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Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. 2022. Enabling Research through the SCIP Optimization Suite 8.0.
1, 1 (September 2022), 20 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The SCIP Optimization Suite comprises a set of complementary software packages designed to model and solve a large
variety of mathematical optimization problems: the modeling language Zimpl [34], the presolving library PaPILO, the
linear programming solver SoPlex [73], the constraint integer programming solver SCIP [2], which can be used as
a fast standalone global solver for mixed-integer linear and nonlinear programs and a flexible branch-cut-and-price
framework, the automatic decomposition solver GCG [23], and the UG framework for solver parallelization [57].

All six tools can be downloaded in source code and are freely available for members of noncommercial and academic
institutions. Development and bugfix branches of SCIP, SoPlex and PaPILO are mirrored under https://github.com/
orgs/scipopt on a daily basis. They are accompanied by several extensions for solving specific problem classes such as
the award-winning Steiner tree solver SCIP-Jack [22] and the mixed-integer semidefinite programming (MISDP) solver
SCIP-SDP [20]. This paper discusses the capacity of SCIP as a software and research tool and presents the evolving
possibilities for working with the SCIP Optimization Suite 8.0, both as a black-box toolbox and as a framework with
possibilties of interaction and extension.

Background. SCIP is a branch-cut-and-price framework for solving different types of optimization problems, most
importantly, mixed-integer linear programs (MILPs) and mixed-integer nonlinear programs (MINLPs). MINLPs are
optimization problems of the form

min 𝑐⊤𝑥

s.t. 𝐴𝑥 ≥ 𝑏,

𝑔
𝑘
≤ 𝑔𝑘 (𝑥) ≤ 𝑔𝑘 for all 𝑘 ∈ M,

𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 for all 𝑖 ∈ N ,

𝑥𝑖 ∈ Z for all 𝑖 ∈ I,

(1)

defined by 𝑐 ∈ R𝑛 , 𝐴 ∈ R𝑚 (ℓ )×𝑛 , 𝑏 ∈ R𝑚 (ℓ )
, 𝑔, 𝑔 ∈ R𝑚 (𝑛)

, 𝑔 : R𝑛 → R𝑚 (𝑛)
, 𝑥 , 𝑥 ∈ R𝑛 , the index set of integer variables

I ⊆ N B {1, . . . , 𝑛} and the index set of nonlinear constraints M B {1, . . . ,𝑚𝑛}. We assume that 𝑔 is specified in
algebraic form using basic expressions that are known to SCIP. The usage of R B R ∪ {−∞,∞} allows for variables
that are free or bounded only in one direction (we assume that no variable is fixed to ±∞). In the absence of nonlinear
constraints 𝑔 ≤ 𝑔(𝑥) ≤ 𝑔, the problem becomes an MILP.

SCIP is not restricted to solving MI(N)LPs, but is a framework for solving constraint integer programs (CIPs), a
generalization of the former two problem classes. The introduction of CIPs was motivated by the modeling flexibility
of constraint programming and the algorithmic requirements of integrating it with efficient solution techniques
available for MILPs. Later on, this framework allowed for the integration of MINLPs. Roughly speaking, CIPs are
finite-dimensional optimization problems with arbitrary constraints and a linear objective function that satisfy the
following property: if all integer variables are fixed, the remaining subproblem must form a linear or nonlinear program.

The core of SCIP coordinates a central branch-cut-and-price algorithm that is augmented by a collection of plugins.
The methods for processing constraints of a given type are implemented in constraint handler plugins. The default
plugins included in the SCIP Optimization Suite provide tools to solve MI(N)LPs as well as some problems from
Manuscript submitted to ACM
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Enabling Research through the SCIP Optimization Suite 8.0 3

constraint programming, satisfiability testing and pseudo-Boolean optimization. In this way, advanced methods like
primal heuristics, branching rules, and cutting plane separators can be integrated using a pre-defined interface. SCIP
comes with many such plugins that enhance MI(N)LP performance, and new plugins can be created by users. This
design and solving process is described in more detail by Achterberg [1].

The core solving engine also includes PaPILO, which provides an additional presolving procedure that is called by
SCIP, and the linear programming (LP) solver SoPlex which is used by default for solving the LP relaxations within the
branch-cut-and-price algorithm. Interfaces to several external LP solvers exist, and new ones can be added by users.

The flexibility of this framework and its design, which is centered around the capacity for extension and customization,
are aimed at making SCIP a versatile tool to be used by optimization researchers and practitioners. The possibility
to modify the solving process by including own solver components enables users to test their techniques within a
general-purpose branch-cut-and-price framework.

The extensions of SCIP that are included in the SCIP Optimization Suite showcase the use of SCIP as a basis for the
users’ own projects. GCG extends SCIP to automatically detect problem structure and generically apply decomposition
algorithms based on the Dantzig-Wolfe or the Benders’ decomposition scheme. SCIP-SDP allows to solve mixed-integer
semidefinite programs, and SCIP-Jack is a solver for Steiner tree problems. Finally, the default instantiations of the UG
framework use SCIP as a base solver in order to perform branch-and-bound in parallel computing environments.

Examples of Works Using SCIP. A number of works independent of the authors of this paper have employed SCIP
as a research tool. Examples of such works include papers on new symmetry handling algorithms [16], branching
rules [7] and integration of machine learning with branch-and-bound based MILP solvers [48]. Further application-
specific algorithms have been developed based on SCIP, for example, specialized algorithms for solving electric vehicle
routing [13] and network path selection [11] problems. Many articles employ SCIP as an MINLP solver for problems
such as hyperplanes location [9], airport capacity extension, fleet investment, and optimal aircraft scheduling [15],
cryptanalysis problems [17], Wasserstein distance problems [12], and chance-constrained nonlinear programs [32].

Structure of the Paper. The paper is organised as follows. A performance evaluation of SCIP 8.0 and a comparison
of its performance to that of SCIP 7.0 is carried out in Section 2. The core solving engine is discussed in Section 3.
The interfaces and modeling languages are presented in Section 4. SCIP extensions that are included in the SCIP
Optimization Suite are discussed in Section 5, and Section 6 concludes the paper.

For a more detailed description of the new features introduced in SCIP Optimization Suite 8.0, and for the technical
details, we refer the reader to the SCIP Optimization Suite 8.0 release report [8].

2 PERFORMANCE OF SCIP 8.0 FOR MILP AND MINLP

In this section, we present computational experiments conducted by running SCIP without parameter tuning or
algorithmic variations to assess the performance changes since the 7.0 release. The indicators of interest are the number
of solved instances, the shifted geometric mean of the number of branch-and-bound nodes (shift 100 nodes), and the
shifted geometric mean of the solving time (shift 1 second).

2.1 Experimental Setup

We use the SCIP Optimization Suite 7.0 as the baseline, including SoPlex 5.0 and PaPILO 1.0, and compare it with the
SCIP Optimization Suite 8.0 including SoPlex 6.0 and PaPILO 2.0. Both were compiled using GCC 7.5, use Ipopt 3.12.13

Manuscript submitted to ACM
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Table 1. Performance comparison for MILP instances

SCIP 8.0+SoPlex 6.0 SCIP 7.0+SoPlex 5.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 1708 1478 231.3 3311 1445 271.3 4107 1.17 1.24
affected 1475 1424 173.8 2843 1391 209.7 3611 1.21 1.27

[0,tilim] 1529 1478 154.4 2512 1445 184.6 3167 1.20 1.26
[1,tilim] 1470 1419 185.9 2870 1386 223.8 3647 1.20 1.27
[10,tilim] 1361 1310 248.1 3612 1277 303.1 4661 1.22 1.29
[100,tilim] 1000 949 537.1 7270 916 702.6 10262 1.31 1.41
[1000,tilim] 437 386 1566.2 17973 353 2383.1 31707 1.52 1.76
diff-timeouts 135 84 2072.7 19597 51 5062.1 69354 2.44 3.54
both-solved 1394 1394 119.9 2048 1394 133.8 2330 1.12 1.14

as NLP subsolver built with the MUMPS 4.10.0 numerical linear algebra solver, CppAD 20180000.0 as algorithmic
differentiation library, and bliss 0.73 for detecting symmetry. The time limit was set to 7200 seconds in all cases.

The MILP instances are selected from the MIPLIB 2003, 2010, and 2017 [27] as well as the COR@L [37] instance
sets and include all instances solved by SCIP 7.0 with at least one of five random seeds or solved by SCIP 8.0 with at
least one of five random seeds; this amounts to 347 instances. The MINLP instances are similarly selected from the
MINLPLib1 with newly solvable instances added to the ones solved by SCIP 7.0 for a total of 113 instances.

All performance tests were run on identical machines with Intel Xeon CPUs E5-2690 v4 @ 2.60GHz and 128GB in
RAM. A single run was carried out on each machine in a single-threaded mode. Each optimization problem was solved
with SCIP using five different seeds for random number generators. This results in a testset of 565 MINLPs and 1735
MILPs. Instances for which the solver reported numerically inconsistent results are excluded from the presented results.

2.2 MILP Performance

Results of the performance runs on MILP instances are presented in Table 1. The “affected” subset contains instances
for which the two solver versions show different numbers of dual simplex iterations. Instances in the subsets [𝑡, tilim]
were solved by at least one solver version within the time limit and took least 𝑡 seconds to solve with at least one
version. “both-solved” and “diff-timeouts” are the subsets of instances that can be solved by both versions and by exactly
one version, respectively. “relative” shows the ratio of the shifted geometric mean between the two versions.

The changes introduced with SCIP 8.0 improved the performance on MILPs both in terms of number of solved
instances and time. The improvement is more limited on ‘both-solved’ instances that were solved by both solvers, for
which the relative improvement is only of 12 %. This indicates that the overall speedup is more due to newly solved
instances than to improvement on instances that were already solved by SCIP 7.0.

2.3 MINLP Performance

With the major revision of the handling of nonlinear constraints, the performance of SCIP on MINLPs has changed
considerably compared to SCIP 7.0. The results are summarized in Table 2. More instances are solved by SCIP 8.0 than
by SCIP 7.0, and SCIP 8.0 solves the instances for each of these subsets with a shorter shifted geometric mean time.
On the 386 instances solved by both versions, SCIP 8.0 requires fewer nodes and less time. The number of instances

1https://www.minlplib.org
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Enabling Research through the SCIP Optimization Suite 8.0 5

Table 2. Performance comparison for MINLP

SCIP 8.0+SoPlex 6.0 SCIP 7.0+SoPlex 5.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 558 454 39.1 2427 435 45.7 1845 1.17 0.76
affected 487 438 23.5 1748 419 28.4 1456 1.21 0.83

[0,tilim] 503 454 21.7 1585 435 25.9 1326 1.19 0.84
[1,tilim] 375 326 56.1 3994 307 71.0 3113 1.27 0.78
[10,tilim] 293 244 121.6 7450 225 169.3 5393 1.39 0.72
[100,tilim] 195 146 307.6 14204 127 433.9 6696 1.41 0.47
[1000,tilim] 153 104 466.9 23425 85 565.3 8382 1.21 0.36
diff-timeouts 117 68 451.4 29142 49 461.8 6275 1.02 0.22
both-solved 386 386 8.2 609 386 10.4 806 1.27 1.32

solved by only one of the two versions (diff-timeouts) is much higher than reported in previous release reports with
similar experiments, with 68 instances solved only by SCIP 8.0 and 49 instances solved only by SCIP 7.0. A performance
evaluation that focuses only on the changes in handling nonlinear constraints is given in Section 3.1.5.

3 THE CORE SOLVING ENGINE

This section presents the core solving engine, which includes the CIP solver SCIP, the MILP presolving library PaPILO,
and the LP solver SoPlex. It discusses SCIP’s MINLP framework in Section 3.1, which was completely reworked in the
8.0 release, and demonstrates the possibilities for implementing user’s own methodsusing the examples of two areas
that saw improvement with the 8.0 release, namely symmetry handling and primal heuristics in Sections 3.2 and 3.3.

The full list of new features introduced in SCIP 8.0 is the following: a new framework for handling nonlinear
constraints, symmetry handling on general variables and improved orbitope detection, a new separator for mixing cuts,
improvements to decomposition-based heuristics, the option to apply the mixed integer rounding procedure when
generating optimality cuts in the Benders’ decomposition framework, a new plugin type that enables users to include
their own cut selection rules into SCIP, and several technical improvements.

Further, the section provides an overview of the presolving library PaPILO and the LP solver SoPlex in Sections 3.4
and 3.5, and presents the new dual postsolving feature in PaPILO, which allowed for it to be integrated into SoPlex.

3.1 SCIP’s New MINLP Framework

A new framework for handling nonlinear constraints was introduced with the SCIP 8.0 release. The main motivation for
this change is twofold: First, it aims at increasing the reliability of the solver and alleviating numerical issues that arose
from problem reformulations. Second, the new design of the nonlinear framework reduces the ambiguity of expression
and structure types by implementing different kinds of plugins for low-level expressions that define expressions, and
high-level structures that add functionality for particular, often overlapping structures.

The main components of the new framework are the following: plugins representing expressions; a reimplemen-
tation of the constraint handler for nonlinear constraints, cons_nonlinear; nonlinear handler plugins that provide
functionality for high-level structures; a revision of the primal heuristic that solves NLP subproblems; revised interfaces
to NLP solvers; and revised interface to an automatic differentiation library. Moreover, SCIP 8.0 contains cutting plane
separators that work on nonlinear structures and interact with cons_nonlinear.

Manuscript submitted to ACM
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3.1.1 New Expressions Framework. Algebraic expressions are well-formed combinations of constants, variables, and
various algebraic operations such as addition, multiplication, exponentiation, that are used to describe mathematical
functions. In SCIP, they are represented by a directed acyclic graph with nodes representing variables, constants, and
operators and arcs indicating the flow of computation.

With SCIP 8.0, the expression system has been completely rewritten. Proper SCIP plugins, referred to as expression
handlers, are now used to define all semantics of an operator. These expression handlers support more callbacks than
what was available for user-defined operators before. Furthermore, much ambiguity and complexity is avoided by
adding expression handlers for basic operations only. High-level structures such as quadratic functions can still be
recognized, but are no longer made explicit by a change in the expression type.

3.1.2 NewHandler for Nonlinear Constraints. For SCIP 8.0, the constraint handler for nonlinear constraints, cons_nonlinear,
has been rewritten and constraint handlers for quadratic, second-order cone, absolute power, and bivariate constraints
have been removed. Some functionalities of the removed constraint handlers have been reimplemented in other plugins.

An initial motivation for rewriting cons_nonlinear was a numerical issue which was caused by explicit constraint
reformulation in earlier versions. Such a reformulation can lead to a difference in constraint violation estimation in the
original and reformulated problems and, in particular, to a solution being feasible for the reformulated problem and
infeasible for the original problem. For example, this occurs in a problem where the constraint exp(ln(1000) +1+𝑥 𝑦) ≤ 𝑧

is reformulated as exp(𝑤) ≤ 𝑧, ln(1000) + 1 + 𝑥 𝑦 = 𝑤. On the MINLPLib library, this issue occurred for 7% of instances.
The purpose of the reformulation is to enable constructing a linear relaxation. In this process, nonlinear functions

are approximated by linear under- and overestimators. Since the formulas that are used to compute these estimators are
only available for “simple” functions, new variables and constraints were introduced to split more complex expressions
into adequate form [64, 70].

A trivial attempt to solve the issue of solutions not being feasible in the original problem would have been to add a
feasibility check before accepting a solution. However, if a solution is not feasible, actions to resolve the violation of
original constraints need to be taken, such as a separating hyperplane, a domain reduction, or a branching operation.
Since the connection from the original to the presolved problem was not preserved, it would not have been clear which
operations on the presolved problem would help best to remedy the violation in the original problem.

Thus, the new constraint handler aims to preserve the original constraints by applying only transformations that, in
most situations, do not relax the feasible space when taking tolerances into account. The reformulations that were
necessary for the construction of a linear relaxation are not applied explicitly anymore, but handled implicitly by
annotating the expressions that define the nonlinear constraints. Another advantage of this approach is a clear distinction
between the variables that were present in the original problem and the variables added for the reformulation. With
this information, branching is avoided on variables of the latter type. Finally, it is now possible to exploit overlapping
structures in an expression simultaneously.

3.1.3 Extended Formulations. Consider problems of the form (1), where the set of nonlinear constraints is non-empty,
and some constraints may be nonconvex. SCIP solves such problems to global optimality via a spatial branch-and-bound
algorithm. Important parts of the algorithm are presolving, domain propagation, linear relaxation, and branching. For
domain propagation and linear relaxation, extended formulations are used which are obtained by introducing slack
variables and replacing sub-trees of the expressions that define nonlinear constraints by auxiliary variables.
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These extended formulations have the following form:

min 𝑐⊤𝑥,

s.t. ℎ𝑖 (𝑥,𝑤𝑖+1, . . . ,𝑤𝑚) = 𝑤𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑥 ≤ 𝑥 ≤ 𝑥, 𝑤 ≤ 𝑤 ≤ 𝑤, 𝑥I ∈ ZI .

(MINLPext)

Here, 𝑤1, . . . ,𝑤𝑚 are slack variables, and ℎ𝑖 B 𝑔𝑖 for 𝑖 = 1, . . . ,𝑚. For each function ℎ𝑖 , subexpressions 𝑓 may be
replaced by new auxiliary variables𝑤𝑖′ , 𝑖′ > 𝑚, and new constraints ℎ𝑖′ (𝑥) = 𝑤𝑖′ with ℎ𝑖′ B 𝑓 are added. For the latter,
subexpressions may be replaced again. The result is referred to by ℎ𝑖 (𝑥,𝑤𝑖+1, . . . ,𝑤𝑚) for any 𝑖 = 1, . . . ,𝑚. That is, to
simplify notation,𝑤𝑖+1 is used instead of𝑤max(𝑖,𝑚)+1.

Example of an Extended Formulation. Consider constraint log(𝑥)2 + 2 log(𝑥) 𝑦 + 𝑦2 ≤ 4. SCIP may replace log(𝑥)
by an auxiliary variable𝑤2, since this results in a quadratic form𝑤2

2 + 2𝑤2𝑦 + 𝑦2, which is both bivariate and convex,
the former being well suited for domain propagation and the latter being beneficial for linearization. Therefore, the
following extended formulation may be constructed:

ℎ1 (𝑥,𝑦,𝑤2) B (𝑤2)2 + 2𝑤2𝑦 + 𝑦2 = 𝑤1,

ℎ2 (𝑥,𝑦) B log(𝑥) = 𝑤2, 𝑤1 ≤ 4.

3.1.4 Structure Handling. The construction of extended formulations is based on the information on what algorithms
are available for analyzing expressions of a specific structure. Following the spirit of the plugin-oriented design of
SCIP, these algorithms are added as separate plugins, referred to as nonlinear handlers. Nonlinear handlers can detect
structures in expressions and provide domain propagation and linear relaxation algorithms that act on these structures.
Unlike other plugins in SCIP, nonlinear handlers are managed by cons_nonlinear and not the SCIP core.

Nonlinear handlers for the following expression types are available in SCIP: quadratic expressions defined as sums
where at least one term is either a product of two expressions or a square expression, bilinear expressions, convex and
concave expressions, quotient expressions of the form (𝑎𝑦1 + 𝑏)/(𝑐𝑦2 + 𝑑) + 𝑒 , and expressions defined in terms of semi-
continuous variables. The second-order cone (SOC) nonlinear handler provides separation for SOC constraints. Finally,
the default nonlinear handler ensures that there always exist domain propagation and linear under/overestimation
routines for an expression and employs callbacks of expression handlers to provide the necessary functionalities.

Additional structures can be recognized for generating cutting planes to strengthen LP relaxations. Such structures
are handled by separator plugins. While separators are not restricted to nonlinear structures, the following separators
were introduced in SCIP 8.0 that work on MINLPs: the Reformulation-Linearization technique (RLT) [4–6] separator
adds RLT cuts for bilinear products and can additionally reveal linearized products between binary and continuous
variables; the principal minor separator works on a matrix 𝑋 = 𝑥𝑥⊤, where entries 𝑋𝑖 𝑗 represent auxiliary variables
corresponding to 𝑥𝑖𝑥 𝑗 , and enforces that principle 2 × 2 minors are PSD; and the intersection cuts separator for rank-1
constraints (disabled by default) adds cuts derived from the condition that any 2 × 2 minor of 𝑋 has determinant 0.

3.1.5 Performance Impact of Updates for Nonlinear Constraints. While Section 2.3 compared the performance of SCIP
7.0 and SCIP 8.0, this section takes a closer look at the effect of replacing only the handling of nonlinear constraints in
SCIP. That is, here the following two versions of SCIP are compared:

classic: the main development branch of SCIP as of 23.08.2021; nonlinear constraints handled as in SCIP 7.0;
Manuscript submitted to ACM
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Table 3. Comparison of performance of SCIP with classic versus new handling of nonlinear constraints on MINLPLib.

Subset instances metric classic new both

all 5034 solution infeasible 481 49 20
failed 143 70 18
solved 2929 3131 2742
time limit 1962 1833 1598
memory limit 0 0 0

clean 4839 fastest 3733 3637 2531
mean time 75.9s 70.3s
mean nodes 2543 2601

new: as classic, but with the handling of nonlinear constraints replaced as detailed in this section and symmetry
detection extended to handle nonlinear constraints (see Section 3.2).

SCIP has been build with GCC 7.5.0 and uses PaPILO 1.0.2, bliss 0.73, CPLEX 20.1.0.1 as LP solver, Ipopt 3.14.4,
CppAD 20180000.0 and Intel MKL 2020.4.304 for linear algebra (LAPACK). Ipopt uses the same LAPACK and HSL MA27
as linear solver. All runs are carried out on machines with Intel Xeon CPUs E5-2660 v3 @ 2.60GHz and 128GB RAM in
a single-threaded mode. A time limit of one hour, a memory limit of 100000MB, an absolute gap tolerance of 10−6, and
a relative gap tolerance of 10−4 are set. All 1678 instances of MINLPLib (version 66559cbc from 2021-03-11) that can be
handled by both versions are used. Note that MINLPLib is not designed to be a benchmark set, since, for example, some
models are overrepresented. For each instance, two additional runs were conducted where the order of variables and
constraints were permuted. Thus, in total 5034 jobs were run for each version.

Table 3 summarizes the results. A run is considered as failed if the reported primal or dual bound conflicts with best
known bounds for the instance, the solver aborted prematurely due to a fatal error, or the solver did not terminate at
the time limit. Runs where the final solution is not feasible are counted separately. With the new version, for much
fewer instances the final incumbent is not feasible for the original problem, that is, the issue discussed in Section 3.1.2
has been resolved. For the remaining 49 instances, typically small violations of linear constraints or variable bounds
occur. Furthermore, the reduction in “failed” instances by half shows that the new version is more robust regarding the
computation of primal and dual bounds. Finally, the new version solves about 400 additional instances in comparision
to the classic one, but also no longer solves about 200 instances within the time limit.

Subset “clean” refers to all instances where both versions did not fail, i.e., either solved to optimality or stopped due
to the time limit. We count a version to be “fastest” on an instance if it is not more than 25% slower than the other
version. Mean times were computed as explained in the beginning of Section 2. Due to the increase in the number of
solved instances, a reduction in the mean time with the new version on subset “clean” can be observed, even though
the new version is fastest on less instances than the classic one.

Figure 1 shows performance profiles that compare both versions w.r.t. the time to solve an instance and the gap at
termination. The time comparison visualizes what has been observed in Table 3: the new version solves more instances,
but can be slower. The gap comparison shows that on instances that are not solved, often the new version produces a
smaller optimality gap than the classic version.
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Fig. 1. Performance profiles with classic versus new handling of nonlinear constraints, showing the number of instances for which the

corresponding version was at most 𝜏 times worse (regarding time (left) or gap at termination (right)) than the best of both versions.

For the time plot, instances that were solved to optimality are considered. For the gap plot, instances that did not fail are considered.

3.2 Improvements in Symmetry Handling

Symmetries are known to have an adverse effect on the performance of MI(N)LP solvers due to symmetric subproblems
being treated repeatedly without providing new information to the solver. Since detecting all symmetries is NP-
hard [41], SCIP only detects symmetries that keep the formulation invariant.

SCIP’s symmetry handling framework can be used both as a black box and research tool. In the black box approach,
SCIP automatically detects and handles symmetries. If symmetries are known, users can tell SCIP about them by adding
specialized constraints. Customized code can include such constraints via API functions, but also black box SCIP can be
informed about symmetries via parsing them from files in SCIP’s CIP format. Moreover, SCIP facilitates research on
symmetries as it stores all symmetry information centrally in the symmetry propagator and provides implementations
of basic symmetry operations such as stabilizer computations.

For a permutation 𝛾 of the variable index set {1, . . . , 𝑛} and a vector 𝑥 ∈ R𝑛 , we define 𝛾 (𝑥) = (𝑥𝛾−1 (1) , . . . , 𝑥𝛾−1 (𝑛) ).
We say that 𝛾 is a symmetry of (1) if the following holds: 𝑥 ∈ R𝑛 is feasible for (1) if and only if 𝛾 (𝑥) is feasible, and 𝑐⊤𝑥 =

𝑐⊤𝛾 (𝑥). The set of all symmetries forms a group Γ, the symmetry group of (1). If Γ is a product group Γ = Γ1 ⊗ · · · ⊗ Γ𝑘 ,
the variables affected by one factor of Γ are not affected by any other factor. In this case, SCIP can apply different
symmetry handling methods for each factor. The sets of all variables affected by a single factor are called components.

SCIP 7.0 was only able to handle symmetries of binary variables in MILPs using two paradigms: a constraint-based
approach or the pure propagation-based approach orbital fixing [39, 40, 46]. For a symmetry 𝛾 , the constraint-based
approach enforces that the variable vector 𝑥 is lexicographically not smaller than 𝛾 (𝑥). This is implemented via three
different constraint handler plugins. For single permutations 𝛾 , the symresack and orbisack constraint handlers use
separation and propagation [28] techniques for enforcing the lexicographic requirement, also c.f. [31]. Additionally, if
an entire factor Γ𝑖 of Γ has a special structure, the orbitope constraint handler applies specialized techniques [21].

SCIP 8.0 extends the symmetry handling framework. First, it allows to detect symmetries in MINLPs [72]. Second, in
SCIP 8.0, symmetries of general variables can be handled by inequalities derived from the Schreier-Sims table (SST
cuts) [36, 54]. These inequalities are based on a list of leaders ℓ1, . . . , ℓ𝑘 together with suitably defined orbits 𝑂1, . . . ,𝑂𝑘 ,
leading to inequalities 𝑥ℓ𝑖 ≥ 𝑥 𝑗 , 𝑗 ∈ 𝑂𝑖 , 𝑖 ∈ {1, . . . , 𝑘}. Users have a high degree of flexibility to control the selection of
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orbits and can thus select the most promising symmetry handling strategy. Third, orbitope detection has been extended
to also detect suborbitopes, i.e., parts of the symmetry group that allow to apply orbitopes. Since adding suborbitopes
did not turn out to always be beneficial, SCIP adds suborbitopes according to a strategy that can combine suborbitopes
and SST cuts; adding SST cuts can be controlled by a user via parameters.

Furthermore, SCIP 8.0 contains improvements of previously available methods. First, if orbisack constraints interact
with set packing or partitioning constraints in a certain way, they are automatically upgraded to orbitopes. This upgrade
has been made more efficient. Second, the running time of the separation routine of cover inequalities for symresacks
has been improved from quadratic to linear by using the observation from [28] that minimal cover inequalities for
symresacks can be separated by merging connected components of an auxiliary graph. The new implementation exploits
that its connected components are either paths or cycles. Finally, propagation routines of the symresack and orbisack
constraint handler now find all variable fixings that can be derived from local variable bound information.

3.3 Primal Decomposition Heuristics

Most MILPs have sparse constraint matrices for which a (bordered) block-diagonal form might be obtained by permuting
the rows/columns of the matrix. Identifying such a form allows for potentially rendering large-scale complex problems
considerably more tractable. Solution algorithms or heuristics can be designed exploiting the underlying structure and
yielding smaller, easier problems. In this sense, a so-called decomposition identifies subsets of rows and columns that
are only linked to each other via a set of linking rows and/or linking columns, but are otherwise independent.

A decomposition consisting of𝑘 ∈ N blocks is a partitionD B (𝐷row, 𝐷col) with 𝐷row B (𝐷row
1 , . . . , 𝐷row

𝑘
, 𝐿row), 𝐷col B

(𝐷col
1 , . . . , 𝐷col

𝑘
, 𝐿col) of the rows/columns of the constraint matrix 𝐴 into 𝑘 + 1 pieces each, whereby it holds for all

𝑖 ∈ 𝐷row
𝑞1 , 𝑗 ∈ 𝐷col

𝑞2 that 𝑎𝑖, 𝑗 ≠ 0 implies 𝑞1 = 𝑞2. Rows 𝐿row and columns 𝐿col, which may be empty, are called linking

rows and columns, respectively.
In general, there is no unique way to decompose an MILP, and different decompositions might lead to different solver

behaviors. Users might be aware of decompositions and know which are most useful for a specific problem. Therefore,
since version 7.0 it is possible to pass user decompositions to SCIP [21]. A decomposition structure can be created using
the SCIP API, assigning labels to variables and/or constraints, and calling automatic label computation procedures if
necessary. Alternatively, SCIP also provides a file reader for decompositions in constraints.

In SCIP 7.0, the Benders decomposition framework and the heuristic Graph Induced Neighborhood Search were
extended to exploit user-provided decompositions, and a first version of the heuristic Penalty Alternating Direction
Method (PADM) [25, 55] was introduced. SCIP 8.0 comes with an improvement of PADM and provides another
decomposition heuristic Dynamic Partition Search (DPS) [8].

Improvement of Penalty Alternating Direction Method. PADM splits an MINLP into several subproblems according to
a given decomposition D with linking variables only, whereby the linking variables get copied and the differences
are penalized. Then the subproblems are alternatingly solved. For faster convergence, the objective function of each
subproblem has been replaced by a penalty term, and this replacement can lead to arbitrarily bad solutions. Therefore,
PADM has been extended by the option to improve a found solution by reintroducing the original objective function.

Dynamic Partition Search. The new primal construction heuristic DPS requires a decomposition with linking con-
straints only. The linking constraints and their sides are split by introducing vectors 𝑝𝑞 ∈ R𝐿row for each block
𝑞 ∈ {1, . . . , 𝑘}, where R𝐿row denotes the space of vectors with components indexed by 𝐿row, and requiring that the
Manuscript submitted to ACM
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following holds:
𝑘∑︁

𝑞=1
𝑝𝑞 = 𝑏 [𝐿row ] . (2)

To obtain information on subproblem infeasibility and speed up the solving process, the objective function is replaced
by a weighted sum of slack variables 𝑧𝑞 ∈ R𝐿row+ . For penalty parameter 𝜆 ∈ R𝐿row

>0 , each subproblem 𝑞 has the form

min 𝜆⊤𝑧𝑞,

s.t. 𝐴[𝐷row
𝑞 ,𝐷col

𝑞 ] 𝑥 [𝐷col
𝑞 ] ≥ 𝑏 [𝐷row

𝑞 ] ,

𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 for all 𝑖 ∈ N ∩ 𝐷col
𝑞 ,

𝑥𝑖 ∈ Z for all 𝑖 ∈ I ∩ 𝐷col
𝑞 ,

𝐴[𝐿row,𝐷col
𝑞 ] 𝑥 [𝐷col

𝑞 ] + 𝑧𝑞 ≥ 𝑝𝑞,

𝑧𝑞 ∈ R𝐿
row

+ .

(3)

From (3), it is apparent that the correct choice of 𝑝𝑞 plays a central role. For this reason, we refer to (𝑝𝑞)𝑞∈{1,...,𝑘 } as
a partition of 𝑏 [𝐿row ] . The method starts with an initial partition fulfilling (2). Then it is checked whether this partition
will lead to a feasible solution by solving 𝑘 independent subproblems (3) with fixed 𝑝𝑞 . If the current partition does
not correspond to a feasible solution, then the partition gets updated, so that (2) still holds. These steps are repeated.
Similarly to PADM, it is possible to improve the found solution by reoptimizing with the original objective function.

3.4 PaPILO

The C++ library PaPILO provides presolving routines for (MI)LP problems and was introduced with the SCIP Opti-
mization Suite 7.0 [21]. PaPILO can be integrated into MILP solvers or used as a standalone presolver. As a standalone
presolver it provides presolving and postsolving routines. Hence, it can be used to a) provide presolving for new solving
methods and b) generate presolved instances so that different solvers can be benchmarked independently of their own
presolvers. Thus, the performance/behavior of the actual solver can be evaluated and compared more precisely.

PaPILO’s transaction-based design allows presolvers to run in parallel without requiring expensive copies of the
problem andwithout special synchronizations. Instead of applying results immediately, presolvers return their reductions
to the core, where they are applied in a deterministic, sequential order. Validity of every reduction to the modified
problem is checked to avoid applying conflicting reductions.

Presolving deletes variables from the original problem by fixing, substituting, and aggregating variables. After solving
the reduced problem, its solution does not contain any information on missing variables. To restore the solution values
of these variables and obtain a feasible solution of the original problem, corresponding data needs to be stored during
the presolving process. The process of recalculating the original solution from the reduced one is called postsolving
or post-processing [3]. Until version 1.0.2, PaPILO supported only postsolving primal solutions for LPs. In the latest
version, PaPILO supports postsolving also for dual solutions, reduced costs, slack variables of the constraints, and the
basic status of the variables and constraints for the majority of the LP presolvers.

3.5 SoPlex

SoPlex is a simplex-based LP solver and an essential part of the optimization suite, since is the default LP-solver for
SCIP. In addition to all the essential features of a state-of-the-art LP solver such as scaling, exploitation of sparsity,
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or presolving, SoPlex also supports an option for 80bit extended precision and an iterative refinement algorithm to
produce high-precision solutions. This enables SoPlex to also compute exact rational solutions to LPs, using either
continued fraction approximations or a symbolic LU factorization.

The support of postsolving of dual LP solutions and basis information in PaPILO makes it possible to integrate
PaPILO fully as a presolving library into SoPlex. In version 6.0 of SoPlex, PaPILO is available as an additional option
for presolving. The previous presolving implementation continues to be the default.

4 MODELING LANGUAGES AND INTERFACES

There are many interfaces to SCIP from different programming and modeling languages. These interfaces allow users
to programmatically call SCIP with an API close to the C one or leverage a higher-level syntax.

The AMPL interface has been rewritten and moved to the main SCIP library and executable. With the SCIP Opti-
mization Suite 8.0, there exists a C wrapper for SoPlex, updated GAMS interfaces for SoPlex and SCIP, a Julia package
SCIP.jl, a basic Java interface JSCIPOpt, a new Matlab interface for SCIP 8.0 and SCIP-SDP based on the OPTI Toolbox

by Jonathan Currie, and the Python interface PySCIPOpt which can now also be installed as a Conda package.
The modeling language Zimpl allows for MI(N)LPs to be written and translated into some file formats supported by

SCIP. Zimpl 3.5.0 allows quadratic objective functions in addition to previously supported linear objective functions,
and can write suitable instances as Quadratic Unconstrained Binary Optimization problems.

5 EXTENSIONS

5.1 The GCG Decomposition Solver

SCIP allows implementing tailored decomposition-based algorithms. Complementary to this, GCG turns SCIP into
a generic decomposition-based solver for MILPs. While GCG’s focus is on Dantzig-Wolfe reformulation (DWR) and
Lagrangian decomposition, Benders decomposition (BD) is also supported. The philosophy behind GCG is that
decomposition-based algorithms can be routinely applied to MILPs without the user’s interaction or even knowledge.
To this end, GCG automatically detects a model structure that admits a decomposition and performs the corresponding
reformulation. This results in a master problem and one or several subproblems, which are usually formulated as
MILPs. Based on the reformulation, the linear relaxation in every node is solved by column generation (in the DWR
case) and Benders cut generation (in the BD case). GCG features primal heuristics and separation of cutting planes,
several of which are adapted from SCIP, but some are tailored to the decomposition situation in which both an original
and a reformulated model are available. As a research tool, GCG can be used to quickly assess the potential of a
decomposition-based algorithm for any problem for which a compact MILP formulation is available. This allows
evaluating the performance of an algorithmic idea with a single generic implementation, but across many different
applications. In what follows, we describe some enhancements in the GCG 3.5 release.

5.1.1 Detection Loop Refactoring. Decomposition-based algorithms rely on model structures, cf. Section 3.3. For
automatic identification of such structures, GCG features a modular detection loop. Detectors iteratively assign roles
like “master” or “block” to variables and/or constraints. This way, usually many different potential decompositions
are found. We refer to the SCIP Optimization Suite 6.0 release report [26] for a more detailed overview. Detectors are
implemented as plugins such that new ones can be added conveniently. In every round, each detector works on existing
(but possibly empty) partial or complete decompositions. An empirically very successful detection concept builds on
the classification of constraints and variables, which is performed prior to the actual detection process, using classifiers.
Manuscript submitted to ACM
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5.1.2 Branching. In GCG, two general branching rules are implemented (branching on original variables [71] and
Vanderbeck’s generic branching [69]) as well as one rule that applies only to set partitioning master problems (Ryan
and Foster branching [53]). While these rules differ significantly, the general procedure has two common stages: First,
one determines the set of candidates we could possibly branch on (called the branching rule). Second, the branching
candidate selection heuristic selects one of the candidates. GCG previously contained pseudo cost, most fractional, and
random branching as selection heuristics for original variable branching, and first-index branching for Ryan-Foster and
Vanderbeck’s generic branching. In GCG 3.5, new strong branching-based selection heuristics are added [24].

5.1.3 Python Interface. With GCG 3.5 we introduce PyGCGOpt which extends SCIP’s existing Python interface [38]
for GCG and is distributed independently from the optimization suite2. All existing functionality for MILP modeling is
inherited from PySCIPOpt; therefore, any MILP modeled in Python can be solved with GCG without additional effort.
The interface supports specifying custom decompositions and exploring automatically detected decompositions, and
plugins for detectors and pricing solvers can be implemented in Python.

5.1.4 Visualization Suite. Visualizations of algorithmic behavior can yield understanding and intuition for interesting
parts of a solving process. With GCG 3.5, we include a Python-based visualization suite that offers visualization scripts
to show processes and results related to detection, branching, or pricing, among others. We highlight two features:

(1) Reporting functionality: A decomposition report offers an overview of all decompositions that GCG found for a
single run. For different runs, GCG 3.5 offers two reports: A testset report shows data and graphics for each
single run of one selected test set. A comparison report allows to compare two or more runs on the same test set.

(2) Jupyter notebook: data produced for the reports can be read, cleaned, filtered, and visualized interactively.

5.2 SCIP-SDP

SCIP-SDP is an MISDP solver and a platform for implementing methods for solving MISDPs. It was initiated by Sonja
Mars and Lars Schewe [42], and then continued by Gally et al. [20] and Gally [19]. New results and methods mainly
concerning presolving and propagation are presented in [43]. SCIP-SDP features interfaces to SDP-solvers DSDP, Mosek,
and SDPA.

SCIP-SDP implements an SDP-based branch-and-bound method, which solves a continuous SDP relaxation in each
node. It incorporates plugins such as primal heuristics, presolving and propagation methods, and file readers. There is
also an option to solve LP relaxations in each node of the branch-and-bound tree and generate eigenvector cuts, see
Sherali and Fraticelli [56]. This is sometimes faster than solving SDPs in every node. These two options can also be run
concurrently if the parallel interface TPI of SCIP is used. There also is a Matlab interface to SCIP-SDP.

Moreover, SCIP-SDP can handle rank-1 constraints, that is, the requirement that the resulting matrix 𝐴(𝑦) in (??) has
rank 1. For such a constraint, quadratic constraints are added, modeling that all 2 × 2-minors of 𝐴(𝑦) are zero [14].

Before we present some computational results, let us add some words of caution. Although SCIP-SDP is numerically
quite robust, accurately solving SDPs is more demanding than solving LPs. This can lead to wrong results on some
instances3, and the results often depend on the tolerances. Moreover, the SDP-solvers use relative tolerances, while
SCIP-SDP uses absolute tolerances. Finally, for Mosek, we use a slightly tighter feasibility tolerance than in SCIP-SDP.

Table 4 shows a comparison between SCIP-SDP 3.2 and 4.0 on the same testset as used by Gally et al. [20], which
consists of 194 instances; the changes between SCIP-SDP 4.0 and 3.2 are presented in more detail in [8, 43]. Reported are
2https://github.com/scipopt/PyGCGOpt
3For instance, in seldom cases, the dual bound might exceed the value of a primal feasible solution.
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Table 4. Performance comparison of SCIP-SDP 4.0 vs. SCIP-SDP 3.2

# opt # nodes time [s]

SCIP-SDP 3.2 185 617.3 42.9
SCIP-SDP 4.0 187 497.3 26.6

the number of optimally solved instances, as well as the shifted geometric means of the number of processed nodes and
the CPU time in seconds. We use Mosek 9.2.40 for solving the continuous SDP relaxations. The tests were performed on
a Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs, having 32 GB main memory and 10 MB cache. All
computations were run single-threaded and with a timelimit of one hour.

As can be seen from the results, SCIP-SDP 4.0 is considerably faster than SCIP-SDP 3.2, but we recall that we have
relaxed the tolerances. Nevertheless, we conclude that SCIP-SDP has significantly improved since the last version.

5.3 SCIP-Jack: Solving Steiner Tree and Related Problems

Given an undirected, connected graph, edge costs and a set of terminal vertices, the Steiner tree problem in graphs (SPG)
asks for a tree of minimum weight that covers all terminals. The SPG is a fundamental NP-hard problem [33] and one
of the most studied problems in combinatorial optimization.

SCIP-Jack, an exact SPG-solver, is built on the branch-and-cut framework provided by SCIP and makes extensive use
of its plugin-based design. At the heart of the implementation is a constraint handler that separates violated constraints,
most importantly the so-called directed Steiner cuts, which are separated by a specialized maximum-flow algorithm [49].
The implementation includes a variety of additional SCIP plugins, such as heuristics, propagators, branching rules and
relaxators. Finally, the use of SCIP provides significant flexibility in the model to be solved, for example it is easily
possible to add additional constraints. In this way, SCIP-Jack can solve not only the SPG, but also 14 related problems.

The SCIP Optimization Suite 8.0 contains the new SCIP-Jack 2.04, which comes with major improvements on most
problem classes it can handle and outperforms the SPG solver by Polzin and Vahdati [47, 68], which had remained
unchallenged for almost 20 years, on almost all nontrivial benchmark testsets from the literature [51].

Figure 2 provides computational results on the instances from Tracks A and B of the PACE Challenge 2018 [10].
We use Gurobi 9.5 (Commercial), the best other solver from the PACE Challenge (SPDP [29]), and SCIP-Jack with
SoPlex (SCIPJ/spx) and Gurobi 9.5 (SCIPJ/grb) as LP solvers. A timelimit of one hour was set. Average times are given
as arithmetic means with time-outs counted as one hour each. The results were obtained on Intel Xeon CPUs E3-1245
@ 3.40 GHz with 32 GB RAM. It can be seen that SCIPJ/grb is roughly 17 times faster than SPDP, and 96 times faster
than Gurobi. For larger instances of the PACE 2018 benchmark, one commonly observes a run time difference of more
than six orders of magnitude between SCIP-Jack and commercial MILP solvers.

Considerable problem-specific improvements have been made for the prize-collecting Steiner tree problem (STP)
and (to a lesser extent) for the maximum-weight connect subgraph problem [50, 52]. SCIP-Jack 2.0 can solve many
previously unsolved benchmark instances from both problem classes to optimality—the largest of these instances have
up to 10 million edges. Large improvements are observed for the Euclidean STP: SCIP-Jack 2.0 is able to solve 19
Euclidean STPs with up to 100 000 terminals to optimality for the first time [51]. Notably, the state-of-the-art Euclidean
STP solver GeoSteiner 5.1 [30] could not solve any of these instances, even after one week of computation. In contrast,
SCIP-Jack 2.0 solves all of them within 12 minutes, some even within two minutes.
4See also https://scipjack.zib.de.
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Fig. 2. Computational results on the 200 benchmark instances of Tracks A and B of the PACE Challenge 2018.

5.4 The UG Framework

UG is a generic framework for parallelizing solvers in a distributed or shared memory computing environment. It
was designed to parallelize state-of-the-art branch-and-bound solvers externally in order to exploit their powerful
performance.We have developed parallel solvers for SCIP [58, 59, 61], CPLEX (not developed anymore), FICOXpress [60],
PIPS-SBB [44, 45], Concorde5, and QapNB [18]. Customized SCIP-based solvers such as SCIP-SDP and SCIP-Jack can be
parallelized with minimal effort [62]. The parallel version of SCIP-Jack solved several previously unsolved instances
from SteinLib [35] by using up to 43,000 cores [63].

In addition to the parallelization of these branch-and-bound base solvers, UG was used to develop MAP-SVP [65],
which is a solver for the Shortest Vector Problem (SVP), whose algorithm does not rely on branch-and-bound. For these
applications, UG had to be adapted and modified. Especially, the success of MAP-SVP, which updated several records
of the SVP challenge6, motivated us to develop generalized UG, in which all solvers developed so far can be handled
by a single unified framework. This has enabled UG 1.0 to serve as the basis for the parallel frameworks CMAP-LAP
(Configurable Massively Parallel solver framework for LAttice Problems) [66] and CMAP-DeepBKZ [67].

6 FINAL REMARKS

We discussed the functionality that the SCIP Optimization Suite offers optimization researchers, and highlighted
performance improvements and new functionality that was introduced in the SCIP Optimization Suite 8.0. The perfor-
mance comparison of SCIP 7.0 and SCIP 8.0 showed a 17% speed-up on both the MILP and MINLP testsets. This was
followed by a discussion of some aspects of the core solving engine of the SCIP Optimization Suite. The new framework
for handling nonlinear constraints was presented, which offers increased reliability as well as improved handling of
different types of nonlinearities that reduces type ambiguity and extends support for implementing the handling of
user-defined nonlinearities. The use of SCIP’s flexible plugin-based structure for extending the solver with user methods
was demonstrated on the examples of new symmetry handling methods and primal decomposition heuristics. The
framework that SCIP provides for working on these methods was explained and the relevant plugin types and other
customization-enabling features were discussed, followed by the presentation of new methods added in SCIP 8.0.

Further, we presented extensions built around SCIP. The semidefinite programming solver SCIP-SDP and the Steiner
tree problem solver SCIP-Jack provide users of the SCIP Optimization Suite the functionality for solving more problem
classes, the decomposition solver GCG offers a different solving approach, and the solver parallelization framework UG

5https://www.math.uwaterloo.ca/tsp/concorde.html
6http://latticechallenge.org/svp-challenge
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enables the use of branch-and-bound solvers, and in particular SCIP, in parallel computing environments. Moreover,
these components of the SCIP Optimization Suite demonstrate how SCIP’s features can be leveraged in creating new
research projects which can extend beyond SCIP’s standard focus and approach.
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