝑝𝑞 plays a central role. For this reason, we refer to (𝑝𝑞)𝑞∈{1,...,𝑘 } as
a partition of 𝑏 [𝐿row] . The method starts with an initial partition fulfilling (2). Then it is checked whether this partition
will lead to a feasible solution by solving 𝑘 independent subproblems (3) with fixed 𝑝𝑞 . If the current partition does
not correspond to a feasible solution, then the partition gets updated, so that (2) still holds. These steps are repeated.
Similarly to PADM, it is possible to improve the found solution by reoptimizing with the original objective function.

3.4 PaPILO

The C++ library PaPILO provides presolving routines for (MI)LP problems and was introduced with the SCIP Opti-
mization Suite 7.0 [21]. PaPILO can be integrated into MILP solvers or used as a standalone presolver. As a standalone
presolver it provides presolving and postsolving routines. Hence, it can be used to a) provide presolving for new solving
methods and b) generate presolved instances so that different solvers can be benchmarked independently of their own
presolvers. Thus, the performance/behavior of the actual solver can be evaluated and compared more precisely.

PaPILO’s transaction-based design allows presolvers to run in parallel without requiring expensive copies of the
problem andwithout special synchronizations. Instead of applying results immediately, presolvers return their reductions
to the core, where they are applied in a deterministic, sequential order. Validity of every reduction to the modified
problem is checked to avoid applying conflicting reductions.

Presolving deletes variables from the original problem by fixing, substituting, and aggregating variables. After solving
the reduced problem, its solution does not contain any information on missing variables. To restore the solution values
of these variables and obtain a feasible solution of the original problem, corresponding data needs to be stored during
the presolving process. The process of recalculating the original solution from the reduced one is called postsolving
or post-processing [3]. Until version 1.0.2, PaPILO supported only postsolving primal solutions for LPs. In the latest
version, PaPILO supports postsolving also for dual solutions, reduced costs, slack variables of the constraints, and the
basic status of the variables and constraints for the majority of the LP presolvers.

3.5 SoPlex

SoPlex is a simplex-based LP solver and an essential part of the optimization suite, since is the default LP-solver for
SCIP. In addition to all the essential features of a state-of-the-art LP solver such as scaling, exploitation of sparsity,

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Bestuzheva et al.

or presolving, SoPlex also supports an option for 80bit extended precision and an iterative refinement algorithm to
produce high-precision solutions. This enables SoPlex to also compute exact rational solutions to LPs, using either
continued fraction approximations or a symbolic LU factorization.

The support of postsolving of dual LP solutions and basis information in PaPILO makes it possible to integrate
PaPILO fully as a presolving library into SoPlex. In version 6.0 of SoPlex, PaPILO is available as an additional option
for presolving. The previous presolving implementation continues to be the default.

4 MODELING LANGUAGES AND INTERFACES

There are many interfaces to SCIP from different programming and modeling languages. These interfaces allow users
to programmatically call SCIP with an API close to the C one or leverage a higher-level syntax.

The AMPL interface has been rewritten and moved to the main SCIP library and executable. With the SCIP Opti-
mization Suite 8.0, there exists a C wrapper for SoPlex, updated GAMS interfaces for SoPlex and SCIP, a Julia package
SCIP.jl, a basic Java interface JSCIPOpt, a new Matlab interface for SCIP 8.0 and SCIP-SDP based on the OPTI Toolbox

by Jonathan Currie, and the Python interface PySCIPOpt which can now also be installed as a Conda package.
The modeling language Zimpl allows for MI(N)LPs to be written and translated into some file formats supported by

SCIP. Zimpl 3.5.0 allows quadratic objective functions in addition to previously supported linear objective functions,
and can write suitable instances as Quadratic Unconstrained Binary Optimization problems.

5 EXTENSIONS

5.1 The GCG Decomposition Solver

SCIP allows implementing tailored decomposition-based algorithms. Complementary to this, GCG turns SCIP into
a generic decomposition-based solver for MILPs. While GCG’s focus is on Dantzig-Wolfe reformulation (DWR) and
Lagrangian decomposition, Benders decomposition (BD) is also supported. The philosophy behind GCG is that
decomposition-based algorithms can be routinely applied to MILPs without the user’s interaction or even knowledge.
To this end, GCG automatically detects a model structure that admits a decomposition and performs the corresponding
reformulation. This results in a master problem and one or several subproblems, which are usually formulated as
MILPs. Based on the reformulation, the linear relaxation in every node is solved by column generation (in the DWR
case) and Benders cut generation (in the BD case). GCG features primal heuristics and separation of cutting planes,
several of which are adapted from SCIP, but some are tailored to the decomposition situation in which both an original
and a reformulated model are available. As a research tool, GCG can be used to quickly assess the potential of a
decomposition-based algorithm for any problem for which a compact MILP formulation is available. This allows
evaluating the performance of an algorithmic idea with a single generic implementation, but across many different
applications. In what follows, we describe some enhancements in the GCG 3.5 release.

5.1.1 Detection Loop Refactoring. Decomposition-based algorithms rely on model structures, cf. Section 3.3. For
automatic identification of such structures, GCG features a modular detection loop. Detectors iteratively assign roles
like “master” or “block” to variables and/or constraints. This way, usually many different potential decompositions
are found. We refer to the SCIP Optimization Suite 6.0 release report [26] for a more detailed overview. Detectors are
implemented as plugins such that new ones can be added conveniently. In every round, each detector works on existing
(but possibly empty) partial or complete decompositions. An empirically very successful detection concept builds on
the classification of constraints and variables, which is performed prior to the actual detection process, using classifiers.
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Enabling Research through the SCIP Optimization Suite 8.0 13

5.1.2 Branching. In GCG, two general branching rules are implemented (branching on original variables [71] and
Vanderbeck’s generic branching [69]) as well as one rule that applies only to set partitioning master problems (Ryan
and Foster branching [53]). While these rules differ significantly, the general procedure has two common stages: First,
one determines the set of candidates we could possibly branch on (called the branching rule). Second, the branching
candidate selection heuristic selects one of the candidates. GCG previously contained pseudo cost, most fractional, and
random branching as selection heuristics for original variable branching, and first-index branching for Ryan-Foster and
Vanderbeck’s generic branching. In GCG 3.5, new strong branching-based selection heuristics are added [24].

5.1.3 Python Interface. With GCG 3.5 we introduce PyGCGOpt which extends SCIP’s existing Python interface [38]
for GCG and is distributed independently from the optimization suite2. All existing functionality for MILP modeling is
inherited from PySCIPOpt; therefore, any MILP modeled in Python can be solved with GCG without additional effort.
The interface supports specifying custom decompositions and exploring automatically detected decompositions, and
plugins for detectors and pricing solvers can be implemented in Python.

5.1.4 Visualization Suite. Visualizations of algorithmic behavior can yield understanding and intuition for interesting
parts of a solving process. With GCG 3.5, we include a Python-based visualization suite that offers visualization scripts
to show processes and results related to detection, branching, or pricing, among others. We highlight two features:

(1) Reporting functionality: A decomposition report offers an overview of all decompositions that GCG found for a
single run. For different runs, GCG 3.5 offers two reports: A testset report shows data and graphics for each
single run of one selected test set. A comparison report allows to compare two or more runs on the same test set.

(2) Jupyter notebook: data produced for the reports can be read, cleaned, filtered, and visualized interactively.

5.2 SCIP-SDP

SCIP-SDP is an MISDP solver and a platform for implementing methods for solving MISDPs. It was initiated by Sonja
Mars and Lars Schewe [42], and then continued by Gally et al. [20] and Gally [19]. New results and methods mainly
concerning presolving and propagation are presented in [43]. SCIP-SDP features interfaces to SDP-solvers DSDP, Mosek,
and SDPA.

SCIP-SDP implements an SDP-based branch-and-bound method, which solves a continuous SDP relaxation in each
node. It incorporates plugins such as primal heuristics, presolving and propagation methods, and file readers. There is
also an option to solve LP relaxations in each node of the branch-and-bound tree and generate eigenvector cuts, see
Sherali and Fraticelli [56]. This is sometimes faster than solving SDPs in every node. These two options can also be run
concurrently if the parallel interface TPI of SCIP is used. There also is a Matlab interface to SCIP-SDP.

Moreover, SCIP-SDP can handle rank-1 constraints, that is, the requirement that the resulting matrix 𝐴(𝑦) in (??) has
rank 1. For such a constraint, quadratic constraints are added, modeling that all 2 × 2-minors of 𝐴(𝑦) are zero [14].

Before we present some computational results, let us add some words of caution. Although SCIP-SDP is numerically
quite robust, accurately solving SDPs is more demanding than solving LPs. This can lead to wrong results on some
instances3, and the results often depend on the tolerances. Moreover, the SDP-solvers use relative tolerances, while
SCIP-SDP uses absolute tolerances. Finally, for Mosek, we use a slightly tighter feasibility tolerance than in SCIP-SDP.

Table 4 shows a comparison between SCIP-SDP 3.2 and 4.0 on the same testset as used by Gally et al. [20], which
consists of 194 instances; the changes between SCIP-SDP 4.0 and 3.2 are presented in more detail in [8, 43]. Reported are
2https://github.com/scipopt/PyGCGOpt
3For instance, in seldom cases, the dual bound might exceed the value of a primal feasible solution.

Manuscript submitted to ACM

https://github.com/scipopt/PyGCGOpt

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Bestuzheva et al.

Table 4. Performance comparison of SCIP-SDP 4.0 vs. SCIP-SDP 3.2

opt # nodes time [s]

SCIP-SDP 3.2 185 617.3 42.9
SCIP-SDP 4.0 187 497.3 26.6

the number of optimally solved instances, as well as the shifted geometric means of the number of processed nodes and
the CPU time in seconds. We use Mosek 9.2.40 for solving the continuous SDP relaxations. The tests were performed on
a Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs, having 32 GB main memory and 10 MB cache. All
computations were run single-threaded and with a timelimit of one hour.

As can be seen from the results, SCIP-SDP 4.0 is considerably faster than SCIP-SDP 3.2, but we recall that we have
relaxed the tolerances. Nevertheless, we conclude that SCIP-SDP has significantly improved since the last version.

5.3 SCIP-Jack: Solving Steiner Tree and Related Problems

Given an undirected, connected graph, edge costs and a set of terminal vertices, the Steiner tree problem in graphs (SPG)
asks for a tree of minimum weight that covers all terminals. The SPG is a fundamental NP-hard problem [33] and one
of the most studied problems in combinatorial optimization.

SCIP-Jack, an exact SPG-solver, is built on the branch-and-cut framework provided by SCIP and makes extensive use
of its plugin-based design. At the heart of the implementation is a constraint handler that separates violated constraints,
most importantly the so-called directed Steiner cuts, which are separated by a specialized maximum-flow algorithm [49].
The implementation includes a variety of additional SCIP plugins, such as heuristics, propagators, branching rules and
relaxators. Finally, the use of SCIP provides significant flexibility in the model to be solved, for example it is easily
possible to add additional constraints. In this way, SCIP-Jack can solve not only the SPG, but also 14 related problems.

The SCIP Optimization Suite 8.0 contains the new SCIP-Jack 2.04, which comes with major improvements on most
problem classes it can handle and outperforms the SPG solver by Polzin and Vahdati [47, 68], which had remained
unchallenged for almost 20 years, on almost all nontrivial benchmark testsets from the literature [51].

Figure 2 provides computational results on the instances from Tracks A and B of the PACE Challenge 2018 [10].
We use Gurobi 9.5 (Commercial), the best other solver from the PACE Challenge (SPDP [29]), and SCIP-Jack with
SoPlex (SCIPJ/spx) and Gurobi 9.5 (SCIPJ/grb) as LP solvers. A timelimit of one hour was set. Average times are given
as arithmetic means with time-outs counted as one hour each. The results were obtained on Intel Xeon CPUs E3-1245
@ 3.40 GHz with 32 GB RAM. It can be seen that SCIPJ/grb is roughly 17 times faster than SPDP, and 96 times faster
than Gurobi. For larger instances of the PACE 2018 benchmark, one commonly observes a run time difference of more
than six orders of magnitude between SCIP-Jack and commercial MILP solvers.

Considerable problem-specific improvements have been made for the prize-collecting Steiner tree problem (STP)
and (to a lesser extent) for the maximum-weight connect subgraph problem [50, 52]. SCIP-Jack 2.0 can solve many
previously unsolved benchmark instances from both problem classes to optimality—the largest of these instances have
up to 10 million edges. Large improvements are observed for the Euclidean STP: SCIP-Jack 2.0 is able to solve 19
Euclidean STPs with up to 100 000 terminals to optimality for the first time [51]. Notably, the state-of-the-art Euclidean
STP solver GeoSteiner 5.1 [30] could not solve any of these instances, even after one week of computation. In contrast,
SCIP-Jack 2.0 solves all of them within 12 minutes, some even within two minutes.
4See also https://scipjack.zib.de.

Manuscript submitted to ACM

https://scipjack.zib.de

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Enabling Research through the SCIP Optimization Suite 8.0 15

Commercial
SPDP

SCIP-Jack/spx
SCIP-Jack/grb

500

2500

Av
er
ag
e
tim

e
(s
ec
on

ds
)

Solved instances

95.95x

67
Commercial

17.63x

176
SPDP

1.89x

198
SCIPJ/spx

1.00x
199

SCIPJ/grb

Fig. 2. Computational results on the 200 benchmark instances of Tracks A and B of the PACE Challenge 2018.

5.4 The UG Framework

UG is a generic framework for parallelizing solvers in a distributed or shared memory computing environment. It
was designed to parallelize state-of-the-art branch-and-bound solvers externally in order to exploit their powerful
performance.We have developed parallel solvers for SCIP [58, 59, 61], CPLEX (not developed anymore), FICOXpress [60],
PIPS-SBB [44, 45], Concorde5, and QapNB [18]. Customized SCIP-based solvers such as SCIP-SDP and SCIP-Jack can be
parallelized with minimal effort [62]. The parallel version of SCIP-Jack solved several previously unsolved instances
from SteinLib [35] by using up to 43,000 cores [63].

In addition to the parallelization of these branch-and-bound base solvers, UG was used to develop MAP-SVP [65],
which is a solver for the Shortest Vector Problem (SVP), whose algorithm does not rely on branch-and-bound. For these
applications, UG had to be adapted and modified. Especially, the success of MAP-SVP, which updated several records
of the SVP challenge6, motivated us to develop generalized UG, in which all solvers developed so far can be handled
by a single unified framework. This has enabled UG 1.0 to serve as the basis for the parallel frameworks CMAP-LAP
(Configurable Massively Parallel solver framework for LAttice Problems) [66] and CMAP-DeepBKZ [67].

6 FINAL REMARKS

We discussed the functionality that the SCIP Optimization Suite offers optimization researchers, and highlighted
performance improvements and new functionality that was introduced in the SCIP Optimization Suite 8.0. The perfor-
mance comparison of SCIP 7.0 and SCIP 8.0 showed a 17% speed-up on both the MILP and MINLP testsets. This was
followed by a discussion of some aspects of the core solving engine of the SCIP Optimization Suite. The new framework
for handling nonlinear constraints was presented, which offers increased reliability as well as improved handling of
different types of nonlinearities that reduces type ambiguity and extends support for implementing the handling of
user-defined nonlinearities. The use of SCIP’s flexible plugin-based structure for extending the solver with user methods
was demonstrated on the examples of new symmetry handling methods and primal decomposition heuristics. The
framework that SCIP provides for working on these methods was explained and the relevant plugin types and other
customization-enabling features were discussed, followed by the presentation of new methods added in SCIP 8.0.

Further, we presented extensions built around SCIP. The semidefinite programming solver SCIP-SDP and the Steiner
tree problem solver SCIP-Jack provide users of the SCIP Optimization Suite the functionality for solving more problem
classes, the decomposition solver GCG offers a different solving approach, and the solver parallelization framework UG

5https://www.math.uwaterloo.ca/tsp/concorde.html
6http://latticechallenge.org/svp-challenge

Manuscript submitted to ACM

https://www.math.uwaterloo.ca/tsp/concorde.html
http://latticechallenge.org/svp-challenge

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Bestuzheva et al.

enables the use of branch-and-bound solvers, and in particular SCIP, in parallel computing environments. Moreover,
these components of the SCIP Optimization Suite demonstrate how SCIP’s features can be leveraged in creating new
research projects which can extend beyond SCIP’s standard focus and approach.

ACKNOWLEDGMENTS

The authors want to thank all previous developers and contributors to the SCIP Optimization Suite and all users that
reported bugs and often also helped reproducing and fixing the bugs. In particular, thanks go to Suresh Bolusani, Didier
Chételat, Gregor Hendel, Gioni Mexi, Matthias Miltenberger, Andreas Schmitt, Robert Schwarz, Helena Völker, Matthias
Walter, and Antoine Prouvoust and the Ecole team. The Matlab interface was set up with the big help of Nicolai Simon.

The work for this article has been partly conducted within the Research Campus MODAL funded by the German
Federal Ministry of Education and Research (BMBF grant number 05M14ZAM) and has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement No 773897. It has also
been partly supported by the German Research Foundation (DFG) within the Collaborative Research Center 805, Project
A4, and the EXPRESS project of the priority program CoSIP (DFG-SPP 1798), the German Research Foundation (DFG)
within the project HPO-NAVI (project number 391087700).

Author Affiliations

KSENIA BESTUZHEVA, Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany; e-mail: bestuzheva@zib.de;
ORCID: 0000-0002-7018-7099
MATHIEU BESANÇON, ZIB-AIS2T; e-mail: besancon@zib.de; ORCID: 0000-0002-6284-3033
WEI-KUN CHEN, School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; e-mail: chen-
weikun@bit.edu.cn; ORCID: 0000-0003-4147-1346
ANTONIA CHMIELA, ZIB-AIS2T; e-mail: chmiela@zib.de; ORCID: 0000-0002-4809-2958
TIM DONKIEWICZ, RWTH Aachen University, Lehrstuhl für Operations Research, Kackertstr. 7, 52072 Aachen, Germany; e-mail:
tim.donkiewicz@rwth-aachen.de; ORCID: 0000-0002-5721-3563
JASPER VAN DOORNMALEN, Eindhoven University of Technology, Department of Mathematics and Computer Science; e-mail:
m.j.v.doornmalen@tue.nl; ORCID: 0000-0002-2494-0705
LEON EIFLER, ZIB-AIS2T; e-mail: eifler@zib.de; ORCID: 0000-0003-0245-9344
OLIVER GAUL, RWTH Aachen University, Lehrstuhl für Operations Research, Kackertstr. 7, 52072 Aachen, Germany; e-mail:
oliver.gaul@rwth-aachen.de; ORCID: 0000-0002-2131-1911
GERALD GAMRATH, ZIB-AIS2T and I2DAMO GmbH, Englerallee 19, 14195 Berlin, Germany; e-mail: gamrath@zib.de; ORCID:
0000-0001-6141-5937
AMBROS GLEIXNER, ZIB-AIS2T and HTW Berlin; e-mail: gleixner@zib.de; ORCID: 0000-0003-0391-5903
LEONA GOTTWALD, ZIB-AIS2T; e-mail: gottwald@zib.de; ORCID: 0000-0002-8894-5011
CHRISTOPH GRACZYK, ZIB-AIS2T; e-mail: graczyk@zib.de; ORCID: 0000-0001-8990-9912
KATRIN HALBIG, Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Data Science, Cauerstr. 11, 91058 Erlangen,
Germany; e-mail: katrin.halbig@fau.de; ORCID: 0000-0002-8730-3447
ALEXANDER HOEN, ZIB-AIS2T; e-mail: hoen@zib.de; ORCID: 0000-0003-1065-1651
CHRISTOPHERHOJNY, EindhovenUniversity of Technology, Department ofMathematics andComputer Science; e-mail: c.hojny@tue.nl;
ORCID: 0000-0002-5324-8996
ROLF VAN DER HULST, University of Twente, Department of Discrete Mathematics and Mathematical Programming, P.O. Box 217,
7500 AE Enschede, The Netherlands; e-mail: r.p.vanderhulst@utwente.nl

Manuscript submitted to ACM

https://orcid.org/0000-0002-7018-7099
https://orcid.org/0000-0002-6284-3033
https://orcid.org/0000-0003-4147-1346
https://orcid.org/0000-0002-4809-2958
https://orcid.org/0000-0002-5721-3563
https://orcid.org/0000-0002-2494-0705
https://orcid.org/0000-0003-0245-9344
https://orcid.org/0000-0002-2131-1911
https://orcid.org/0000-0001-6141-5937
https://orcid.org/0000-0003-0391-5903
https://orcid.org/0000-0002-8894-5011
https://orcid.org/0000-0001-8990-9912
https://orcid.org/0000-0002-8730-3447
https://orcid.org/0000-0003-1065-1651
https://orcid.org/0000-0002-5324-8996

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Enabling Research through the SCIP Optimization Suite 8.0 17

THORSTEN KOCH, Technische Universität Berlin, Chair of Software and Algorithms for Discrete Optimization, Straße des 17.
Juni 135, 10623 Berlin, Germany, and ZIB, Department A2IM, Takustr. 7, 14195 Berlin, Germany; e-mail: koch@zib.de; ORCID:
0000-0002-1967-0077
MARCO LÜBBECKE, RWTH Aachen-Lehrstuhl für OR; e-mail: marco.luebbecke@rwth-aachen.de; ORCID: 0000-0002-2635-0522
STEPHEN J. MAHER, University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter, United Kingdom;
e-mail: s.j.maher@exeter.ac.uk, ORCID: 0000-0003-3773-6882
FREDERIC MATTER, Technische Universität Darmstadt, Fachbereich Mathematik, Dolivostr. 15, 64293 Darmstadt, Germany; e-mail:
matter@mathematik.tu-darmstadt.de; ORCID: 0000-0002-0499-1820
ERIK MÜHMER, RWTH Aachen-Lehrstuhl für OR; e-mail: erik.muehmer@rwth-aachen.de; ORCID: 0000-0003-1114-3800
BENJAMIN MÜLLER, ZIB-AIS2T; e-mail: benjamin.mueller@zib.de; ORCID: 0000-0002-4463-2873
MARC E. PFETSCH, TU Darmstadt, Fachbereich Mathematik; e-mail: pfetsch@mathematik.tu-darmstadt.de; ORCID: 0000-0002-0947-
7193
DANIEL REHFELDT, ZIB-A2IM; e-mail: rehfeldt@zib.de; ORCID: 0000-0002-2877-074X
STEFFAN SCHLEIN, RWTH Aachen-Lehrstuhl für OR; e-mail: steffan.schlein@rwth-aachen.de
FRANZISKA SCHLÖSSER, ZIB-AIS2T; e-mail: schloesser@zib.de
FELIPE SERRANO, ZIB-AIS2T; e-mail: serrano@zib.de; ORCID: 0000-0002-7892-3951
YUJI SHINANO, ZIB-A2IM; e-mail: shinano@zib.de; ORCID: 0000-0002-2902-882X
BORO SOFRANAC, ZIB-AIS2T and TU Berlin; e-mail: sofranac@zib.de; ORCID: 0000-0003-2252-9469
MARK TURNER, ZIB-A2IM and Chair of Software and Algorithms for Discrete Optimization, Institute of Mathematics, TU Berlin;
e-mail: turner@zib.de; ORCID: 0000-0001-7270-1496
STEFAN VIGERSKE, GAMS Software GmbH, c/o ZIB-AIS2T; e-mail: svigerske@gams.com
FABIAN WEGSCHEIDER, ZIB-AIS2T; e-mail: wegscheider@zib.de
PHILIPP WELLNER; e-mail: p.we@fu-berlin.de
DIETER WENINGER, Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Data Science, Cauerstr. 11, 91058 Erlangen,
Germany; e-mail: dieter.weninger@fau.de; ORCID: 0000-0002-1333-8591
JAKOB WITZIG, ZIB-AIS2T; e-mail: witzig@zib.de; ORCID: 0000-0003-2698-0767

REFERENCES

[1] T. Achterberg. 2007. Constraint Integer Programming. Dissertation. Technische Universität Berlin.
[2] Tobias Achterberg. 2009. SCIP: Solving Constraint Integer Programs. Mathematical Programming Computation 1, 1 (2009), 1–41. https://doi.org/10.

1007/s12532-008-0001-1
[3] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger. 2020. Presolve Reductions in Mixed Integer Programming.

INFORMS Journal on Computing 32, 2 (2020), 473–506. https://doi.org/10.1287/ijoc.2018.0857
[4] Warren P Adams and Hanif D Sherali. 1986. A tight linearization and an algorithm for zero-one quadratic programming problems. Management

Science 32, 10 (1986), 1274–1290. https://doi.org/10.1287/mnsc.32.10.1274
[5] Warren P Adams and Hanif D Sherali. 1990. Linearization strategies for a class of zero-one mixed integer programming problems. Operations

Research 38, 2 (1990), 217–226. https://doi.org/10.1287/opre.38.2.217
[6] Warren P Adams and Hanif D Sherali. 1993. Mixed-integer bilinear programming problems. Mathematical Programming 59, 1 (1993), 279–305.

https://doi.org/10.1007/BF01581249
[7] Daniel Anderson, Pierre Le Bodic, and Kerri Morgan. 2021. Further results on an abstract model for branching and its application to mixed integer

programming. Mathematical Programming 190, 1 (2021), 811–841.
[8] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver Gaul,

Gerald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan
Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner,
Dieter Weninger, and Jakob Witzig. 2021. The SCIP Optimization Suite 8.0. Technical Report. Optimization Online. http://www.optimization-
online.org/DB_HTML/2021/12/8728.html

[9] Víctor Blanco, Alberto Japón, Diego Ponce, and Justo Puerto. 2021. On the multisource hyperplanes location problem to fitting set of points.
Computers & Operations Research 128 (2021), 105124.

Manuscript submitted to ACM

https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0002-2635-0522
https://orcid.org/0000-0003-3773-6882
https://orcid.org/0000-0002-0499-1820
https://orcid.org/0000-0003-1114-3800
https://orcid.org/0000-0002-4463-2873
https://orcid.org/0000-0002-0947-7193
https://orcid.org/0000-0002-0947-7193
https://orcid.org/0000-0002-2877-074X
https://orcid.org/0000-0002-7892-3951
https://orcid.org/0000-0002-2902-882X
https://orcid.org/0000-0003-2252-9469
https://orcid.org/0000-0001-7270-1496
https://orcid.org/0000-0002-1333-8591
https://orcid.org/0000-0003-2698-0767
https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1287/mnsc.32.10.1274
https://doi.org/10.1287/opre.38.2.217
https://doi.org/10.1007/BF01581249
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Bestuzheva et al.

[10] Édouard Bonnet and Florian Sikora. 2018. The PACE 2018 Parameterized Algorithms and Computational Experiments Challenge: The Third Iteration.
In 13th International Symposium on Parameterized and Exact Computation, IPEC 2018 (LIPIcs, Vol. 115), Christophe Paul and Michal Pilipczuk (Eds.).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 26:1–26:15. https://doi.org/10.4230/LIPIcs.IPEC.2018.26

[11] Marco Casazza and Alberto Ceselli. 2021. Optimization algorithms for resilient path selection in networks. Computers & Operations Research 128
(2021), 105191.

[12] Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, and Lorenzo Venturello. 2021. Wasserstein distance to independence
models. Journal of Symbolic Computation 104 (2021), 855–873.

[13] Alberto Ceselli, Ángel Felipe, M Teresa Ortuño, Giovanni Righini, and Gregorio Tirado. 2021. A branch-and-cut-and-price algorithm for the electric
vehicle routing problem with multiple technologies. In Operations Research Forum, Vol. 2. Springer, 1–33.

[14] Chen Chen, Alper Atamtürk, and Shmuel S Oren. 2017. A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables.
Mathematical Programming 165, 2 (2017), 549–577.

[15] Stefano Coniglio, Mathias Sirvent, and Martin Weibelzahl. 2021. Airport capacity extension, fleet investment, and optimal aircraft scheduling in a
multilevel market model: quantifying the costs of imperfect markets. OR Spectrum 43, 2 (2021), 367–408.

[16] Gustavo Dias and Leo Liberti. 2021. Exploiting symmetries in mathematical programming via orbital independence. Annals of Operations Research
298, 1 (2021), 149–182.

[17] Antonio Florez-Gutierrez, Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, André Schrottenloher, and Ferdinand Sibleyras. 2021. Internal
Symmetries and Linear Properties: Full-permutation Distinguishers and Improved Collisions on Gimli. Journal of Cryptology 34, 4 (2021), 1–37.

[18] Koichi Fujii, Naoki Ito, Sunyoung Kim, Masakazu Kojima, Yuji Shinano, and Kim-Chuan Toh. 2021. Solving Challenging Large Scale QAPs. ZIB-Report
21-02. Zuse Institute Berlin.

[19] Tristan Gally. 2019. Computational Mixed-Integer Semidefinite Programming. Dissertation. TU Darmstadt.
[20] Tristan Gally, Marc E. Pfetsch, and Stefan Ulbrich. 2018. A Framework for Solving Mixed-Integer Semidefinite Programs. Optimization Methods and

Software 33, 3 (2018), 594–632. https://doi.org/10.1080/10556788.2017.1322081
[21] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona

Gottwald, Katrin Halbig, Gregor Hendel, Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, FredericMatter, MatthiasMiltenberger,
Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian
Wegscheider, Dieter Weninger, and Jakob Witzig. 2020. The SCIP Optimization Suite 7.0. Technical Report. Optimization Online. http://www.
optimization-online.org/DB_HTML/2020/03/7705.html.

[22] Gerald Gamrath, Thorsten Koch, Stephen J. Maher, Daniel Rehfeldt, and Yuji Shinano. 2017. SCIP-Jack—a solver for STP and variants with
parallelization extensions. Mathematical Programming Computation 9, 2 (2017), 231–296. https://doi.org/10.1007/s12532-016-0114-x

[23] Gerald Gamrath and Marco E. Lübbecke. 2010. Experiments with a Generic Dantzig-Wolfe Decomposition for Integer Programs. In Experimental

Algorithms (Lecture Notes in Computer Science, Vol. 6049), Paola Festa (Ed.). Springer Berlin Heidelberg, 239–252. https://doi.org/10.1007/978-3-642-
13193-6_21

[24] Oliver Gaul. 2021. Hierarchical Strong Branching and Other Strong Branching-Based Branching Candidate Selection Heuristics in Branch-and-Price.
Master’s thesis. RWTH Aachen University.

[25] Björn Geißler, Antonio Morsi, Lars Schewe, and Martin Schmidt. 2017. Penalty Alternating Direction Methods for Mixed-Integer Optimization: A
New View on Feasibility Pumps. SIAM Journal on Optimization 27, 3 (2017), 1611–1636. https://doi.org/10.1137/16M1069687

[26] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gamrath, Robert Lion Gottwald, Gregor Hendel, Christopher Hojny,
Thorsten Koch, Marco E. Lübbecke, Stephen J. Maher, Matthias Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel
Rehfeldt, Franziska Schlösser, Christoph Schubert, Felipe Serrano, Yuji Shinano, Jan Merlin Viernickel, Matthias Walter, Fabian Wegscheider,
Jonas T. Witt, and Jakob Witzig. 2018. The SCIP Optimization Suite 6.0. Technical Report. Optimization Online. http://www.optimization-
online.org/DB_HTML/2018/07/6692.html

[27] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P.M. Christophel, K. Jarck, Th. Koch, J. Linderoth, M. Lübbecke,
H.D. Mittelmann, D. Ozyurt, T.K. Ralphs, D. Salvagnin, and Y. Shinano. 2021. MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer
Programming Library. Mathematical Programming Computation 13 (2021), 443–490. https://doi.org/10.1007/s12532-020-00194-3

[28] Christopher Hojny and Marc E. Pfetsch. 2019. Polytopes associated with symmetry handling. Mathematical Programming 175, 1 (2019), 197–240.
https://doi.org/10.1007/s10107-018-1239-7

[29] Yoichi Iwata and Takuto Shigemura. 2019. Separator-based pruned dynamic programming for Steiner tree. In Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 33. 1520–1527.
[30] Daniel Juhl, David M Warme, Pawel Winter, and Martin Zachariasen. 2018. The GeoSteiner software package for computing Steiner trees in the

plane: an updated computational study. Mathematical Programming Computation 10, 4 (2018), 487–532. https://doi.org/10.1007/s12532-018-0135-8
[31] Volker Kaibel and Andreas Loos. 2011. Finding Descriptions of Polytopes via Extended Formulations and Liftings. In Progress in Combinatorial

Optimization, A. Ridha Mahjoub (Ed.). Wiley.
[32] Rohit Kannan and James R Luedtke. 2021. A stochastic approximation method for approximating the efficient frontier of chance-constrained

nonlinear programs. Mathematical Programming Computation 13, 4 (2021), 705–751.
[33] R. Karp. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations, R. Miller and J. Thatcher (Eds.). Plenum Press,

85–103. https://doi.org/10.1007/978-1-4684-2001-2_9

Manuscript submitted to ACM

https://doi.org/10.4230/LIPIcs.IPEC.2018.26
https://doi.org/10.1080/10556788.2017.1322081
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://doi.org/10.1007/s12532-016-0114-x
https://doi.org/10.1007/978-3-642-13193-6_21
https://doi.org/10.1007/978-3-642-13193-6_21
https://doi.org/10.1137/16M1069687
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s10107-018-1239-7
https://doi.org/10.1007/s12532-018-0135-8
https://doi.org/10.1007/978-1-4684-2001-2_9

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Enabling Research through the SCIP Optimization Suite 8.0 19

[34] Thorsten Koch. 2004. Rapid Mathematical Prototyping. Dissertation. Technische Universität Berlin.
[35] Thorsten Koch, Alexander Martin, and Stefan Voß. 2001. SteinLib: An Updated Library on Steiner Tree Problems in Graphs. Springer US, Boston, MA,

285–325. https://doi.org/10.1007/978-1-4613-0255-1_9
[36] Leo Liberti and James Ostrowski. 2014. Stabilizer-based symmetry breaking constraints for mathematical programs. Journal of Global Optimization

60 (2014), 183–194. https://doi.org/10.1007/s10898-013-0106-6
[37] Jeffrey T Linderoth and Ted K Ralphs. 2005. Noncommercial software for mixed-integer linear programming. Integer programming: theory and

practice 3 (2005), 253–303.
[38] Stephen Maher, Matthias Miltenberger, João Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz, and Felipe Serrano. 2016. PySCIPOpt: Mathematical

Programming in Python with the SCIP Optimization Suite. In Mathematical Software – ICMS 2016. Springer, 301–307. https://doi.org/10.1007/978-3-
319-42432-3_37

[39] François Margot. 2002. Pruning by isomorphism in branch-and-cut. Mathematical Programming 94, 1 (2002), 71–90. https://doi.org/10.1007/s10107-
002-0358-2

[40] François Margot. 2003. Exploiting orbits in symmetric ILP. Mathematical Programming 98, 1–3 (2003), 3–21. https://doi.org/10.1007/s10107-003-
0394-6

[41] François Margot. 2010. Symmetry in Integer Linear Programming. In 50 Years of Integer Programming, Michael Jünger, Thomas M. Liebling, Denis
Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey (Eds.). Springer, 647–686.
https://doi.org/10.1007/978-3-540-68279-0_17

[42] Sonja Mars. 2013. Mixed-Integer Semidefinite Programming with an Application to Truss Topology Design. Dissertation. FAU Erlangen-Nürnberg.
[43] Frederic Matter and Marc E. Pfetsch. 2021. Presolving for Mixed-Integer Semidefinite Optimization. Technical Report. Optimization Online.

http://www.optimization-online.org/DB_HTML/2021/10/8614.html
[44] Lluís-Miquel Munguía, Geoffrey Oxberry, and Deepak Rajan. 2016. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm

for Stochastic Mixed-Integer Programs. In 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 730–739.
https://doi.org/10.1109/IPDPSW.2016.159

[45] Lluís-Miquel Munguía, Geoffrey Oxberry, Deepak Rajan, and Yuji Shinano. 2019. Parallel PIPS-SBB: multi-level parallelism for stochastic mixed-
integer programs. Computational Optimization and Applications 73, 2 (2019), 575–601. https://doi.org/10.1007/s10589-019-00074-0

[46] James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio. 2011. Orbital branching. Mathematical Programming 126, 1 (2011), 147–178.
https://doi.org/10.1007/s10107-009-0273-x

[47] Tobias Polzin. 2003. Algorithms For the Steiner Problem in Networks. Dissertation. Saarland University.
[48] Antoine Prouvost, Justin Dumouchelle, Maxime Gasse, Didier Chételat, and Andrea Lodi. 2021. Ecole: A library for learning inside MILP solvers.

arXiv preprint arXiv:2104.02828 (2021).
[49] Daniel Rehfeldt. 2021. Faster Algorithms for Steiner Tree and Related Problems: From Theory to Practice. Dissertation. Technische Universität Berlin.
[50] Daniel Rehfeldt, Henriette Franz, and Thorsten Koch. 2020. Optimal Connected Subgraphs: Formulations and Algorithms. ZIB-Report 20-23. Zuse

Institute Berlin.
[51] Daniel Rehfeldt and Thorsten Koch. 2021. Implications, conflicts, and reductions for Steiner trees. Mathematical Programming (2021). https:

//doi.org/10.1007/s10107-021-01757-5 To appear.
[52] Daniel Rehfeldt and Thorsten Koch. 2021. On the Exact Solution of Prize-Collecting Steiner Tree Problems. INFORMS Journal on Computing (2021).

https://doi.org/10.1287/ijoc.2021.1087 To appear.
[53] D. M. Ryan and B. A. Foster. 1981. An integer programming approach to scheduling. In Computer Scheduling of Public Transport Urban Passenger

Vehicle and Crew Scheduling, A. Wren (Ed.). North Holland, Amsterdam, 269–280.
[54] Domenico Salvagnin. 2018. Symmetry Breaking Inequalities from the Schreier-Sims Table. In Integration of Constraint Programming, Artificial

Intelligence, and Operations Research, Willem-Jan van Hoeve (Ed.). Springer, 521–529. https://doi.org/10.1007/978-3-319-93031-2_37
[55] Lars Schewe, Martin Schmidt, and Dieter Weninger. 2020. A Decomposition Heuristic for Mixed-Integer Supply chain Problems. Operations Research

Letters 48, 3 (2020), 225–232. https://doi.org/10.1016/j.orl.2020.02.006
[56] H. D. Sherali and B. M. Fraticelli. 2002. Enhancing RLT relaxations via a new class of semidefinite cuts. Journal of Global Optimization 22 (2002),

233–261. https://doi.org/10.1023/A:1013819515732
[57] Yuji Shinano. 2018. The Ubiquity Generator Framework: 7 Years of Progress in Parallelizing Branch-and-Bound. In Operations Research Proceedings

2017, Natalia Kliewer, Jan Fabian Ehmke, and Ralf Borndörfer (Eds.). Springer, 143–149. https://doi.org/10.1007/978-3-319-89920-6_20
[58] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch. 2012. ParaSCIP: A Parallel Extension of SCIP. In Competence in

High Performance Computing 2010, Christian Bischof, Heinz-Gerd Hegering, Wolfgang E. Nagel, and Gabriel Wittum (Eds.). Springer, 135–148.
https://doi.org/10.1007/978-3-642-24025-6_12

[59] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, Thorsten Koch, and Michael Winkler. 2016. Solving Open MIP Instances with
ParaSCIP on Supercomputers Using up to 80,000 Cores. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 770–779.
https://doi.org/10.1109/IPDPS.2016.56

[60] Yuji Shinano, Timo Berthold, and Stefan Heinz. 2018. ParaXpress: an experimental extension of the FICO Xpress-Optimizer to solve hard MIPs on
supercomputers. Optimization Methods and Software 33, 3 (2018), 530–539. https://doi.org/10.1080/10556788.2018.1428602

Manuscript submitted to ACM

https://doi.org/10.1007/978-1-4613-0255-1_9
https://doi.org/10.1007/s10898-013-0106-6
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/s10107-002-0358-2
https://doi.org/10.1007/s10107-002-0358-2
https://doi.org/10.1007/s10107-003-0394-6
https://doi.org/10.1007/s10107-003-0394-6
https://doi.org/10.1007/978-3-540-68279-0_17
http://www.optimization-online.org/DB_HTML/2021/10/8614.html
https://doi.org/10.1109/IPDPSW.2016.159
https://doi.org/10.1007/s10589-019-00074-0
https://doi.org/10.1007/s10107-009-0273-x
https://doi.org/10.1007/s10107-021-01757-5
https://doi.org/10.1007/s10107-021-01757-5
https://doi.org/10.1287/ijoc.2021.1087
https://doi.org/10.1007/978-3-319-93031-2_37
https://doi.org/10.1016/j.orl.2020.02.006
https://doi.org/10.1023/A:1013819515732
https://doi.org/10.1007/978-3-319-89920-6_20
https://doi.org/10.1007/978-3-642-24025-6_12
https://doi.org/10.1109/IPDPS.2016.56
https://doi.org/10.1080/10556788.2018.1428602

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Bestuzheva et al.

[61] Yuji Shinano, Stefan Heinz, Stefan Vigerske, and Michael Winkler. 2018. FiberSCIP: A Shared Memory Parallelization of SCIP. INFORMS Journal on

Computing 30, 1 (2018), 11–30. https://doi.org/10.1287/ijoc.2017.0762
[62] Yuji Shinano, Daniel Rehfeldt, and Tristan Gally. 2019. An Easy Way to Build Parallel State-of-the-art Combinatorial Optimization Problem Solvers:

A Computational Study on Solving Steiner Tree Problems and Mixed Integer Semidefinite Programs by using ug[SCIP-*,*]-Libraries. In 2019 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 530–541. https://doi.org/10.1109/IPDPSW.2019.00095
[63] Yuji Shinano, Daniel Rehfeldt, and Thorsten Koch. 2019. Building Optimal Steiner Trees on Supercomputers by Using up to 43,000 Cores. In

Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Louis-Martin Rousseau and Kostas Stergiou (Eds.). Springer,
Cham, 529–539.

[64] E.M.B. Smith and C.C. Pantelides. 1999. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex
MINLPs. Computers & Chemical Engineering 23, 4-5 (1999), 457–478. https://doi.org/10.1016/s0098-1354(98)00286-5

[65] Nariaki Tateiwa, Yuji Shinano, Satoshi Nakamura, Akihiro Yoshida, Shizuo Kaji, Masaya Yasuda, and Katsuki Fujisawa. 2020. Massive Parallelization
for Finding Shortest Lattice Vectors Based on Ubiquity Generator Framework. In SC20: International Conference for High Performance Computing,

Networking, Storage and Analysis. 1–15. https://doi.org/10.1109/SC41405.2020.00064
[66] Nariaki Tateiwa, Yuji Shinano, Keiichiro Yamamura, Akihiro Yoshida, Shizuo Kaji, Masaya Yasuda, and Katsuki Fujisawa. 2021. CMAP-LAP:

Configurable Massively Parallel Solver for Lattice Problems. ZIB-Report 21-16. Zuse Institute Berlin.
[67] Nariaki Tateiwa, Yuji Shinano, Masaya Yasuda, Keiichiro Yamamura, Shizuo Kaji, and Katsuki Fujisawa. 2021. Massively parallel sharing lattice basis

reduction. ZIB-Report 21-38. Zuse Institute Berlin.
[68] Siavash Vahdati Daneshmand. 2004. Algorithmic Approaches to the Steiner Problem in Networks. Dissertation. Universität Mannheim.
[69] F. Vanderbeck. 2011. Branching in Branch-and-Price: A Generic Scheme. Mathematical Programming 130, 2 (2011), 249–294. https://doi.org/10.

1007/s10107-009-0334-1
[70] Stefan Vigerske and Ambros Gleixner. 2017. SCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework.

Optimization Methods & Software 33, 3 (2017), 563–593. https://doi.org/10.1080/10556788.2017.1335312
[71] D. Villeneuve, J. Desrosiers, M.E. Lübbecke, and F. Soumis. 2005. On Compact Formulations for Integer Programs Solved by Column Generation.

Annals of Operations Research 139, 1 (2005), 375–388. https://doi.org/10.1007/s10479-005-3455-9
[72] Fabian Wegscheider. 2019. Exploiting Symmetry in Mixed-Integer Nonlinear Programming. Master’s thesis. Zuse Institute Berlin.
[73] Roland Wunderling. 1996. Paralleler und Objektorientierter Simplex-Algorithmus. Dissertation. Technische Universität Berlin.

Manuscript submitted to ACM

https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.1109/IPDPSW.2019.00095
https://doi.org/10.1016/s0098-1354(98)00286-5
https://doi.org/10.1109/SC41405.2020.00064
https://doi.org/10.1007/s10107-009-0334-1
https://doi.org/10.1007/s10107-009-0334-1
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1007/s10479-005-3455-9

	Abstract
	1 Introduction
	2 Performance of SCIP 8.0 for MILP and MINLP
	2.1 Experimental Setup
	2.2 MILP Performance
	2.3 MINLP Performance

	3 The Core Solving Engine
	3.1 SCIP's New MINLP Framework
	3.2 Improvements in Symmetry Handling
	3.3 Primal Decomposition Heuristics
	3.4 PaPILO
	3.5 SoPlex

	4 Modeling Languages and Interfaces
	5 Extensions
	5.1 The GCG Decomposition Solver
	5.2 SCIP-SDP
	5.3 SCIP-Jack: Solving Steiner Tree and Related Problems
	5.4 The UG Framework

	6 Final Remarks
	Acknowledgments
	References

