
The SCIP Optimization Suite 8.0

Ksenia Bestuzheva · Mathieu Besançon · Wei-Kun Chen

Antonia Chmiela · Tim Donkiewicz · Jasper van Doornmalen

Leon Eifler · Oliver Gaul · Gerald Gamrath

Ambros Gleixner · Leona Gottwald · Christoph Graczyk

Katrin Halbig · Alexander Hoen · Christopher Hojny

Rolf van der Hulst · Thorsten Koch · Marco Lübbecke

Stephen J. Maher · Frederic Matter · Erik Mühmer

Benjamin Müller · Marc E. Pfetsch · Daniel Rehfeldt

Steffan Schlein · Franziska Schlösser · Felipe Serrano

Yuji Shinano · Boro Sofranac · Mark Turner

Stefan Vigerske · Fabian Wegscheider · Philipp Wellner

Dieter Weninger · Jakob Witzig ∗

April 8, 2022

Abstract The SCIP Optimization Suite provides a collection of software packages for
mathematical optimization centered around the constraint integer programming frame-
work SCIP. This paper discusses enhancements and extensions contained in version 8.0
of the SCIP Optimization Suite. Major updates in SCIP include improvements in
symmetry handling and decomposition algorithms, new cutting planes, a new plugin type
for cut selection, and a complete rework of the way nonlinear constraints are handled.
Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further,
UG now includes a unified framework to parallelize all solvers, a utility to analyze
computational experiments has been added to GCG, dual solutions can be postsolved by
PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional
problem classes and major performance improvements are available in SCIP-Jack.

Keywords Constraint integer programming · linear programming · mixed-integer linear
programming · mixed-integer nonlinear programming · optimization solver · branch-and-
cut · branch-and-price · column generation · parallelization · mixed-integer semidefinite
programming

Mathematics Subject Classification 90C05 · 90C10 · 90C11 · 90C30 · 90C90 ·
65Y05

∗Extended author information is available at the end of the paper. The work for this article has been
partly conducted within the Research Campus MODAL funded by the German Federal Ministry
of Education and Research (BMBF grant number 05M14ZAM) and has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement No 773897.
It has also been partly supported by the German Research Foundation (DFG) within the Collaborative
Research Center 805, Project A4, and the EXPRESS project of the priority program CoSIP (DFG-SPP
1798), the German Research Foundation (DFG) within the project HPO-NAVI (project number
391087700).

1

https://orcid.org/0000-0002-7018-7099
https://orcid.org/0000-0002-6284-3033
https://orcid.org/0000-0003-4147-1346
https://orcid.org/0000-0002-4809-2958
https://orcid.org/0000-0002-5721-3563
https://orcid.org/0000-0002-2494-0705
https://orcid.org/0000-0003-0245-9344
https://orcid.org/0000-0002-2131-1911
https://orcid.org/0000-0001-6141-5937
https://orcid.org/0000-0003-0391-5903
https://orcid.org/0000-0002-8894-5011
https://orcid.org/0000-0002-8730-3447
https://orcid.org/0000-0003-1065-1651
https://orcid.org/0000-0002-5324-8996
https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0002-2635-0522
https://orcid.org/0000-0003-3773-6882
https://orcid.org/0000-0002-0499-1820
https://orcid.org/0000-0003-1114-3800
https://orcid.org/0000-0002-4463-2873
https://orcid.org/0000-0002-0947-7193
https://orcid.org/0000-0002-2877-074X
https://orcid.org/0000-0002-7892-3951
https://orcid.org/0000-0002-2902-882X
https://orcid.org/0000-0003-2252-9469
https://orcid.org/0000-0001-7270-1496
https://orcid.org/0000-0002-1333-8591
https://orcid.org/0000-0003-2698-0767

1 Introduction

The SCIP Optimization Suite comprises a set of complementary software packages
designed to model and solve a large variety of mathematical optimization problems:

− the modeling language Zimpl [57],

− the presolving library PaPILO for linear and mixed-integer linear programs, a new
addition in version 7.0 of the SCIP Optimization Suite [?],

− the simplex-based linear programming solver SoPlex [119],

− the constraint integer programming solver SCIP [3], which can be used as a fast
standalone solver for mixed-integer linear and nonlinear programs and a flexible
branch-cut-and-price framework,

− the automatic decomposition solver GCG [33], and

− the UG framework for parallelization of branch-and-bound solvers [101].

All six tools can be downloaded in source code and are freely available for members of
noncommercial and academic institutions. They are accompanied by several extensions
for solving specific problem-classes such as the award-winning Steiner tree solver SCIP-
Jack [35] and the mixed-integer semidefinite programming solver SCIP-SDP [32]. This
paper describes the new features and enhanced algorithmic components contained in
version 8.0 of the SCIP Optimization Suite.

Background SCIP has been designed as a branch-cut-and-price framework to solve
different types of optimization problems, most importantly, mixed-integer linear programs
(MILPs) and mixed-integer nonlinear programs (MINLPs). MILPs are optimization
problems of the form

min c>x

s.t. Ax ≥ b,
`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(1)

defined by c ∈ Rn, A ∈ Rm×n, b ∈ Rm, `, u ∈ Rn, and the index set of integer variables
I ⊆ N := {1, . . . , n}. The usage of R := R ∪ {−∞,∞} allows for variables that are free
or bounded only in one direction (we assume that variables are not fixed to ±∞).

Another focus of SCIP’s research and development are mixed-integer nonlinear
programs (MINLPs). MINLPs can be written in the form

min f(x)

s.t. gk(x) ≤ 0 for all k ∈M,

`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(2)

where the functions f : Rn → R and gk : Rn → R, k ∈ M := {1, . . . ,m}, are possibly
nonconvex. Within SCIP, we assume that f and gk are specified explicitly in algebraic
form using base expressions that are known to SCIP.

SCIP is not restricted to solving MILPs and MINLPs, but is a framework for
solving constraint integer programs (CIPs), a generalization of the former two problem
classes. The introduction of CIPs was motivated by the modeling flexibility of constraint
programming and the algorithmic requirements of integrating it with efficient solution
techniques available for MILPs. Later on, this framework allowed for an integration of
MINLPs as well. Roughly speaking, CIPs are finite-dimensional optimization problems
with arbitrary constraints and a linear objective function that satisfy the following

2

property: if all integer variables are fixed, the remaining subproblem must form a linear
or nonlinear program.

In order to solve CIPs, SCIP constructs relaxations—typically LP relaxations. If the
relaxation solution is not feasible for the current subproblem, the enforcement callbacks
of the constraint handlers need to take measures to eventually render the relaxation
solution infeasible for the updated relaxation, for example by branching or separation.
Being a framework for solving CIPs, SCIP can be extended by plugins to be able to solve
any CIP. The default plugins included in the SCIP Optimization Suite provide tools
to solve MILPs and many MINLPs as well as some classes of instances from constraint
programming, satisfiability testing, and pseudo-Boolean optimization. Additionally,
SCIP-SDP allows to solve mixed-integer semidefinite programs.

The core of SCIP coordinates a central branch-cut-and-price algorithm. The methods
for processing constraints of a given type are implemented in a corresponding constraint
handler, and advanced methods like primal heuristics, branching rules, and cutting plane
separators can be integrated as plugins with a pre-defined interface. SCIP comes with
many such plugins needed to achieve a good MILP and MINLP performance. In addition
to plugins supplied as part of the SCIP distribution, new plugins can be created by users.
This basic design and solving process is described in more detail by Achterberg [2].

By design, SCIP interacts closely with the other components of the SCIP Optimiza-
tion Suite. Optimization models formulated in Zimpl can be read by SCIP. PaPILO
provides an additional fast and effective presolving procedure that is called from a SCIP
presolver plugin. The linear programs (LPs) solved repeatedly during the branch-cut-
and-price algorithm are by default optimized with SoPlex. Interfaces to several external
LP solvers exist, and new interfaces can be added by users. GCG extends SCIP to
automatically detect problem structure and generically apply decomposition algorithms
based on the Dantzig-Wolfe or the Benders’ decomposition scheme. And finally, the
default instantiations of the UG framework use SCIP as a base solver in order to perform
branch-and-bound in parallel computing environments with shared or distributed memory
architectures.

New Developments and Structure of the Paper This paper focuses on two main aspects.
The first one is to explain the changes and progress made in the solving process of SCIP
and analyze the resulting improvements on MILP and MINLP instances, both in terms of
performance and robustness. A performance comparison of SCIP 8.0 against SCIP 7.0
is carried out in Section 2. Improvements to the core of SCIP are presented in Section 3
and include

− a new framework for handling nonlinear constraints,

− symmetry handling on general variables and improved orbitope detection,

− a new separator for mixing cuts,

− improvements to decomposition-based heuristics and the Benders decomposition
framework, and

− a new type of plugins for cut selection, and several technical improvements.

A more detailed explanation of the changes to the MINLP solving process and the
new expression framework is given in Section 4. Improvements to the default LP solver
SoPlex and presolver PaPILO are explained in Section 5 and 6 respectively. This aspect
will be of interest to the optimization community working on methods and algorithms
related to these building blocks and to practitioners willing to understand the performance
they observe on their particular instances.

The second aspect of this paper is to present the evolving possibilities for working
with the SCIP Optimization Suite 8.0 for optimization practitioners. This includes
improvements and changes to the interfaces in Section 7 and the modeling language
Zimpl in Section 8; to SCIP extensions specialized for other computational settings such

3

as distributed computing with UG in Section 9 and Dantzig-Wolfe decompositions with
GCG in Section 10; and finally to SCIP extensions for particular problem classes such
as the mixed-integer semidefinite solver SCIP-SDP in Section 11 and the Steiner tree
solver SCIP-Jack in Section 12.

2 Overall Performance Improvements for MILP and MINLP

SCIP is used extensively to solve mixed-integer linear and nonlinear programs out of
the box. In this section, we present computational experiments conducted by running
SCIP without parameter tuning or algorithmic variations to assess the performance
changes since the 7.0.0 release. We detail below the methodology and results of these
experiments.

The indicators of interest to compare the two versions of SCIP on a given subset of
instances are the number of solved instances, the shifted geometric mean of the number
of branch-and-bound nodes, and the shifted geometric mean of the solving time. The
shifted geometric mean of values t1, . . . , tn is

(n∏
i=1

(ti + s)
)1/n − s.

The shift s is set to 100 nodes and 1 second, respectively.

2.1 Experimental Setup

We use the SCIP Optimization Suite 7.0.0 as the baseline, including SoPlex 5.0.0 and
PaPILO 1.0.0, and compare it with SCIP Optimization Suite 8.0 including SoPlex 6.0
and PaPILO 2.0. Both were compiled using GCC 7.5, use Ipopt 3.12.13 as NLP subsolver
built with the MUMPS 4.10.0 numerical linear algebra solver, CppAD 20180000.0 as
algorithmic differentiation library, and bliss 0.73 for graph automorphisms to detect
symmetry in MIPs. The time limit was set to 7200 seconds in all cases.

The MILP instances are selected from the MIPLIB 2003, 2010, and 2017 [40] and
COR@L instance sets, including all instances previously solved by SCIP 7.0.0 with at
least one of five random seeds or newly solved by SCIP 8.0 with at least one of five
random seeds; this amounts to 347 instances. The MINLP instances are similarly selected
from the MINLPLib1 with newly solvable instances added to the ones previously solved
by SCIP 7 for a total of 113 instances.

All performance runs are carried out on identical machines with Intel Xeon CPUs
E5-2690 v4 @ 2.60GHz and 128GB in RAM. A single run is carried out on each machine
in a single-threaded mode. Each optimization problem is solved with SCIP using five
different seeds for random number generators. This results in a testset of 565 MINLPs
and 1735 MILPs. Instances for which the solver reported numerically inconsistent results
are excluded from the presented results.

2.2 MILP Performance

The results of the performance runs on MILP instances are presented in Table 1. The
changes introduced with SCIP 8.0 improved the performance on MILPs both in terms
of number of solved instances and shifted geometric mean of the time. Furthermore,
the difference in terms of geometric mean time is starker on harder instances, with an
improvement of up to 52% on instances taking more than 1000 seconds to solve. The

1https://www.minlplib.org

4

https://www.minlplib.org

Table 1: Performance comparison for MILP instances

SCIP 8.0.0+SoPlex 6.0.0 SCIP 7.0.0+SoPlex 5.0.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 1708 1478 231.3 3311 1445 271.3 4107 1.17 1.24
affected 1475 1424 173.8 2843 1391 209.7 3611 1.21 1.27

[0,tilim] 1529 1478 154.4 2512 1445 184.6 3167 1.20 1.26
[1,tilim] 1470 1419 185.9 2870 1386 223.8 3647 1.20 1.27
[10,tilim] 1361 1310 248.1 3612 1277 303.1 4661 1.22 1.29
[100,tilim] 1000 949 537.1 7270 916 702.6 10262 1.31 1.41
[1000,tilim] 437 386 1566.2 17973 353 2383.1 31707 1.52 1.76
diff-timeouts 135 84 2072.7 19597 51 5062.1 69354 2.44 3.54
both-solved 1394 1394 119.9 2048 1394 133.8 2330 1.12 1.14

Table 2: Performance comparison for MINLP

SCIP 8.0.0+SoPlex 6.0.0 SCIP 7.0.0+SoPlex 5.0.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 558 454 39.1 2427 435 45.7 1845 1.17 0.76
affected 487 438 23.5 1748 419 28.4 1456 1.21 0.83

[0,tilim] 503 454 21.7 1585 435 25.9 1326 1.19 0.84
[1,tilim] 375 326 56.1 3994 307 71.0 3113 1.27 0.78
[10,tilim] 293 244 121.6 7450 225 169.3 5393 1.39 0.72
[100,tilim] 195 146 307.6 14204 127 433.9 6696 1.41 0.47
[1000,tilim] 153 104 466.9 23425 85 565.3 8382 1.21 0.36
diff-timeouts 117 68 451.4 29142 49 461.8 6275 1.02 0.22
both-solved 386 386 8.2 609 386 10.4 806 1.27 1.32

improvement is more limited on both-solved instances that were solved by both solvers,
for which the relative improvement is only of 11%. This indicates that the overall speedup
is due to newly solved instances more than to improvement on instances that were already
solved by SCIP 7.0.

2.3 MINLP Performance

With the major revision of the handling of nonlinear constraints, the performance of SCIP
on MINLPs has changed a lot on the instance set compared to SCIP 7.0. The MINLP
performance results are summarized in Table 2. On all subsets of the instances selected
by runtime, more instances are solved by SCIP 8.0 than by SCIP 7.0. Furthermore,
SCIP 8.0 solves the instances for each of these subsets with a shorter shifted geometric
mean time even though it produces more nodes in the branch-and-bound tree.

On the 382 instances solved by both versions, SCIP 8.0 requires fewer nodes and less
time. The number of instances solved by only one of the two versions (diff-timeouts) is
much higher than reported in previous release reports with similar experiments, with 66
instances newly solved by SCIP 8.0 and 46 instances previously solved that SCIP 8.0
did not succeed on.

A finer comparison of the two SCIP versions on additional subsets of instances is
provided in Table 3. Instances are split according to mixed-integer and continuous,
nonconvex and convex problems. They are classified as mixed-integer if at least one
integer or binary constraint is present in the original problem. The convexity of instances
is identical to the information provided on the MINLPLib website.

Table 3 shows that SCIP 8.0 brings most significant improvements for nonconvex
problems with 41 more instances solved and a drastic speedup factor of 3.54 on the
purely continuous nonconvex problems. Performance has, however, degraded on convex
problems with 21 instances that are not solved anymore and the shifted geometric mean
runtime more than tripled.

5

Table 3: Detailed MINLP performance comparison

Subset SCIP 8+SoPlex 6 SCIP 7+SoPlex 5 relative

convexity integrality instances solved time solved time time

nonconvex continuous 95 88 66.60 71 235.86 3.54
nonconvex mixed-integer 320 258 236.43 244 315.74 1.34
nonconvex total 415 346 186.43 315 295.92 1.59

convex continuous 5 5 0.14 5 0.06 0.45
convex mixed-integer 160 118 329.37 134 167.62 0.51
convex-no-syn mixed-integer 130 108 209.04 108 190.70 0.91
convex-syn-only mixed-integer 30 10 1685.14 26 87.01 0.05
convex total 165 123 310.84 139 159.76 0.51

As can be seen in the table, this is mostly due to worse performance on a spe-
cific group of instances, the syn group of instances. The syn group includes specif-
ically instances syn40m04h, rsyn0840m03h, rsyn0820m02m, syn20h, syn30m03h, and
rsyn0840m04h. The solving time for syn instances has degraded significantly on SCIP 8.0
while the degradation is moderate on other convex instances. The much higher time on
the syn instances explains alone the degradation on the total convex subset. We presume
that the new expression simplification at the moment obfuscates some structure on some
instances of the syn group that was exploited with SCIP 7.0.

An MINLP performance evaluation that focuses only on the changes in handling
nonlinear constraints is given in Section 4.14.

3 SCIP

3.1 A New MINLP Framework

The SCIP 8.0 release comes with a major change in the way that nonlinear constraints
are handled. The main motivation for this change is twofold: First, it aims at increasing
the reliability of the solver and alleviating a numerical issue that arose from problem
reformulations and led to SCIP returning solutions that are feasible in the reformulated
problem, but infeasible in the original problem. Second, the new design of the nonlinear
framework reduces the ambiguity of expression and structure types by implementing
different plugin types for low-level expression types that define expressions, and high-
level structure types that add functionality for particular, often overlapping structures.
Finally, a number of new features for improving the solver’s performance on MINLPs were
introduced. A detailed description of the changes can be found in Sections 4 and 3.2.2.

3.2 Improvements in Symmetry Handling

Symmetries are well-known to have an adverse effect on the performance of MILP and
MINLP solvers, because symmetric subproblems are treated repeatedly without providing
new information to the solver. For this reason, there exist different methods to handle
symmetries in SCIP. Until version 7.0, SCIP was only able to handle symmetries in
MILPs. With the release of SCIP 8.0 also symmetries in MINLPs can be handled.
Furthermore, the release of SCIP 8.0 features several algorithmic enhancements of
existing as well as the implementation of further symmetry handling methods. In the
following, we describe the kind of symmetries SCIP can handle and list the techniques
used in SCIP 7.0. Afterwards, we describe the novel symmetry handling methods and
highlight algorithmic enhancements.

Let us start with some preliminary remarks. For a permutation γ of the variable
index set {1, . . . , n} and a vector x ∈ Rn, we define γ(x) = (xγ−1(1), . . . , xγ−1(n)). We say

6

that γ is a symmetry of (MINLP) if the following holds: x ∈ Rn is feasible for (MINLP) if
and only if γ(x) is feasible, and c>x = c>γ(x). The set of all symmetries forms a group Γ̄,
the symmetry group of (MINLP). Since computing Γ̄ is NP-hard, see Margot [73], one
typically refrains from handling all symmetries. Instead, one only computes a subgroup Γ
of Γ̄ that keeps the constraint system of (MINLP) invariant. Computing this formulation
group Γ for MILPs can be accomplished by computing symmetries of an auxiliary graph,
see Salvagnin [94]. In SCIP 8.0, the already existing routine for computing symmetries
of MILPs has been extended to handle also nonlinear constraints. To detect symmetries
of the auxiliary graphs, SCIP uses the graph isomorphism package bliss [50].

3.2.1 Previously Existing Symmetry Handling Methods in SCIP

SCIP 7.0 used two paradigms to handle symmetries of binary variables: a constraint-
based approach or the pure propagation-based approach orbital fixing [71, 72, 82]. The
constraint-based approach is implemented via three different constraint handler plugins
to deal with different kinds of matrix symmetries. The symresack constraint handler [48]
provides separation and propagation routines for general permutations γ, whereas the
orbisack constraint handler [51] uses specialized separation and propagation methods if γ
is a composition of 2-cycles. The orbitope constraint handler [14, 48] handles symmetries
of special subgroups of Γ. These subgroups are required to act on binary matrices
and to be able to reorder their columns arbitrarily. Moreover, if the variables affected
by the corresponding permutations or groups interact with set packing or partitioning
constraints in a certain way, all constraint handlers provide specialized separation and
propagation mechanisms to find stronger cutting planes and reductions [47, 52, 53]. The
common ground of these constraint handlers is that they enforce solutions that are
lexicographically maximal in their orbit of symmetric solutions.

The integer parameter misc/usesymmetry can be used to enable/disable these two
methods. In SCIP 7.0, the parameter ranged between 0 and 3, where the Bit 1 en-
ables/disables the usage of the constraint-based approach and Bit 2 enables/disables
orbital fixing. If the group Γ is a product group Γ = Γ1 ⊗ · · · ⊗ Γk, the variables affected
by one factor of Γ are not affected by any other factor. In this case, one can apply
different symmetry handling methods for the different factors. The sets of variables
affected by the different factors are called the components of Γ. Thus, if both methods
are enabled, SCIP searches for independent components of the symmetry group Γ and,
depending on structural properties of the component, either uses cutting planes or orbital
fixing: if a component can be completely handled by orbitopes, SCIP uses orbitopes
and orbital fixing otherwise; see the SCIP Optimization Suit 7.0 release report [36] for
further details.

3.2.2 Symmetry Detection Extended to Nonlinear Constraints

In SCIP 8.0, symmetry detection has been extended to handle nonlinear constraints.
The detection of permutation-based symmetries is performed by analyzing expression

graphs as first proposed by Liberti [61]. The detected automorphisms are then projected
onto problem variables, which yields a permutation group.

For more details, see Wegscheider [117].

3.2.3 New Symmetry Handling Methods

One drawback of the mentioned approaches is that they can only handle symmetries of
binary variables, but not of general integer or continuous variables. Moreover, SCIP 7.0
can only detect orbitopes when a component of Γ can be completely handled by orbitopes,

7

but not if some part of the component allows applying orbitopes. In SCIP 8.0, both
issues are resolved by the implementation of further symmetry handling methods and a
refined detection and handling mechanism for orbitopes.

Symmetry Handling of General Variables To handle symmetries of general variables, we
have implemented symmetry handling inequalities derived from the Schreier-Sims table
(SST cuts) as described by Salvagnin [95]; see also Liberti and Ostrowski [62] for a more
general version. These inequalities are defined using the following procedure. Let Γ be
the symmetry group of (MINLP) and let A(Γ) = {i ∈ {1, . . . , n} : ∃γ ∈ Γ with γ(i) 6= i}
be its set of affected variables. Select a variable index ` ∈ A(Γ) and compute its
orbit O = {γ(`) : γ ∈ Γ}. We call ` the leader of its orbit. Afterwards, replace the initial
group Γ by the stabilizer group {γ ∈ Γ : γ(`) = `}, compute the set of affected variables,
and iterate the procedure of selecting a leader and replacing groups by their stabilizer
until the set of affected variables becomes empty. At termination, we are given a list
of leaders `1, . . . , `k with associated orbits O1, . . . , Ok. Salvagnin [95] shows that the
inequalities

x`i ≥ xj , j ∈ Oi, i ∈ {1, . . . , k},

can be used to handle symmetries of general variables.
The above procedure allows to select the orbit leaders arbitrarily. In SCIP 8.0, several

rules exist to select the leader using the parameters propagating/symmetry/<Xyz>,
where Xyz is one of the following: sstleadervartype, sstleaderule, ssttiebreakrule,
and sstmixedcomponents. The bitset sstleadervartype controls which (combinations
of) variable types can be used as leaders; if several variable types are allowed, SCIP
selects the one with the most affected variables. The rule sstleaderule determines
whether the first or last variable (according to SCIP’s variable ordering) in an orbit shall
be used as leader. If a binary variable shall be used as leader, the parameter also allows
to use the number of other binary variables it is in conflict with as a selection criterion.
We say that two binary variables are in conflict if not both can be 1 simultaneously. The
rule ssttiebreakrule selects a leader whose orbit is as small or as large as possible,
or that contains the most conflicting binary variables. Finally, sstmixedcomponents
controls whether SST cuts are allowed to be added to components of Γ that contain
variables of different types. By default, we allow adding SST cuts for non-binary variables
whose orbit is as small as possible. We select the first variable per orbit as leader and
allow different variable types in a component.

Since SST cuts extend the class of previous symmetry handling methods, the range
of parameter misc/usesymmetry has been extended to {0, . . . , 7}, where Bit 4 controls
whether SST cuts are enabled. This in particular means that SST cuts can be used in
combination with other symmetry handling methods. Below we will describe how SST
cuts are used when also other symmetry handling methods are active.

Improved Orbitope Detection As mentioned previously, SCIP 7.0 uses orbitopes for
a component of Γ only if all permutations within the component form an orbitope
structure. This, however, can be rather restrictive as illustrated next. Consider the
problem of coloring an undirected graph G = (V,E) with k colors. Every feasible coloring
can be encoded by a matrix X ∈ {0, 1}V×k, where Xvi = 1 if and only if node v is
colored by color i. We can transfer the coloring X into another equivalent coloring Y
by taking an arbitrary permutation π of {1, . . . , k} and defining Yvi = Xvπ(i). That
is, the symmetry group Γ of the coloring problem can reorder the columns of binary
matrices arbitrarily, and thus, allows the application of orbitopes as indicated above. If
the graph G is symmetric, however, Γ will also contain permutations that reorder the
rows of X according to automorphisms of G. Since these row permutations interact with
the variables affected by column permutations, they form a common component. Hence,

8

not all permutations within this component are permutations necessary for an orbitope
and the detection routine of SCIP 7.0 will not recognize the applicability of orbitopes.

In SCIP 8.0 we have refined the orbitope detection routine to be able to heuristically
find such hidden orbitopes. In the following, we call such orbitopes suborbitopes, because
they are defined by a subgroup of a component. To explain the procedure, note that a
subgroup of a component defines an orbitope for matrix X if the component contains
permutations that swap adjacent columns of X, see Hojny and Pfetsch [48]. Such a
swap of two columns is a permutation that decomposes into 2-cycles. Therefore, our
routine sieves all permutations P from a component that has such a decomposition.
Then, we iteratively build a set of permutations Q ⊆ P that define an orbitope or
several independent orbitopes. Initially, Q = ∅ and we check, one after another, whether
adding γ ∈ P to Q allows to define independent orbitopes. If this is possible, Q is
updated; otherwise, we continue with the next permutation in P and discard γ. To
check whether we can add γ to Q, we maintain a list of the orbitopes defined by the
permutations in Q so far. Then, γ is added to Q either if the variables affected by γ
are not contained in any of the already known orbitopes, or γ adds a new column to an
already existing orbitope, or it merges two existing orbitopes.

If a component can not completely be handled by a single orbitope, there might exist
variables that are not contained in one of the detected orbitopes, or several independent
suborbitopes are found that are linked via permutations not contained in Q. To partially
add the missing link, and thus to handle more symmetries, SCIP selects one of the
found orbitopes with variable matrix X ∈ {0, 1}s×t and computes one round of SST
cuts with X11 as leader. We refer to these inequalities as weak inequalities, because
they weakly connect the found orbitopes without exploiting any further group structure.
Besides weak inequalities, we can also add strong inequalities X11 ≥ X12 ≥ · · · ≥ X1t

for every found orbitope. These cuts are called strong because they also exploit the
group structure allowing to arbitrarily reorder the columns of the orbitope. Note that
the strong inequalities are implicitly added by orbitope constraints. In some situations,
however, SCIP adds strong inequalities instead of orbitopes as we explain next.

The detection of suborbitopes and application of strong and weak inequalities can
be controlled via the Boolean parameter propagating/symmetry/detectsubgroups. If
the parameter value is TRUE (default), SCIP searches for suborbitopes using the above
mechanism. A found orbitopes is called useful if it has at least three columns. The reason
for this classification is that an orbitope with just two columns can also be handled by
orbisack constraints, which can more easily be combined with other symmetry handling
constraints. Moreover, the Boolean parameters propagating/symmetry/addstrongsbcs
and propagating/symmetry/addweaksbcs enable/disable whether strong inequalities
are used if suborbitopes are not handled and whether weak inequalities are used to handle
more group structure, respectively.

SCIP’s Symmetry Handling Strategy As explained above, SCIP allows to handle
symmetries using different strategies depending on the parameter misc/usesymmetry.
If a mixed strategy is used, SCIP analyzes the structure of the symmetry group’s
components and decides which strategy is used for which component. In one case,
however, these strategies can also be combined and applied to the same component: If
both symresacks and SST cuts for binary variables are enabled, SCIP computes SST
cuts first. The leaders of SST cuts then play a special role, because they need to attain
the largest values in their orbits. To make these cuts compatible with symresacks, one
thus needs to adapt the lexicographic order used by symresacks giving the leaders the
highest rank.

Similarly, if suborbitopes are detected, the orbitopes can be made compatible with
symresacks for the permutations not used by the orbitopes by adapting the variable
order in a specific way: the variables of the first orbitope get the highest rank in the

9

search for
useful

suborbitopes

check
for strong

cuts?

add symresacks

add suborbitopes

added?

check
for weak

cuts?
added?

possibly add
symresacks

#found > 1

#found = 1

#found = 0 yes

no
no

yes
no

yes

no

yes

Figure 1: Rules to decide whether strong/weak inequalities are added.

lexicographic order, afterwards the variables of the succeeding orbitopes are listed, and
finally the variables not contained in any orbitope are added to the lexicographic order.
The exact mechanism how suborbitopes are combined with weak and strong inequalities
as well as symresacks is explained in Figure 1.

SCIP’s strategy to decide on which symmetry handling methods are used is carried
out in the following order, depending on the enabled strategies; by default, SCIP is
allowed to use all implemented symmetry handling methods (misc/usesymmetry = 7).
First, SCIP checks whether a component can be fully handled by orbitopes or whether
suborbitopes can be detected. If the component is handled by (sub)orbitopes, it gets
blocked and no other symmetry handling method can be applied to this component.
Second, SCIP adds SST cuts to all applicable non-blocked components and blocks these
components. If the selected leaders are binary, also symresacks can applied to this
component. Third, if a component has not been blocked yet, either symresacks or orbital
fixing is used to handle symmetries, depending on whether orbital fixing is active.

3.2.4 Algorithmic Enhancements

Besides new symmetry handling methods, SCIP 8.0 also contains more efficient imple-
mentations of previously available methods that we describe in turn.

First, as mentioned above, orbisack constraints allow to apply stronger cutting planes
or reductions if they interact with set packing or partitioning constraints in a certain way.
SCIP automatically checks whether such an upgrade is possible. The implementation of
this upgrade has been revised and is more efficient in SCIP 8.0.

Second, the symresack constraint handler separates so-called minimal cover inequalities
for symresacks. In SCIP 7.0, we used a quadratic time separation routine for these
inequalities. With the release of SCIP 8.0, these inequalities can be separated in linear
time, which also improves on the almost linear running time procedure by Hojny and
Pfetsch [48]. The linear time procedure makes use of the observation [48] that minimal
cover inequalities for symresacks can be separated by merging connected components of
an auxiliary graph. Using a disjoint-set data structure, an almost linear running time
could be achieved. In our new implementation, we exploit that the graph’s connected
components are either paths or cycles. Merging such connected components can be
realized using more efficient data structures based on a few arrays.

Finally, both the symresack and orbisack constraint handler provide routines to
propagate their constraints. While the previous implementation could miss some variable
fixings, the implementation in SCIP 8.0 allows to find all variable fixings that can be
derived from local variable bound information.

10

3.2.5 Further Features

Although symresack and orbitope constraints have been available in SCIP since ver-
sion 5.0, these constraints could not be parsed in any file format. With the release of
SCIP 8.0, these constraints can be parsed when reading a cip file. Thus, users can easily
tell SCIP about the symmetries that are present in their problems and how to handle
them.

For a permutation γ of {1, . . . , n} and a vector x ∈ {0, 1}n, a symresack constraint
enforces that x is lexicographically not smaller than its permutation γ(x). This can be
encoded in a cip file using the line

symresack([varName1,...,varNameN],[γ(1),...,γ(n)]).

Since orbisacks are symresacks for permutations that decompose into 2-cycles, this
structure can directly be encoded using an n

2 × 2 matrix, where each row encodes the
variables that can be interchanged. The cip encoding is then given by

fullOrbisack(varName1-1,varName1-2.varName2-1,varName2-2. ...).

If users know that in each row of the orbitope matrix at most or exactly one variable can
attain value 1, they can provide this information to SCIP by replacing fullOrbisack

by packOrbisack or partOrbisack, respectively.
Finally, an orbitope constraint for a variable matrix X ∈ {0, 1}m×n can be encoded

similarly to an orbisack by the line

fullOrbitope(varName1-1,...,varName1-N.varNameM-1,...,varNameM-N).

If in each row of the orbitope at most or exactly one variable can attain value 1,
fullOrbitope can be replaced by packOrbitope or partOrbitope, respectively, to
provide this information to SCIP.

3.3 Mixing Cuts

Mixing cuts [9, 44] can effectively reduce the computational time to solve MIP formulations
of chance constrained programs (CCPs), especially for those in which the uncertainty
appears only in the right-hand side [65, 58, 1, 121]. In order to enhance the capability of
employing SCIP as a black box to solve such CCPs, SCIP 8.0 includes a new separator
called mixing, which leverages the variable bound relations [2, 68] to construct mixing
cuts. It is worthwhile remarking that though the development of this feature is motivated
by CCPs, the mixing separator can, however, be applied for other MIPs as long as the
related variable bound relations can be detected by SCIP.

Let us first review the variable bound relations in SCIP; for more details, see
Achterberg [2] and the SCIP Optimization Suite 4.0 release report [68]. A variable
bound relation in SCIP is a linear constraint on two variables. As such, it is of the
form y ? ax + b with a, b ∈ R and ? ∈ {≤,≥}. During the presolving process, SCIP
derives these relations either from two-variable linear constraints or general constraints
by probing [96] and stores them in a data structure called variable bound graph. Such
relations can be used to, for example, tighten the bounds of variables through propagation
[68] or enhance the MIR cuts separation [70] in the subsequent main solution process.
The mixing cut separator uses a subclass of these relations, that is, those in which x
is a binary variable and y is a non-binary variable. Thereby, three families of cuts are
constructed which is discussed in detail in the following. For simplicity, we only consider
the case that y is a continuous variable but the result can also be applied to the case
that y is an integer variable.

11

≥-Mixing Cuts Consider the variable lower bounds of variable y ∈ [`, u]:

y ≥ aixi + bi, xi ∈ {0, 1}, i ∈ N . (3)

Without loss of generality, we impose the following assumption:

0 < ai ≤ u− ` and bi = ` for all i ∈ N . (A)

Indeed, assumption (A) can be guaranteed by applying the following preprocessing steps
in order:

(i) If ai < 0, variable xi can be complemented by 1− xi. If ai = 0, y ≥ aixi + bi can
be removed from (3) and `′ := max{`, bi} is the new lower bound for y.

(ii) If ai + bi ≤ `, by ai > 0 (from (i)), constraint y ≥ aixi + bi is implied by y ≥ ` and
hence can be removed from (3).

(iii) If bi > `, by ai > 0 (from (i)), `′ := bi is the new lower bound for y; if bi < `, by
ai+bi > ` (from (ii)), relation y ≥ aixi+bi can be changed into y ≥ (ai+bi−`)xi+`.

(iv) If ai > u− `, by bi = ` (from (iii)), xi = 0 must hold and constraint y ≥ aixi + `
can be removed from (3).

By assumption (A), (3) can be presented in normalized form:

y ≥ aixi + `, xi ∈ {0, 1}, i ∈ N . (4)

Let {i1, . . . , is} ⊆ N with s ∈ N such that ai1 ≤ · · · ≤ ais , and define ai0 := 0. Then the
≥-mixing inequality [9, 44] is given by

y − ` ≥
s∑

τ=1

(aiτ − aiτ−1
)xiτ . (5)

≤-Mixing Cuts Using a similar analysis as that in variable lower bounds, the variable
upper bounds of variable y can be presented in normalized form:

y ≤ u− ajxj , xj ∈ {0, 1}, j ∈M, (6)

where 0 < aj ≤ u− `, j ∈ M. Let {j1, . . . , jt} ⊆ M (t ∈ N) such that aj1 ≤ · · · ≤ ajt ,
and define aj0 := 0. Then the ≤-mixing inequality [9, 44] is given by

y ≤ u−
t∑

τ=1

(ajτ − ajτ−1
)xjτ . (7)

Conflict Cuts Besides the ≥- and ≤-mixing cuts, the mixing separator also constructs
conflict cuts, which are derived by jointly considering (4) and (6). To be more specific,
let i′ ∈ N and j′ ∈M such that ai′ + ` > u− aj′ . By y ≥ ai′xi′ + ` and y ≤ u− aj′xj′ ,
variables xi′ and xj′ cannot simultaneously take values at one, and hence the conflict
inequality

xi′ + xj′ ≤ 1 (8)

can be derived.

Separation Given a fractional point (x∗, y∗), the separation problem of (5), (7) or (8)
asks to find an inequality violated by (x∗, y∗) or prove that no such one exists. To
separate the ≥-mixing inequalities (5), Günlük and Pochet [44] provided the following
algorithm, which selects the subset S = {i1, . . . , iτ} ⊆ N such that

∑s
τ=1(aiτ −aiτ−1)x∗iτ

is maximized.

12

1. Reorder variables xi, i ∈ N , such that x∗1 ≥ x∗2 ≥ · · · ≥ x∗|N|.
2. Add 1 to set S.

3. For each i ∈ N\{1}, set S := S ∪ {i} if ai > ak, where k is last index added into S.

4. If the ≥-mixing inequality corresponding to S is violated by (x∗, y∗), output it.

Obviously, the above algorithm can be implemented to run in O(|N | log(|N |)). Similarly,
the ≤-mixing inequalities (7) can also be separated in O(|M| log(|M|)). Finally, for the
conflict inequalities (8), since number of them is bounded by O(|M||N |), by enumeration,
they can be separated in O(|M||N |).

The performance impact of the mixing separator is neutral on the internal MIP
benchmark testset. However, when applied to the chance constrained lot sizing instances
used by Zhao et al. [121] (90 in total), a speedup of 20% can be observed and 15 more
instances can be solved.

3.4 Primal Decomposition Heuristics

SCIP 8.0 comes with an improvement of the heuristic Penalty Alternating Direction
Method (PADM) and introduces the new heuristic Dynamic Partition Search (DPS). Both
heuristics explicitly require a decomposition provided by the user and therefore belong
to the class of so-called decomposition heuristics. A decomposition consisting of k ≥ 0
blocks is a partition

D := (Drow, Dcol) with Drow := (Drow
1 , . . . , Drow

k , Lrow), Dcol := (Dcol
1 , . . . , Dcol

k , Lcol)

of the rows/columns of the constraint matrix A into k+ 1 pieces each. The distinguished
rows Lrow and columns Lcol are called linking rows and linking columns, respectively. If
A is permuted according to decomposition D, a (bordered) block diagonal form [18] is
obtained. A detailed description of decompositions and their handling in SCIP can be
found in the release report for version 7.0 [36].

3.4.1 Improvement of Penalty Alternating Direction Method

Since version 7.0, SCIP includes the decomposition heuristic Penalty Alternating Direc-
tion Method (PADM). For the current version PADM has been extended by the option to
improve a found solution by reintroducing the original objective function.

This heuristic splits a MINLP as listed in (2) into several subproblems according
to a given decomposition D with linking variables only, whereby the linking variables
get copied and the differences are penalized. Then the subproblems are solved by an
alternating procedure. A detailed description of penalty alternating direction methods
and their practical application can be found in Geißler et al. [38] and Schewe et al. [97].

To converge faster to a feasible solution, the original objective function of each
subproblem has been completely replaced by a penalty term. Since this can lead to
arbitrarily bad solutions, the heuristic was extended in the following way: Initially,
the original version of PADM runs and tries to find a feasible solution. If a feasible
solution was found the linking variables are fixed to the values of this solution and each
independent subproblem is solved again but now with the original objective function.
In order to accelerate the solving of the reoptimization step, the already found solution
is used as a warm start solution and very small solving limits are imposed. The
additional reoptimization step must not take more time than was already used by the
heuristic in the first step and the node limit is set to one. By setting the parameter
heuristics/padm/reoptimize the feature of using a second reoptimization step in PADM

can be turned on/off (default: on).

13

The new feature was tested on the MIPLIB 2017 [40] benchmark instances, for which
decompositions are provided on the web page. If PADM could get called, preliminary
results show that PADM finds a feasible solution in 15 of 31 cases. The new reoptimization
step successfully improves the solution of PADM in 33% of these cases by 42% on average.

3.4.2 Dynamic Partition Search

With SCIP 8.0 the new decomposition heuristic Dynamic Partition Search (DPS) was
added. It is a primal construction heuristic which requires a decomposition with linking
constraints only.

The DPS heuristic splits a MILP as listed in (1) into several subproblems according
to a decomposition D. Thereby the linking constraints and their right/left-hand sides
are also split by introducing new parameters pq ∈ R|L

row| for each block q ∈ {1, . . . , k}
and requiring that

k∑
q=1

pq = b[Lrow] (9)

holds. To obtain information about the infeasibility of one subproblem and to speed up

the solving process, slack variables zq ∈ R|L
row|

+ are added and the objective function is
replaced by a weighted sum of these slack variables. In detail, for penalty parameter

λ ∈ R|L
row|

>0 each subproblem q has the form

min λ>zq,

s.t. A[Drow
q ,Dcol

q]x[Dcol
q] ≥ b[Drow

q],

`i ≤ xi ≤ ui for all i ∈ N ∩Dcol
q ,

xi ∈ Z for all i ∈ I ∩Dcol
q ,

A[Lrow,Dcol
q]x[Dcol

q] + zq ≥ pq,

zq ∈ R|L
row|

+ .

(10)

From (10), it is immediately apparent that the correct choice of pq plays the central
role. Because if pq is chosen for each subproblem q such that the slack variables zq take
the value zero, one immediately obtains a feasible solution. For this reason, we refer to
(pq)q∈{1,...,k} as a partition of b[Lrow]. The goal of DPS is to find a feasible partition as
fast as possible.

To get started, an initial partition (pq)q∈{1,...,k} is chosen, which fulfills (9). Then it
is checked whether this partition will lead to a feasible solution by solving k independent
subproblems (10) with fixed pq. If all subproblems have an optimal objective value of
zero, a feasible solution was found and is given by the concatenation of the k subsolutions.
Conversely, a lower bound on the objective function value of one subproblem of greater
than zero immediately provides evidence that the current partition does not lead to a
feasible solution.

If the current partition does not correspond to a feasible solution, then partition
(pq)q∈{1,...,k} and penalty parameter λ have to be updated: For each single linking
constraint j ∈ Lrow the value vector zj is subtracted from the current partition pj and
the same amount is added to all blocks with zjq = 0, so that (9) still holds. If at
least one slack variable is positive, the corresponding penalty parameter is increased.
Then, the subproblems are solved again and the steps are repeated until a feasible
solution is found or until a maximum number of iterations (controlled by parameter
heuristics/dps/maxiterations) is reached.

To push the slack variables to zero and to speed up the algorithm, the original
objective function has been completely replaced by a penalty term. Analogously to PADM

14

(see Section 3.4.1) it is possible to improve the found solution by reoptimizing with the
original objective function. In DPS the partition instead of the linking variables is fixed.
By setting parameter heuristics/dps/reoptimize this feature can be turned on/off
(default: off).

The new decomposition heuristic was tested on the MIPLIB 2017 [40] benchmark
instances, for which decompositions are provided on the web page. If DPS could get
called, preliminary results show that DPS finds a feasible solution in 17 of 80 cases.
A general performance improvement can not be shown. The main reason for these
slightly disappointing results is probably that DPS requires a well-decomposable problem
structure. The evaluated instances are general MILPs which do not necessarily have such
a structure. However, on two instances (proteindesign121hz512p9 and 30n20b8) DPS
is successful and reduces the time until the first found primal solution highly, since no
other heuristic is able to construct a feasible solution at or before the root node. It is
noticeable that in both instances the linking constraints contain only bounded integer
variables. The heuristic probably benefits from this, since the number of usable partitions
is thus countable and finite.

3.5 Benders’ Decomposition

The work on the Benders’ decomposition framework has moved into a research phase.
As such, only minor updates and bug fixes have been completed for the framework since
the release of SCIP 7.0. The most important update for the Benders’ decomposition
framework is the option to apply the mixed integer rounding (MIR) procedure, as
described by Achterberg [2], when generating optimality cuts. The aim of applying the
MIR procedure to the generated optimality cut is to potentially compute a stronger
inequality.

Strengthening the classical Benders’ optimality cut using the MIR procedure involves
the following steps:

− Generate a classical optimality cut from the solution of the Benders’ decomposition
subproblem.

− Attempt to compute a flow cover cut for the generated optimality cut. This is achieved
by calling SCIPcalcFlowCover. If this process is successful, replace the optimality
cut with the computed flow cover cut.

− Attempt to perform the MIR procedure on the optimality cut (this could have
been updated in the previous step). The MIR procedure is performed by calling
SCIPcalcMIR. If the MIR procedure is successful, the optimality cut is replaced with
the resulting inequality.

− Finally, SCIPcutsTightenCoefficients is executed in an attempt to tighten the
coefficients of the optimality cut.

The MIR procedure is active by default. A new parameter

benders/<bendersname>/benderscut/optimality/mir,

where <bendersname> is the name of the Benders’ decomposition plugin, has been added
to enable/disable the MIR procedure for strengthening the Benders’ optimality cuts.

3.6 Cut Selectors

The new cut selector plugin is introduced in SCIP 8.0. Users now have the ability to
create their own cut selection rules and include them into SCIP. For a current summary on
the state of cut selection in the literature, see Dey and Molinaro [23], and for an overview

15

of cutting plane measures and the improvements provided by intelligent selection, see
Wesselmann and Suhl [118]. The existing rule used since SCIP 6.0 [39] has been moved to
cutselection/hybrid. The ability to include cut selectors has also been implemented
through PySCIPOpt.

3.7 Technical Improvements

Thread Safety In previous versions, SCIP contained the argument PARASCIP for the
Make and CMake build system to make it thread-safe. This has been replaced by
THREADSAFE, which is now true by default (PARASCIP still exists for backward compati-
bility).

Most parts of SCIP are in fact always thread-safe, but interfaces to external programs
are sometimes not. For instance, for the LP-solver Gurobi, the thread-safe mode opens
a new LP-environment for each thread. Other interfaces to external software may use
parallelization that has to be controlled in order not to mix data from different threads,
e.g., CppAD and FilterSQP. The change to thread-safe mode should not significantly
affect performance.

Revision of External Memory Estimation SCIP usually uses its own internal memory
functions. This allows to keep track of the used memory. If it approaches the memory
limit, SCIP can switch to a memory saving mode, which, for instance, uses depth-first-
search. However, memory used by external software, in particular, NLP and LP-solvers
cannot easily be determined in a portable way. Therefore, the estimation of used memory
in SCIP has been improved for version 8 with data-fitting as follows. The memory
consumption by LP-solvers was measured using a stand-alone version on a testset of
LP-relaxations. Then a linear regression with the number of constraints, variables, and
nonzeros as features was computed. This current estimation uses the weights 8.5× 10−4,
7.6× 10−4, 3.5× 10−5, respectively, and works quite well (for SoPlex we got R2 = 0.99).
If NLPs are solved, the estimation is doubled.

Option to Forbid Variable Aggregation Similar to multi-aggregation, one can now forbid
aggregation of a variable by calling the function SCIPdoNotAggrVar(). This is sometimes
useful, for example, if certain constraint handlers cannot handle aggregated variables.
Note, however, that this can slow down the solving process since the relaxations tend to
be larger.

Debugging of Variable Uses SCIP counts the number of uses of a variable and frees a
variable when its uses count reaches zero. It is therefore important to capture a variable
to prevent it from being freed too early and to release a variable when it is no longer
used. To assist on finding a missing or excessive capture or release of a variable, code has
been added to var.c to print the function call stack when a variable of a specified name,
optionally in a SCIP problem of a specified name, is captured or released. The code
requires GCC Gnulib (execinfo.h in particular) and will not work on every platform.

To activate this feature, define DEBUGUSES VARNAME and DEBUGUSES PROBNAME in
var.c. If the tool addr2line is available on the system, the printed call stacks provide
more information, but its use causes a significant slowdown. Defining DEBUGUSES

NOADDR2LINE disables the call of this tool.

Improving Numerical Properties of Linear Inequalities When a constraint handler or
separator computes a cutting plane, often its numerical properties need to be checked
and possibly improved before it is added to a relaxation. Further, changing coefficients
or sides of a SCIP ROW may round numbers that are very close to integral values, which
may invalidate a previously valid cut. To assist on carefully improving the numerical

16

properties of an inequality, the SCIP ROWPREP datastructure has been made available,
see pub misc rowprep.h. Routines are available to relax or scale linear inequalities to
improve the range of coefficients and to avoid almost-integral numbers, see the paragraph
“Cut cleanup” in Section 4.2.10 and Step 4 in Section 4.2.11 for more details. Note, that
ranged linear constraints (both left-hand-side and right-hand-side being finite) cannot be
handled.

Reader for AMPL .nl Files The reader for .nl files has been rewritten and is now
included with SCIP’s default plugins. See Section 7.1 for more details.

4 SCIP’s New MINLP Framework

4.1 New Expressions Framework

Algebraic expressions are well-formed combinations of constants, variables, and various
algebraic operations such as addition, multiplication, exponentiation, that are used to
describe mathematical functions. They are often represented by a directed acyclic graph
with nodes representing variables, constants, and operations and arcs indicating the flow
of computation, see Figure 2 for an example.

∑
·2

log

x

∏2
·2

y

Figure 2: Expression graph for algebraic expression log(x)2 + 2 log(x)y + y2.

With SCIP 7.0 and before, the following node types were supported in algebraic
expressions:

− constant, parameter,

− variable (specified by integer index),

− addition, subtraction, multiplication, division (with two arguments),

− square, square-root, power (rational exponent), power (integer exponent), signed
power (x 7→ sign(x)|x|p),

− exponentiation, natural logarithm,

− minimum, maximum, absolute value,

− sum, product, affine-linear, quadratic, signomial (with arbitrarily many arguments),

− user-defined.

The operand type “user-defined”, which was introduced with SCIP 3.2 [34], brought some
of the extensibility typical for SCIP plugins. However, only the most essential callbacks
(evaluation, differentiation, linear under/overestimation) were defined for user-defined
expressions. Thus, other routines that worked on expressions, such as simplification,

17

had built-in treatment for operands integrated in SCIP, but defaulted to some simple
conservative behavior when a user-defined operand had to be dealt with.

Another problem with this design of expressions was the ambiguity and additional
complexity due to the presence of high-level operators such as affine-linear, quadratic, and
others. For example, code that did some operation on a sum had to implement the same
routine for any operand that represents some form of summation (plus, sum, affine-linear,
quadratic, signomial), each time dealing with a slightly different data structure.

With SCIP 8, the expression system has been completely rewritten. Proper SCIP
plugins, referred to as expression handlers, are now used to define all semantics of an
operand. These expression handlers support more callbacks than what was available
for the user-defined operator before. Furthermore, much ambiguity and complexity is
avoided by adding expression handlers for basic operations only. High-level structures
such as quadratic functions can still be recognized, but are no longer made explicit by
a change in the expression type. An expression (SCIP EXPR) comprises various data,
in particular the arguments of the expression, further on denoted as children. It can
also hold the data and additional callbacks of an expression owner, if any. A prominent
example of an expression owner is the constraint handler for nonlinear constraints, see
Section 4.2, which stores data associated with the enforcement of nonlinear constraints
in expressions that are used to specify nonlinear constraints. Further, due to their many
use cases, a representation of the expression as a quadratic function can be stored, see
Section 4.3.1 for details.

Various methods are available in the SCIP core to manage expressions (create, modify,
copy, free, parse, print), to evaluate and compute derivative information at a point, to
evaluate over intervals, to simplify, to identify common subexpressions, to check curvature
and integrality, and to iterate over it. Many of these methods access callbacks that
can be implemented by expression handlers. Some additional callbacks are used by
the constraint handler for nonlinear constraints (Section 4.2). The expression handler
callbacks are:

− COPYHDLR: include expression handler in another SCIP instance;

− FREEHDLR: free expression handler data;

− COPYDATA: copy expression data, for example, the coefficients of a linear sum;

− FREEDATA: free expression data;

− PRINT: print expression;

− PARSE: parse expression from string;

− CURVATURE: detect convexity or concavity;

− MONOTONICITY: detect monotonicity;

− INTEGRALITY: detect integrality (is value of operation integral if arguments have
integral value?);

− HASH: hash expression using hash values of arguments;

− COMPARE: compare two expressions of same type;

− EVAL: evaluate expression (implementation of this callback is mandatory);

− BWDIFF: evaluate partial derivative of expression with respect to specified argument
(backward derivative evaluation);

− FWDIFF: evaluate directional derivative of expression (forward derivative evaluation);

− BWFWDIFF: evaluate directional derivative of partial derivative with respect to specified
argument (backward over forward derivative);

− INTEVAL: evaluate expression over interval;

18

− ESTIMATE: compute linear under- or overestimator of expression with respect to given
bounds on arguments and a reference point;

− INITESTIMATES: compute one or several linear under- or overestimators of expression
with respect to given bounds on arguments;

− SIMPLIFY: simplify expression by applying algebraic transformations;

− REVERSEPROP: compute bounds on arguments of expression from given bounds on
expression.

The SCIP documentation provides more details on these callbacks.
Finally, for the following operators, expression handlers are included in SCIP 8.0:

− val: scalar constant;

− var: a SCIP variable (SCIP VAR);

− varidx: a variable represented by an index; this handler is only used for interfaces to
NLP solvers (NLPI);

− sum: an affine-linear function, y 7→ a0+
∑k
j=1 ajyj for y ∈ Rk with constant coefficients

a ∈ Rk+1;

− prod: a product, y 7→ c
∏k
j=1 yj for y ∈ Rk with constant factor c ∈ R;

− pow: a power with a constant exponent, y 7→ yp for y ∈ R and exponent p ∈ R (if
p 6∈ Z, then y ≥ 0 is required);

− signpower: a signed power, y 7→ sign(y)|y|p for y ∈ R and constant exponent p ∈ R,
p > 1;

− exp: exponentiation, y 7→ exp(y) for y ∈ R;

− log: natural logarithm, y 7→ log(y) for y ∈ R>0;

− entropy: entropy, y 7→
{
−y log(y), if y > 0,

0, if y = 0,
for y ∈ R≥0;

− sin: sine, y 7→ sin(y) for y ∈ R;

− cos: cosine, y 7→ cos(y) for y ∈ R;

− abs: absolute value, y 7→ |y| for y ∈ R.

When comparing with the list for SCIP 7.0 above, one observes that support for parameters
(these behaved like constants but could not be simplified away and were modifiable) and
operators “min” and “max” has been removed. Further, support for sine, cosine, and
the entropy function has been added.

4.2 New Handler for Nonlinear Constraints

For SCIP 8, the constraint handler for general nonlinear constraints (cons nonlinear)
has been rewritten and the specialized constraint handlers for quadratic, second-order
cone, absolute power, and bivariate constraints have been removed. Some of the unique
functionalities of the removed constraint handlers has been reimplemented in other plugin
types.

4.2.1 Motivation

An initial motivation for the rewrite of cons nonlinear has been a numerical issue which
is caused by the explicit reformulation of constraints in SCIP 7.0 and earlier versions.

19

For an example, consider the problem

min z,

s.t. exp(ln(1000) + 1 + x y) ≤ z,
x2 + y2 ≤ 2,

(11)

with optimal solution x = −1, y = 1, z = 1000. Previously, solving this problem with
SCIP could end with the following solution report:

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

[nonlinear] <e1>: exp((7.9077552789821368 + (<x>*<y>)))-<z>[C] <= 0;

violation: right-hand side is violated by 0.000673453314561812

best solution is not feasible in original problem

x -1.00057454873626 (obj:0)

y 0.999425451364613 (obj:0)

z 999.999656552061 (obj:1)

The reason that SCIP initially determined this solution to be feasible is that, in
presolve, the problem gets rewritten as

min z,

s.t. exp(w) ≤ z,
ln(1000) + 1 + x y = w,

x2 + y2 ≤ 2.

(12)

The constraints in this transformed problem are violated by 0.4659 · 10−6, 0.6731 · 10−6,
and 0.6602 · 10−6, thus are feasible with respect to numerics/feastol= 10−6, and
therefore the solution is accepted by SCIP. On the MINLPLib library, the problem that
a final solution is feasible for the presolved problem but violates nonlinear constraints in
the original problem occurred for 7% of all instances.

Problem (11) gets rewritten as (12) for the purpose of constructing a linear relaxation.
In this process, nonlinear functions are approximated by linear under- and overestimators.
As the formulas that were used to compute these estimators are only available for
“simple” functions (for example, convex functions, concave functions, bilinear terms),
new variables and constraints were introduced to split more complex expressions into
adequate form [107, 115].

A trivial attempt to solve the issue of solutions not being feasible in the original
problem would have been to add a feasibility check before accepting a solution. However,
if a solution is not feasible, actions to resolve the violation of original constraint need to
be taken, such as a separating hyperplane, a domain reduction, or a branching operation
needs to be performed. Since the connection from the original to the presolved problem
was not preserved, it would not have been clear which operations on the presolved
problem would help best to remedy the violation in the original problem.

Thus, the new constraint handler aims to preserve the original constraints by applying
only transformations (simplifications) that, in most situations, do not relax the feasible
space when taking tolerances into account. The reformulations that were necessary for
the construction of a linear relaxation are not applied explicitly anymore, but handled
implicitly by annotating the expressions that define the nonlinear constraints (here, the
mysterious “data of an expression owner”, see Section 4.1, comes into play). Another

20

advantage of this approach is a clear distinction between the variables that were present in
the original problem and the variables added for the reformulation. With this information,
branching is avoided on variables of the latter type. Finally, it is now possible to exploit
overlapping structures in an expression simultaneously.

4.2.2 Extended Formulations

To explain the functionality of the new cons nonlinear, consider MINLPs of the form

min c>x,

s.t. g ≤ g(x) ≤ g,
b ≤ Ax ≤ b,
x ≤ x ≤ x,
xI ∈ ZI ,

(MINLP)

with c ∈ Rn, g : Rn → R
m

, g, g ∈ Rm, A ∈ Rm̃×n, b, b ∈ Rm̃, x, x ∈ Rn, I ⊆ {1, . . . , n},
R := R ∪ {±∞}. Further, assume that gi(·) is nonlinear and specified by an expression
(see Section 4.1), i = 1, . . . ,m, g ≤ g, g

i
∈ R or gi ∈ R for all i = 1, . . . ,m, b ≤ b, bi ∈ R

or bi ∈ R for all i = 1, . . . , m̃, and x ≤ x. All nonlinear constraints g ≤ g(x) ≤ g are
handled by cons nonlinear, while the linear constraints are handled by cons linear

or its specializations. (Of course, in general, any kind of constraint that SCIP supports
is allowed, but for this section only linear and nonlinear constraints are considered.) In
comparison to SCIP 7.0, the specialized nonlinear constraint handlers and the distinction
into a linear and a nonlinear part of a nonlinear constraint have been removed. As
a consequence, all algorithms for nonlinear constraints (checking feasibility, domain
propagation, separation, etc) work on expressions now.

SCIP solves problems like (MINLP) to global optimality via a spatial branch-and-
bound algorithm that mixes branch-and-infer and branch-and-cut [13]. Important parts
of the solution algorithm are presolving, domain propagation (that is, tightening of
variable bounds), linear relaxation, and branching. For the domain propagation and
linear relaxation aspects, two extended formulations of (MINLP) that are obtained by
introducing slack variables and replacing sub-trees of the expressions that define nonlinear
constraints by auxiliary variables are considered.

For domain propagation, the following extended formulation is considered:

min c>x,

s.t. hdp
i (x,wdp

i+1, . . . , w
dp
mdp) = wdp

i , i = 1, . . . ,mdp,

b ≤ Ax ≤ b,
x ≤ x ≤ x,
wdp ≤ wdp ≤ wdp,

xI ∈ ZI .

(MINLPdp
ext)

Initially, slack variables wdp
1 , . . . , wdp

m are introduced and hdp
i := gi for i = 1, . . . ,m.

Next, for each function hdp
i (x), subexpressions f(x) may be replaced by new auxiliary

variables wi′ , i
′ > m, and new constraints hdp

i′ (x) = wdp
i′ with hdp

i′ := f are added.
For the latter, subexpressions may be replaced again. Since auxiliary variables that
replace subexpression of hdp

i (x) always receive an index larger than max(m, i), the result

is referred to by hdp
i (x,wdp

i+1, . . . , w
dp
mdp) for any i = 1, . . . ,mdp. That is, to simplify

notation, wdp
i+1 is used instead of wdp

max(i,m)+1. If a subexpressions that is replaced by an

auxiliary variable appears in several places, then only one auxiliary variable and one

21

constraint is added to the extended formulation. Reindexing may be necessary to have
hdp
i depend on x and wdp

i+1, . . . only.
The details of how subexpressions are chosen to be replaced by auxiliary variables will

be discussed in Section 4.2.5. For the moment it is sufficient to assume that algorithms
are available to compute interval enclosures of

{hdp
i (x,wdp

i+1, . . . , w
dp
mdp) : x ≤ x ≤ x, wdp ≤ wdp ≤ wdp}, (13)

{xj : hdp
i (x,wdp

i+1, . . . , w
dp
mdp) = wdp

i : x ≤ x ≤ x, wdp ≤ wdp ≤ wdp}, j = 1, . . . , n,

(14)

{wdp
j : hdp

i (x,wdp
i+1, . . . , w

dp
mdp) = wdp

i : x ≤ x ≤ x,wdp ≤ wdp ≤ wdp}, (15)

j = i+ 1, . . . ,mdp,

for i = 1, . . . ,mdp. The variable bounds wdp, wdp ∈ Rm
dp

are initially set to wdp
i = g

i
,

wdp
i = gi, i = 1, . . . ,m, and wdp

i = −∞, wdp
i =∞, i = m+ 1, . . . ,mdp.

It is worth noting here that the variables wdp are not actually added as SCIP variables,
although this has been suggested, but merely serve notational purposes. In the context
of domain propagation, only the bounds wdp and wdp are relevant and stored in the
expression.

For the construction of a linear relaxation, a similar extended formulation is considered:

min c>x,

s.t. hlp
i (x,wlp

i+1, . . . , w
lp
mlp) Qi w

lp
i , i = 1, . . . ,mlp,

b ≤ Ax ≤ b,
x ≤ x ≤ x,
wlp ≤ wlp ≤ wlp,

xI ∈ ZI .

(MINLPlp
ext)

Functions hlp
i (·) are again obtained from the expressions that define functions gi(·) by

recursively replacing subexpressions by auxiliary variables wlp
i+1, . . . , w

lp
mlp . However, it is

important to note that different subexpressions may be replaced when setting up hlp(·)
compared to setting up hdp(·). In fact, in contrast to (MINLPdp

ext), it is assumed that
algorithms are available to compute a linear outer-approximation of the sets

{(x,wlp) : hlp
i (x,wlp

i+1, . . . , w
lp
mlp) Qi w

lp
i , x ∈ [x, x], wlp ∈ [wlp, wlp]}, i = 1, . . . ,mlp.

(16)

Thus, the auxiliary variables wlp
i , i = m + 1, . . . ,mlp, can be different from wdp

i , i =

m + 1, . . . ,mdp. However, the slack variables wlp
i , i = 1, . . . ,m, can be considered

as identical to wdp
i . Similarly to (MINLPdp

ext), the variable bounds wlp, wlp ∈ Rm
lp

are initially set to wlp
i = g

i
, wlp

i = gi, i = 1, . . . ,m, and wlp
i = −∞, wlp

i = ∞,

i = m+ 1, . . . ,mlp. Regarding the (in)equality sense Qi, a valid simplification would be
to assume equality everywhere. For performance reasons, though, it can be beneficial
to relax certain equalities to inequalities if that does not change the feasible space
of (MINLPlp

ext) when projected onto x. Therefore,

Qi :=


=, if g

i
> −∞, gi <∞,

≤, if g
i

= −∞, gi <∞,
≥, if g

i
> −∞, gi =∞,

for i = 1, . . . ,m.

For i > m, monotonicity of expressions needs to be taken into account. This is discussed
in Section 4.2.3.

22

In difference to (MINLPdp
ext), the variables wlp are added to SCIP as variables when

the LP is initialized. They are marked as relaxation-only [36], that is, are not copied
when the SCIP problem is copied and are fixed or deleted when restarting (new auxiliary
variables are added for the next SCIP round).

To decide for which constraints in (MINLPlp
ext) it can make sense to try to improve

their linear relaxation, the value of a subexpression needs to be compared with the value
for hlp

i (·). Thus, define ĥlp
i (x) to be the value of the subexpression that hlp

i (·) represents
if evaluated at x. Formally, for i = 1, . . . ,mlp,

ĥlp
i (x) := hlp

i (x,wlp
i+1, . . . , w

lp
mlp) where wlp

j := hlp
j (x,wlp

j+1, . . . , w
lp
mlp), j = i+ 1, . . . ,mlp.

Hence, ĥi ≡ gi for i = 1, . . . ,m.

Example Recall Figure 2 and the constraint

log(x)2 + 2 log(x) y + y2 ≤ 4.

Using structural detection algorithms (discussed in Section 4.2.5 below), SCIP may replace
log(x) by an auxiliary variable w2, since that results in a quadratic form w2

2 + 2w2y+ y2,
which is both bivariate and convex, the former being well suited for domain propagation
and the latter being beneficial for linearization. Therefore, the following extended
formulation (MINLPdp

ext) may be constructed:

hdp
1 (x, y, wdp

2) := (wdp
2)2 + 2wdp

2 y + y2 = wdp
1 ,

hdp
2 (x, y) := log(x) = wdp

2 ,

wdp
1 ≤ 4.

(MINLPlp
ext) could be very similar,

hlp
1 (x, y, wlp

2) := (wlp
2)2 + 2wlp

2 y + y2 ≤ wlp
1 ,

hlp
2 (x, y) := log(x) = wlp

2 ,

wlp
1 ≤ 4,

where equality has been chosen for hlp
2 (x, y) = wlp

2 because (wlp
2)2 + 2wlp

2 y+ y2 is neither

monotonically increasing nor monotonically decreasing in wlp
2 . If, however, y ≥ 0 and

x ≥ 1, then one may relax to log(x) ≤ wlp
2 .

Next, consider the following slight modification:

log(x)2 + 4 log(x) y + y2 ≤ 4.

SCIP may again replace log(x) by an auxiliary variable w2, since that results in a bivariate
quadratic form, but the expression is not convex anymore. SCIP may therefore decide
to introduce additional auxiliary variables to disaggregate the quadratic form for the
purpose of constructing a linear relaxation. Therefore, while (MINLPdp

ext) would be the

same as above (with coefficient 2 changed to 4), (MINLPlp
ext) would be the result of

associating an auxiliary variable with every node of the expression graph:

wlp
2 + 4wlp

3 + wlp
4 ≤ wlp

1 ,

(wlp
5)2 ≤ wlp

2 ,

wlp
5 y ≤ wlp

3 ,

y2 ≤ wlp
4 ,

log(x) = wlp
5 ,

wlp
1 ≤ 4.

23

4.2.3 Variable and Expression Locks

For constraints that are checked for feasibility, SCIP asks the constraint handler to add
down- and uplocks to the variables in the constraint. A downlock (uplock) indicates
whether decreasing (increasing) the variable could render the constraint infeasible. While
it would be valid to add both down- and uplocks for each variable, more precise information
can be useful, for example, for the effectiveness of primal heuristic or dual presolving
routines.

For constraints as in (MINLP), the monotonicity of g(x) and Ax with respect to a
specific variable and the finiteness of left- and right-hand sides (g, g, b, b) decides which
locks should be added. While for Ax it is sufficient to check the sign of matrix entries,
the monotonicity of g(x) can sometimes be deduced by analyzing the expression that
defines g(x). Since monotonicity of g(x) may depend on variable values, variable bounds
should be taken into account when deriving monotonicity information and variable locks.

To derive locks for variables, the down- and uplocks for variables are generalized to
expressions. That is, in each expression e a number of down- and uplocks (although
they are referred to as negative and positive locks in the code) are stored, which indicate
the number of constraints that could become infeasible when the value of e is decreased
or increased. For variable-expressions, these down- and uplocks are then exactly the
required down- and uplocks of the corresponding variables.

To start, take a constraint gj ≤ gj(x) ≤ gj and assume that the expression that
defines gj(x) is given as g̃(f1(x), f2(x), . . .) for some operand g̃ and (sub)expressions
f1, f2, If gj <∞, then increasing the value of g̃ could render the constraint infeasible,
so an uplock is added to g̃. Analogously, if g

j
> −∞, then decreasing the value of g̃

could render the constraint infeasible, so a downlock is added to g̃.
Next, these locks are “propagated” to the children f1, f2, First, the monotonicity

of g̃ with respect to a child fk is checked by use of the MONOTONICITY callback of the
expression handler for g̃. If g̃ is monotonically increasing in fk, then increasing fk could
render those constraints infeasible that could become infeasible if g̃ is increased and
decreasing fk could render those constraints infeasible that could become infeasible when
g̃ is decreased. Therefore, down- and uplocks stored for g̃ are added to the down- and
uplocks, respectively, of fk. If g̃ is monotonically decreasing in fk, then increasing fk
would decrease g̃ and decreasing fk would increase g̃. Therefore, the downlocks of g̃
are added to the uplocks of fk and the uplocks of g̃ are added to the downlocks of fk.
Finally, if no monotonicity of g̃ in fk could be concluded, then the sum of down- and
uplocks of g̃ are added to both the down- and uplocks of fk.

This procedure is applied for all expressions f1, f2, . . . and recursively to their suc-
cessors. When a variable expression is encountered, then the down- and uplocks in the
variable expression are added to the down- and uplocks of the variable. Therefore, in
difference to linear and many other types of constraints in SCIP, a variable in a single
constraint can get several down- or uplocks if it appears several times.

When constraints need to be “unlocked”, the same procedure is run, but down-
and uplocks are subtracted instead of added. To avoid that, due to tightened variable
bounds, different monotonicity information is used when removing locks, the calculated
monotonicity information is stored (removed) in an expression when it is locked the first
time (unlocked the last time).

For an example, consider again the expression from Figure 2 and the constraint
log(x)2 + 2 log(x) y + y2 ≤ 4. Assume further that x = 0, x = 1, and y = 0. The locks
for x and y are deduced as follows, see also Figure 3:

1. One uplock and no downlock are assigned to the sum-node, because the constraint
has a finite right-hand side and no left-hand side.

2. Since every coefficient in the sum is nonnegative, every child of the sum is assigned
one uplock and no downlock.

24

3. log(x)2 is monotonically decreasing in log(x) because log(x) ≤ 0, so that the uplock
of log(x)2 is added to the downlocks of log(x).

4. 2 log(x) y is monotonically decreasing in log(x) because 2y ≤ 0, so the uplock of
2 log(x) y is added to the downlocks of log(x).

5. 2 log(x) y is monotonically decreasing in y because 2 log(x) ≤ 0, so the uplock of
2 log(x) y is added to the downlocks of y.

6. y2 is monotonically decreasing in y because y ≤ 0, so the uplock of y2 is added to the
downlocks of y.

7. log(x) is monotonically increasing in x, so the downlocks of log(x) are added to the
downlocks of x.

Thus, eventually both x and y receive 2 downlocks, one for each appearance of the
variables in the expression. Presolvers, primal heuristics, or other plugins of SCIP may
now use the information that increasing the value of these variables in any feasible
solution does not render this constraint infeasible.

∑
up:1 down:0

(·)2

up:1 down:0

log
up:0 down:2

x
up:0 down:2

INC

DEC

INC ∏
up:1 down:0

INC

(·)2

up:1 down:0

y
up:0 down:2

DEC

INC

DEC DEC

Figure 3: Propagation of locks through expression graph. INC/DEC specifies
the monotonicity of parent w.r.t. child.

4.2.4 Nonlinear Handler

The construction of the extended formulations requires algorithms that analyze an
expression for specific structures, for instance, quadratic or convex subexpressions as in
the previous example. Following the spirit of the plugin-oriented design of SCIP, these
algorithms are not hardcoded into cons nonlinear, but are added as separate plugins,
referred to as nonlinear handlers. Next to detecting structures in expressions, nonlinear
handlers can also provide domain propagation and linear relaxation algorithms that
act on these structures. These plugins have to interact tightly with cons nonlinear

and nonlinear constraints. Therefore, in difference to other plugins in SCIP, nonlinear
handlers are managed by cons nonlinear and not the SCIP core.

In fact, cons nonlinear acts both as a handler for nonlinear constraints and as a
“core” for the management and enforcement of the extended formulations (MINLPdp

ext) and

(MINLPlp
ext). As a constraint handler, it checks nonlinear constraints for feasibility, adds

them to the NLP relaxation, applies various presolving operations (see Section 4.2.7),
handles variable locks, and more. When it comes to domain propagation, separation,

25

and enforcement of nonlinear constraints (see Sections 4.2.8–4.2.11), the constraint
handler decides for which constraints in the extended formulations domain propagation
or separation should be tried and calls corresponding routines in nonlinear handlers.
When separation fails in enforcement, the constraint handler also selects a branching
variable from a list of candidates that has been assembled by nonlinear handlers.

Since domain propagation, separation, and enforcement is partially “outsourced” into
nonlinear handlers, a certain similarity of nonlinear handler callbacks to constraint handler
callbacks is not surprising. A nonlinear handler can provide the following callbacks:

− COPYHDLR: include nonlinear handler in another SCIP instance;

− FREEHDLRDATA: free nonlinear handler data;

− FREEEXPRDATA: free expression-specific data of nonlinear handler;

− INIT: initialization;

− EXIT: deinitialization;

− DETECT: analyze a given expression (hdp
i (·) and/or hlp

i (·)) for a specific structure

and decide whether to contribute in domain propagation for hdp
i (·) = wdp

i or linear

relaxation of hlp
i (·) Qi wlp

i (implementation of this callback is mandatory);

− EVALAUX: evaluate expression with respect to auxiliary variables in descendants, that
is, compute hlp

i (x,wlp
i+1, . . . , w

lp
mlp);

− INTEVAL: evaluate expression with respect to current bounds on variables, that is,
compute an interval enclosure of (13);

− REVERSEPROP: tighten bounds on descendants, that is, compute interval enclosures of
(14) and (15) and update bounds xj , xj , wj , wj accordingly;

− INITSEPA: initialize separation data and add initial linearization of (16) to the LP
relaxation;

− EXITSEPA: deinitialize separation data;

− ENFO: given a point (x̂, ŵ), create a bound change or add a cutting plane that
separates this point from the feasible set; usually, this routine tries to improve the
linear relaxation of hlp

i (x,wlp
i+1, . . . , w

lp
mlp) Qi w

lp
i ; if neither a bound change nor a

cutting plane was found, register variables for which reducing their domain might
help to make separation succeed;

− ESTIMATE: given a point (x̂, ŵ), compute a linear under- or overestimator of function

hlp
i (x,wlp

i+1, . . . , w
lp
mlp) that is as tight as possible in (x̂, ŵ) and valid with respect to

either the local or global bounds on x and wlp; further, register variables for which
reducing their domain might help to produce a tighter estimator.

More details on the exact input and output of these callbacks is given in the SCIP
documentation.

4.2.5 Constructing Extended Formulations

The extended formulations (MINLPdp
ext) and (MINLPlp

ext) are constructed simultaneously
by processing one nonlinear constraint of (MINLP) at a time (however, common subex-
pressions that are shared among different constraints are processed only once). For a
constraint gi ≤ g(x) ≤ gi, i ∈ {1, . . . ,m}, for which domain propagation is enabled

(which it is by default), a slack variable wdp
i and a constraint hdp

i (x) = wdp
i with hdp

i ≡ gi
are added to (MINLPdp

ext). If, additionally, separation or enforcement is enabled (which

they are by default) and SCIP is not in presolve, then the slack variable wlp
i and the

26

constraint hlp
i (x) Qi w

lp
i with hlp

i ≡ gi are added2 to (MINLPlp
ext). Thereby, Qi is decided

according to the finiteness of g
i

and gi as shown above.
Next, the DETECT callback of each nonlinear handler is called for the expression that

defines hdp
i and hlp

i . The callback is informed if domain propagation and/or separation
is required or if it was already provided by some other nonlinear handler. The nonlinear
handler then analyzes the expression and returns whether it wants to participate in
(i) domain propagation for hdp

i (x) = wdp
i , (ii) separation for hlp

i (x) ≤ wlp
i , and/or (iii)

separation for hlp
i (x) ≥ wlp

i . Furthermore, the nonlinear handler can also introduce

auxiliary variables for subexpressions, that is, transform hdp
i (x) into hdp

i (x,wdp
i+1, . . .),

hlp
i (x) into hlp

i (x,wlp
i+1, . . .), and add constraints like hdp

i+1(x) = wdp
i+1 and hlp

i+1(x) Qi+1

wlp
i+1. The sense Qi+1 is decided according to the expression locks (see Section 4.2.3)

that have been deduced for hdp
i+1:

Qi+1:=


=, if there are both down- and uplocks for hdp

i+1,

≤, if there are no downlocks for hdp
i+1,

≥, if there are no uplocks for hdp
i+1.

Note that this definition is consistent with the definition of Qj , j = 1, . . . ,m, in Sec-
tion 4.2.2 as downlocks (uplocks) are added to gj if and only if g

j
> −∞ (gj <∞), see

Section 4.2.3.
After processing hdp

i and hlp
i , subexpressions thereof are processed in a depth-first

manner. Whenever a subexpression is visited that is associated with a constraint
hdp
i′ (x) = wdp

i′ or hlp
i′ (x) Qi′ w

lp
i′ , the DETECT callback of each nonlinear handler is

called again, this time for the expression that defines hdp
i′ or hlp

i′ . This way, extended
formulations are built for each constraint gi ≤ gi(x) ≤ gi in a recursive manner by
utilizing the structure detection algorithms of all available nonlinear handlers.

For an example, recall again the expression from Figure 2 and assume that the initial
extended formulations are log(x)2 + 2 log(x) y+ y2 = wdp

1 and log(x)2 + 2 log(x) y+ y2 ≥
wlp

1 . A nonlinear handler that inspects the sum-expression may decide that it can
provide domain propagation for the expression if the log-expression was replaced by
a variable. Thus, an auxiliary variable wdp

2 as well as a constraint wdp
2 = log(x) are

introduced and hdp
1 (x) = log(x)2 + 2 log(x) y + y2 is changed to hdp

1 (x,wdp
2) = (wdp

2)2 +

2wdp
2 y + y2. Similarly, the same or another nonlinear handler may decide that it can

provide a linear relaxation for the inequality if log(x) was replaced by a variable. It will

introduce an auxiliary variable wlp
2 and a constraint wlp

2 = log(x). Then it will change

log(x)2 + 2 log(x) y + y2 ≥ wlp
1 to (wlp

2)2 + 2wlp
2 y + y2 ≥ wlp

1 . In addition, the nonlinear

handler then indicates that tight bounds for wlp
2 and y are required to compute the

linear relaxation. This again initiates the introduction of an auxiliary variable wdp
2 and a

constraint wdp
2 = log(x), given that they were not existing already.

4.2.6 Nonlinear Handler “Default”

To ensure that there always exist routines that can provide domain propagation and linear
relaxation for an expression, the “fallback” nonlinear handler default is available. This
nonlinear handler resorts to callbacks of expression handlers (see Section 4.1) to provide
the necessary functionalities. However, while nonlinear handlers are usually meant to
handle larger parts of an expression, the methods implemented by the expression handlers

2To be exact, extended formulations are not created explicitly and slack variables are not created at
this state, but the top of the expression gi in the nonlinear constraints is marked for propagation and/or

separation. Variables wlp
i are added in SCIP when the LP relaxation is initialized. For simplicity, these

technicalities are omitted here.

27

are limited to the immediate children of an expression and thus have a rather myopic
view on the expression. Therefore, the DETECT callback of the default nonlinear handler
is called with a low priority. It then decides whether it contributes domain propagation
or linear relaxation depending on what other nonlinear handler have declared before.
If the nonlinear handler decides to contribute, it will introduce auxiliary variables wdp

and/or wlp for all immediate children of the current expression. The other callbacks of
the default nonlinear handler, in particular EVALAUX, INTEVAL, REVERSEPROP, ESTIMATE,
can then utilize the corresponding “myopic” callbacks of the expression handlers.

4.2.7 Presolve

Simplify The simplify callbacks of expression handlers are called to bring the expressions
into a canonical form. For example, recursive sums and products are flattened and fixed
or aggregated variables are replaced by constants or sums of active variables. See the
documentation of function SCIPsimplifyExpr() for a more exhaustive list of applied
simplifications.

Forbid Multiaggregation For variables that appear nonlinearly, multiaggregation is
forbidden. This aims to prevent that a simple term like x3 will be expanded into a
possible long polynomial when x is multiaggregated. The linear constraint handler
currently does not account for such effects when deciding whether a variable should be
multiaggregated.

Common Subexpressions Subexpressions that appear several times are identified and
replaced by a single expression. This also ensures that every variable is represented by
only one variable-expression across all constraints and that for expressions that appear in
several nonlinear constraints at most one auxiliary variable is introduced in the extended
formulations. However, sums that are part of other sums are currently not identified,
since in the canonical form no sum can have a sum as a child. The same holds for
products. The HASH and COMPARE callback of the expression handlers are used to identify
common subexpressions.

Scaling For constraints for which the expression is a sum (which it always is if there
is a constant factor different from 1.0), it is ensured that the number of terms with
positive coefficients is at least the number of terms with negative coefficients by scaling
the constraint with −1. If there are as many positive as negative coefficients, then it is
ensured that the right-hand side is not +∞. This canonicalization step can be useful for
the next point.

Merge Constraints Nonlinear constraints that share the same expression are merged.

Constraint Upgrading Upgrades to other constraint types are checked. Most importantly,
nonlinear constraints that are linear after simplification are replaced by constraints that
are handled by cons linear. Further, constraints that can be written as (x− ax) · (y −
ay) = 0 with x and y binary variables and ax, ay ∈ {0, 1} are replaced by setpacking
constraints.

Linearization of Binary Products Products of binary variables are linearized. This is
done in a way that is similar to previous SCIP versions [115], but the consideration of
cliques is new:

− In the simplest case, a product
∏
i xi is replaced by a new variable z and a constraint

of type “and” is added that models z =
∧
i xi. The “and”-constraint handler will

then separate a linearization of this product [16].

28

− Optionally, for a product of only two binary variables, xy, the linearization can be
added directly as linear constraints (x ≥ z, y ≥ z, x+ y ≤ 1 + z).

− For a product of two binary variables, xy, it is checked whether x (or its negation)
and y (or its negation) are contained in a common clique. Taking this information
into account allows for simpler linearizations of xy. For example, x and y being in a
common clique implies x+ y ≤ 1 and thus xy = 0. Analogously, x+ (1− y) ≤ 1 gives
xy = x, (1− x) + y ≤ 1 gives xy = y, and (1− x) + (1− y) ≤ 1 gives xy = x+ y − 1.

− Replacing every product in a large quadratic term
∑
i,j Qijxixj by a new variable

and constraint can increase the problem size enormously. SCIP therefore checks
whether there exist sums of the form xi

∑
j Qijxj (Qij 6= 0) with at least 50 terms

and replaces them by a single variable zi and the linearization

Qxi ≤ zi,
zi ≤ Qxi,
Q ≤

∑
j

Qijxj − zi +Qxi,

Q ≥
∑
j

Qijxj − zi +Qxi,

where Q :=
∑
j min(0, Qij), Q :=

∑
j max(0, Qij). This usually gives a looser LP

relaxation as when each product xixj would be replaced individually, but has the
advantage that less variables and constraints need to be introduced. Variable zi is
marked to be implicit integer if all coefficients Qij are integer. Variables xi that
appear in the highest number of bilinear terms are prioritized.

Identification of Integrality For constraints that can be written as
∑
i aifi(x) + by = c,

b 6= 0, it is checked whether the variable type of y can be changed to implicitly integer.
Storing the information that a continuous variable can take only integer values in a
feasible solution can be useful in the solving process, for example, when branching on y.
To change the type of y, the following conditions need to be satisfied: y is of continuous
type, aib ∈ Z, cb ∈ Z, and fi(x) ∈ Z for solutions that satisfy integrality requirements of
(MINLP) (xI ∈ ZI). To determine the latter, the INTEGRALITY callback of expression
handlers is used.

Implicit Discreteness [45] It is checked whether some variables can be restricted to be
at one of their bounds. At the moment, the method looks for a non-binary variable x
with finite bounds, without coefficient in the objective function, and that appears in only
one constraint. Furthermore, this constraint needs to be a polynomial inequality where
x appears only in monomials of the form ckx

2k with k ∈ N or other monomials where x
has exponent 1. If all coefficients ck have the same sign, then the constraint function
is convex (ck > 0) or concave (ck < 0) in x. Finally, if in addition, the constraint has
an infinite right-hand side (when ck > 0) or an infinite left-hand side (when ck < 0),
then x can be restricted to be in {x, x}. This is valid because any feasible solution with
x ∈ (x, x) can be transformed into another feasible solution with same objective function
value by moving x to one of its bounds.

If x = 0 and x = 1, then x is transformed into a binary variable. Otherwise, a bound
disjunction constraint (x ≤ x)∨ (x ≥ x) is added. This “upgrade” of continuous variables
to discrete ones has been shown to be particularly effective for box-QP instances.

Identification of Unlocked Linear Variables Since SCIP supports linear objective func-
tions only, problems with a nonlinear objective function are reformulated by the readers
of and interfaces to SCIP into one with a linear objective function (min f(x) becomes

29

min z s.t. f(x) ≤ z), To ensure feasibility of such artificial constraints, nonlinear con-
straints are checked for a variable xi, i ∈ {1, . . . , n}, that appears linearly and which
value could be increased or decreased in a solution without the risk of violating other
constraints (see also Section 4.2.3). When a solution candidate violates a nonlinear con-
straint where such a variable xi has been identified, the constraint handler postprocesses
this solution by adjusting the value of xi such that the constraint becomes feasible. This
modified solution is then passed on to primal heuristic “trysol”, which will suggest it to
the SCIP core the next time this primal heuristic is run.

Bound Tightening Domain propagation is run (see Section 4.2.8) to tighten variable
bounds and identify redundant or always-infeasible constraints (g([x, x]) ⊆ [g, g] or

g([x, x]) ∩ [g, g] = ∅). The extended formulation (MINLPdp
ext) for domain propagation is

constructed to make use of the INTEVAL and REVERSEPROP callbacks of nonlinear handlers.
Further, bounds that are implied by the domain of expressions are enforced, if possible,
such as the lower bound for arguments of log(x) or xp with p 6∈ Z are set to a small
positive value.

4.2.8 Domain Propagation

As in previous SCIP versions, cons nonlinear implements a feasibility-based bound
tightening (FBBT) procedure. For that, interval arithmetic is used to bound the preimage
of each constraint function with respect to the constraint sides, i.e., interval over-estimates
are computed for

{x ∈ [x, x] : gj ≤ gj(x) ≤ gj}
for each j = 1, . . . ,m. As it is nontrivial to do so for an arbitrary function, the expression
graph and extended formulation (MINLPdp

ext) are utilized. Recall from Section 4.2.4 that
it is assumed that the nonlinear handlers provide methods to compute interval enclosures
of hdp

i (·) and its inverse, see (13)–(15).
On the implementation side, domain propagation consists of one or several forward and

backward passes through the expression graph. In the forward pass, interval enclosures of
(13) are computed using the current local bounds on variables x. The interval enclosures

of (13) are used to update the bounds wdp
i , wdp

i . In the backward pass, interval enclosures
of (14) and (15) are computed and used to update the bounds xj , xj , wj , wj . Note

that constraint sides are taken into account because, initially, wdp
i = g

i
and wdp

i = gi,
i = 1, . . . ,m.

To only recalculate intervals that may result in a bound tightening, the constraint
handler gets notified when the local bounds on an original variable xi that appears in a
nonlinear constraint is changed. If a bound is tightened, then all nonlinear constraints
that contain this variable are marked for propagation. If a bound is relaxed, however, then
the previously computed bounds on auxiliary variables wdp, wdp are marked as invalid.
When the domain propagation routine of the constraint handler is called, the expressions
of all constraints that were marked for propagation are processed in a depth-first manner
(forward pass). If for some i = 1, . . . ,m, the interval enclosure of (13) is not a subset of
[gi, gi] (that is, the constraint is not redundant with respect to current variable bounds),

then hdp
i is queued for backward propagation. The backward propagation queue is then

processed in a breadth-first-order. Each time the interval enclosure of (15) provides a

sufficient tightening for [wdp
j , w

dp
j], hdp

j is appended to the backward propagation queue.
If a bound tightening for some xj is derived from (14), constraints that contain xj are
marked for propagation again, so that another forward pass may start after the current
backward pass.

The following mentions a few more subtleties.

30

Auxiliary Variables in (MINLPlp
ext) Recall that the DETECT callback of a nonlinear

handler can request bound updates for auxiliary variables in (MINLPlp
ext), see Section 4.2.5.

Thus, if hdp
i is not only associated with wdp

i but also an auxiliary variable wlp
i′ , then the

bounds on wlp
i′ are tightened, too.

Reducing Side Effects The bounds computed in a backward pass are stored separately
from those computed by the forward pass. That is, tightened bounds on wdp are not
immediately used to compute the bounds on functions that use wdp. Instead, a bound
tightening on an auxiliary variable in the backward pass first has to result in a bound
change on an original variable x, which should then result in tighter bounds computed
by the forward pass. A reason for this implementation detail is that it is tried to reduce
side-effects from the backward propagation in a node of the branch-and-bound tree on
the domain propagation in another node of the tree. With the current implementation,
the domain propagation in a node only depends on the bounds of SCIP variables x and
wlp, but not bounds on wdp that were computed by backward propagation in a different
part of the tree.

Integrality Integrality information on expressions is taken into account to tighten
intervals with fractional bounds to integral values.

Handling Rounding Errors in Variable Bounds and Constraint Sides While the domain
propagation in the constraint handler and expression and nonlinear handlers are imple-
mented by using interval arithmetics with outward-rounding, this is not the case for
many other parts of SCIP. For this reason, variable bounds are relaxed by a small amount
when entering the forward pass. Since these small relaxations result in overestimates for
the intervals of all following computations, several cases deserve a special treatment:

− By default, a bound b is relaxed by 10−9 max(1, |b|).
− If, however, the domain width is small, but the bound itself is large, then relaxing by

10−9|b| can have a large impact. Therefore, bound relaxation is additionally restricted
to 10−3 times the width of the domain.

− Bounds on integer variables (including implicit integer) are not relaxed.

− Since integral values, especially 0, often have a special meaning, bounds are not
relaxed beyond the next integer value.

Constraint sides are relaxed by a small amount, too. Here, an absolute relaxation of
10−9 is applied.

Finally, also when updating existing bounds in original or auxiliary variables with
newly computed ones, the latter are slightly relaxed if the new interval has a nonzero
distance of less than numerics/epsilon=10−9 to the existing domain. That is, instead
of concluding infeasibility for the current subproblem, the variable is fixed to the bound
that is closest to the new interval.

Special Case: Redundancy Check When checking whether a constraint can be deleted
because it is redundant, it needs to be ensured that the constraint is also satisfied for
a solution that violates variable bounds by a small amount. Otherwise, a feasibility
check for the solution in the original problem can fail. Hence, when doing a forward pass
for the redundancy check, bound for all unfixed variables are relaxed by the feasibility
tolerance of SCIP, independent of the variable type. Further, constraint sides are relaxed
by the feasibility tolerance as well.

31

Stopping Criterion In the backward pass, only tightenings that do sufficient progress
on the bounds of variables wdp and x are usually applied. This is to avoid many rounds
of bound tightening that do only little progress. New bounds are considered sufficiently
better than previous ones if the variable gets fixed, the relative improvement on a bound
is at least numerics/boundstreps=5%, or a bound changes sign, i.e., is moved to or
beyond zero.

4.2.9 Initialization of Solve and Relaxations

After presolve, SCIP calls the constraint handlers to initialize their data structures for
the branch-and-bound process and to initialize the linear and nonlinear relaxations of
the problem. For cons nonlinear, the following operations are performed.

Nonlinear Relaxation For each constraint of (MINLP), a simple check for convexity
and concavity of function gi(x) on [x, x] is done. This uses the CURVATURE callback of the
expression handlers. The constraint is added to the NLP relaxation of SCIP and the row
in the NLP is marked as convex or concave, if possible. This information is picked up by
other plugins that work on a convex nonlinear relaxation of the problem, for example,
sepa convexproj and prop nlobbt.

Extended Formulations The extended formulations (MINLPdp
ext) and (MINLPlp

ext) are
setup. That is, the DETECT callback of nonlinear handlers are called on the expressions
in the nonlinear constraints to identify structure that can be exploited for domain
propagation and linear relaxation, see also Section 4.2.5.

Afterwards, the slack- and auxiliary variables wlp are added to SCIP and are marked
as relaxation-only [36]. For expressions hlp

i (·) that were identified to always have an

integral value in a feasible solution (see also Section 4.2.7), the type of variable wlp
i is set

to be implicitly integer instead of continuous.
Finally, bounds wlp, wlp are tightened by running a specialized variant of domain

propagation (see Section 4.2.8). In this variant, backward propagation is called for all

functions hdp
i (·), i = 1, . . . ,mdp. This is to ensure that domain information that can

not be inferred from bounds on the original variables x is stored in the variable bounds
wlp, wlp. For example, for log(wlp

1) with wlp
1 = xy and x, y ∈ [−1, 1], the bound wlp

1 > 0
is implied by the expression itself. However, bounds on x and y cannot be tightened such
that xy ≥ 0 is ensured.

Linear Relaxation An initial linear relaxations of nonlinear constraints is constructed
by calling the INITSEPA of all nonlinear handlers that participate in (MINLPlp

ext).
The “default” nonlinear handler computes an initial linear relaxation of (16) by calling

the ESTIMATE callback of the expression handler. This results in a set of linear under- or
overestimators of hlp

i (x,wlp
i+1, . . . , w

lp
mlp), which are completed to valid hyperplanes by

adding auxiliary variable wlp
i .

Collect Square and Bilinear Terms All expressions in (MINLPlp
ext) that are of the form

xy or x2 (where x and y can be either original or auxiliary variables) are collected in a
data structure that is easy to traverse and search. This is used by some plugins that
work on bilinear terms (Sections 4.5, 4.9).

32

4.2.10 Separation

After SCIP solved the LP relaxation for a node of the branch-and-bound tree, it calls
the separator callback of the constraint handlers and separators to check whether a
cutting plane that separates the current LP solution (x̂, ŵ) is available. For a constraint
gi ≤ gi(x) ≤ gi of (MINLP) that is violated by x̂, the corresponding extended formulation
is checked for separating cutting planes. During separation only “strong” cuts desired,
by what cutting planes that are more than just barely violated by (x̂, ŵ) are meant. The
quantification of “more than just barely” is left to the separation algorithm (discussed
below and in the following sections).

First, if hlp
i (x,wlp

i+1, . . . , w
lp
mlp) Qi wi is violated by (x̂, ŵ), then the nonlinear handlers

that registered to contribute to the linear relaxation of this constraint are called. For a
nonlinear handler that implements the ENFO callback, it is left completely to the nonlinear
handler to decide how to separate (x̂, ŵ) from (16). The callback is also informed that
only “strong” cuts are desired and candidates for branching are not collected. If the ENFO

callback is not implemented, then the ESTIMATE callback must be implemented. Thus,
a linear under- or overestimator of hlp

i (·) is requested from the nonlinear handler and
completed to a cutting plane. The cutting plane is deemed as “strong” if the estimator
is sufficiently close to the value of hlp

i (·) in (x̂, ŵ).

Formally, assume that hlp
i (x̂, ŵlp

i+1, . . . , ŵ
lp
mlp) > ŵlp

i and that a nonlinear handler

provides a linear underestimator `(x,wlp
i+1, . . . , w

lp
mlp) of hlp

i (·) with respect to current

local variable bounds. If `(x̂, ŵlp
i+1, . . . , ŵ

lp
mlp) > ŵlp

i , then `(x,wlp
i+1, . . . , w

lp
mlp) ≤ wlp

i is a
cutting plane that separates (x̂, ŵ) and is valid for the current branch-and-bound node
(and it is valid globally if `(·) does not depend on local variable bounds). Further, the
cut is regarded as strong if

`(x̂, ŵlp
i+1, . . . , ŵ

lp
mlp) ≥ ŵlp

i + α(hlp
i (x̂, ŵlp

i+1, . . . , ŵ
lp
mlp)− ŵlp

i), (17)

where α is given by parameter constraints/nonlinear/weakcutthreshold and cur-
rently set to 0.2. That is, for a strong cut, it is required that it closes at least 20% of the
convexification gap. Note that if hlp

i (·) is convex (and this is also detected by SCIP),

then the linear underestimator is typically a linearization of hlp
i (·) at (x̂, ŵ) and thus

`(x̂, ŵlp
i+1, . . . , ŵ

lp
mlp) = hlp

i (x̂, ŵlp
i+1, . . . , ŵ

lp
mlp).

Once hlp
i (x,wlp

i+1, . . . , w
lp
mlp) Qi wi has been processed, subexpressions hlp

i′ of hlp
i are

inspected and the nonlinear handler associated with hlp
i′ are called for separation or linear

under-/overestimation.
Again, some more subtleties are discussed next.

Constraints to Separate Separation is not called for every violated nonlinear constraint of
(MINLPlp

ext). For a subexpression hlp
i′ (·) of hlp

i (·) (including hlp
i (·) itself), i ∈ {1, . . . ,m},

separation is only called if the absolute violation of

hlp
i′ (x,w

lp
i+1, . . . , w

lp
mlp) Qi wi

is at least a certain factor of the violation of original constraint gi ≤ g(x) ≤ gi. This factor
is controlled by parameter constraints/nonlinear/enfoauxviolfactor and currently
set to 0.01. This threshold has been added to prevent the separation for constraints
whose violation does not contribute significantly to the violation of original constraints.
In terms of the first example from Section 4.2.2 (log(x)2 + 2 log(x)y+ y2 ≤ 4), this means

that if the violation of (wlp
2)2 + 2wlp

2 y + y2 = wlp
1 is very small in comparison to the

violation of log(x)2 + 2 log(x)y + y2 ≤ 4, then separation for the quadratic equation is

suspended until the violation of log(x) = wlp
2 has been sufficiently reduced.

33

Further, separation is skipped for nonlinear constraints of (MINLPlp
ext) if their absolute

violations is below the feasibility tolerance of SCIP, as no strong cuts are expected in
this case.

Cut Cleanup Before a cut is passed to the separation storage of SCIP, its numerical
properties are checked and improved, if possible. For a cut

∑k
j=1 ajxj ≤ b (xj refers here

to either original or auxiliary variables of (MINLPlp
ext)) with |aj | > |aj+1|, j = 1, . . . , k−1,

ak 6= 0, the following operations are performed:

1. Ensure that the coefficient range | a1ak | is below a certain threshold, which by default is

set to 107 (parameter separating/maxcoefratiofacrowprep). To achieve this, the
procedure tries to eliminate either the term a1x1 or akxk from the cut by adding the
inequality −ajxj ≤ −ajxj if aj > 0, or −ajxj ≤ −ajxj if aj < 0, for j = 1 or j = k.
Whether the first or the last term is chosen depends on finiteness of variable bounds
and the amount that the cut is relaxed in x̂ by this operation. Since local variable
bounds are used here, a cut that was previously globally valid may now be locally
valid only.

2. If the absolute value of the maximal coefficient, |a1|, is below 10−4 or above 104

(parameter constraints/nonlinear/strongcutmaxcoef), then the cut is scaled by
a factor 2p, p ∈ Z, that suffices to ensure |a1| ∈ [10−4, 104]. Thus, together with the
previous criterion, this ensures that the absolute value of all coefficients is within
[10−4, 104] and aims on sorting out cutting planes whose absolute violation is very
small or large due to bad scaling only.

3. Ensure that fractional coefficients are not within ε = 10−9 (numerics/epsilon) of an
integer value. That is, for aj with 0 < |aj − baje| ≤ ε, where baje denotes the integer-
rounding of aj , the cut is relaxed by adding the inequality (baje−aj)xj ≤ (baje−aj)xj
if baje > aj or (baje − aj)xj ≤ (baje − aj)xj if baje < aj . Due to the use of bound
information, a previously globally valid cut may be only locally valid now. The main
motivation for this operation is to prevent the replacement of aj by baje that would
occur when the cut is stored in a SCIP ROW, since that could make the cut invalid.

4. Similar to the previous point, a right-hand side b that is very close to 0 is relaxed. If
b ∈ [−10−9, 0], then b is relaxed to 0. If b ∈ (0, 10−9], then b is relaxed to 1.1 · 10−9.
This is done to prevent the replacement of b ∈ (0, 10−9] by 0 that would occur when a
SCIP ROW is formed.

If the cleanup failed, for example, because finite bounds were not available to relax the
cut, the relaxed cut is no longer violated in x̂, or is no longer “strong” ((17) is one way
of defining what a “strong” cut is), then it is discarded.

Linearization in Incumbents In the last decades, solvers for convex MINLPs have
demonstrated that the choice of the reference point in which to linearize convex nonlinear
constraints is essential. While using the solution of the LP relaxation still leads to a
convergent algorithm [55], better performance is achieved by using a reference point that
is close to or at the boundary of the feasible region [26, 99]. Therefore, also the new
implementation of cons nonlinear includes a feature where feasible solutions are used
as reference points to generate cutting planes.

That is, whenever a primal heuristic finds a new feasible solution x∗, SCIP iter-
ates through the nonlinear constraints of (MINLPlp

ext) in reverse order, sets (wlp
i)∗ :=

hlp
i (x∗, (wlp

i+1)∗, . . . , (wlp
mlp)∗) and calls the ESTIMATE callback of the registered nonlinear

handler (if it implements this callback) with (x∗, w∗) as reference point. If a globally valid

underestimator `(x,wlp
i+1, . . . , w

lp
mlp) is returned with `(x∗, (wlp

i+1)∗, . . . , (wlp
mlp)∗) = (wlp

i)∗

(that is, it is supporting hlp
i (·) at (x∗, w∗)), then the cut `(x,wlp

i+1, . . . , w
lp
mlp) ≤ wlp

i is
added to the cutpool of SCIP. Overestimators are handled analogously. However, since

34

this feature gave mixed computational results when it was added, it is currently disabled
by default (parameter constraints/nonlinear/linearizeheursol).

4.2.11 Enforcement

The enforcement callbacks of constraint handlers are the ones where resolving infeasibility
of solutions has to be taken most seriously. While domain propagation and separation
callbacks are allowed to return empty-handed, the enforcement for nonlinear constraint
needs to find some action to enforce violated nonlinear constraints in a given solution
point. Especially when points are almost feasible, i.e., when violations in (MINLPlp

ext) are
small (reconsider also the motivating example from Section 4.2.1), enforcing constraints
can be difficult and some measures taken may appear desperate.

In summary, the constraint handler attempts to enforce constraints of (MINLP)

by separation on (MINLPlp
ext), domain propagation on (MINLPdp

ext), or branching on a
variable xi, i ∈ {1, . . . , n}.

In the unlikely case that no relaxation has been solved, then the constraint handler is
asked to enforce the pseudo-solution (ENFOPS callback), that is, a vertex of the variables
domain with best objective function value. In this case, domain propagation is called (see
Section 4.2.8). If no bound change is found and infeasibility of the node is not concluded,
then all variables in all violated nonlinear constraints and with domain width larger than
ε (numerics/epsilon) are registered as branching candidates. The branching rules of
SCIP for external branching candidates will then take care of selecting a variable for
branching. If no branching candidate could be found, then it is not clear whether there
is no feasible solution left in the current node (though relevant domains are tiny). In
this case, the constraint handler instructs SCIP to solve the LP relaxation.

When the constraint handler has to enforce a solution (x̂, ŵ) of the LP relaxation
(ENFOLP callback), then the following steps are taken:

1. The violation of the solution in (MINLP) and (MINLPlp
ext) is analyzed. Let vg, vh,

and vb, be the maximal absolute violation of the nonlinear constraints in (MINLP),

the nonlinear constraints in (MINLPlp
ext), and the bounds of variables in nonlinear

constraints (x, x, w,w), respectively. Further, let tolfeas be the feasibility tolerance of
SCIP (numerics/feastol), tollp be the current primal feasibility tolerance of the LP
solver, and ε be the value of numerics/epsilon. By default, tolfeas = tollp = 10−6

and ε = 10−9. Thus, if vg ≤ tolfeas, then all nonlinear constraints are satisfied with
respect to SCIPs feasibility tolerance and no enforcement is necessary. Further, note
that SCIP itself already ensures vb ≤ tollp and tollp ≤ tolfeas.

2. If vb > vh, that is, the violation of variable bounds is larger than violations of the
nonlinear constraints in (MINLPlp

ext), then chances to derive cutting planes from

(MINLPlp
ext) that separate (x̂, ŵ) are low. This is because methods that work on

nonconvex constraints often take variable bounds into account and do not work well
when the reference point is outside these bounds. Hence, if vb > vh and tollp > ε,
then tollp is reduced to max(ε, vb/2) and a resolve of the LP is triggered.

3. If vh < tollp, that is, violations of the nonlinear constraints in (MINLPlp
ext) are below

the feasibility tolerance of the LP solver, then deriving a valid cut that is violated in
the current LP solution by more than tollp can be very difficult. Therefore, if also
tollp > ε, then tollp is reduced to max(ε, vh/2) and a resolve of the LP is triggered.

4. The separation algorithm from Section 4.2.10 is called with some additional flags that
indicate that it is called from the enforcement callback. These additional flags extend
the separation algorithm as follows.

− When the ENFO or ESTIMATE callbacks of a nonlinear handler are called, then they

35

are instructed to register variables xj or wlp
i for branching, if useful. A variable

should be registered as a branching candidate if branching on that variable could
result in finding tighter cutting planes on the resulting subproblems. Usually, this
is the case when a convexification gap was introduced due to convexification of a
nonconvex function with respect to the current variable domain. Thus, nonlinear
handler that underestimate convex expressions usually do not register branching
candidates.

− A forward pass of domain propagation in (MINLPdp
ext) (see Section 4.2.8) is run to

ensure that recent bound tightenings are taken into account.

− Recall that for a violated constraint gi ≤ gi(x) ≤ gi with i ∈ {1, . . . ,m}, constraint

hlp
i (x,wlp

i+1, . . . , w
lp
mlp) Qi wi and subexpressions of hlp

i are tried for separation.
If for none of them a “strong” cut could be found, no branching candidate was
registered, and the violation of constraint gi ≤ gi(x) ≤ gi is at least 0.5 vg

(parameter constraints/nonlinear/weakcutminviolfactor), then separation
is repeated without the requirement that cutting planes need to be “strong”.

− Dropping the requirement for “strong” cuts has various consequences on the
separation algorithm described in Section 4.2.10: The requirement that the absolute
violation of constraints of (MINLPlp

ext) is at least tolfeas is dropped (recall again
the motivating example from Section 4.2.1 where a solution was feasible with
respect to tolfeas for (MINLPlp

ext) but not feasible for (MINLP)).

Instead of (17), it is now sufficient that the violation of the cutting plane in (x̂, ŵ)
is at least tollp.

The cleanup of the cut is modified to take the minimal violation tollp into account.
That is, if the violation is in [10ε, tollp], then it is scaled up to reach a violation of
10−4 (parameter separating/minefficacy(root)), if possible3, or at least tollp.
Step 2 in the original cut cleanup (scale to get coefficients into [10−4, 104]) is
replaced by scaling down the cut to achieve |a1| < 10/tolfeas, if this is possible
without the violation to drop under tollp.

Since cuts with violations that are just barely above feasibility tolerances are
allowed, it is tried to ensure that floating-point rounding-off errors do not falsify
the magnitude of the calculated violation. For that, it is required that the violation
of the cut

∑
j ajxj ≤ b is sufficiently large when compared to the terms of the cut,

i.e., at least 2−50 max(|b|,maxj |aj x̂j |) is required. The value 50 has been chosen
because the mantissa of a floating-point number in double precision has 52 bits.

The cut cleanup procedure is instructed to record for which variables it has modified
coefficients in order to achieve the desired coefficient range or to avoid coefficients
to be within ε of an integral value. If the cleanup failed to produce a violated cut,
then these variables are registered as branching candidates (auxiliary variables may
be mapped onto original variables, though, see Section 4.2.12). The motivation is
that since a bound of these variables was used to relax the cut, having a smaller
domain may result in less relaxation and thus a higher chance to find a violated
cut.

Case Study Most of the “cut cleanup” routines have been added to improve numerical

stability on test instances. One of the more peculiar cases is detailed in the following. On

instance ex1252 from MINLPLib, constraint e4 is originally given as −6.52(0.00034x6)3−
0.102(0.00034x6)2x12 + 7.86 · 10−8x212x6 + x3 = 0 (coefficients have been rounded).

After simplification of expressions, this is represented in SCIP as x3 − 2.54 · 10−10x36 −
1.17 · 10−8x26x12 + 7.86 · 10−8x6x

2
12 = 0. When (MINLPlp

ext) is constructed, none of the

specialized nonlinear handlers detect a structure, so nonlinear handler “default” introduces

3See implementation of SCIPcleanupRowprep() for more details.

36

an auxiliary variable for each nonlinear term. The resulting constraint4 in (MINLPlp
ext) is

x3 − 2.54 · 10−10w13 − 1.17 · 10−8w14 + 7.86 · 10−8w16 = w12. Assume that in a solution

the value in the left-hand side is below the one on the right-hand side. Though the

constraint is actually linear, enforcing it uses the separation procedures of the nonlinear

handler. Therefore, the cut that is generated via the help of the expression handler

“sum” is, not surprisingly, x3 − 2.54 · 10−10w13 − 1.17 · 10−8w14 + 7.86 · 10−8w16 ≥ w12.

This cut is marked as globally valid. Next, the cut cleanup procedure is run and

recognizes that the coefficient range is ≈ 1010 > 107. It then uses the variable bounds

at the current node to eliminate variables from the cut until the coefficient range is

sufficiently reduced. Apparently, the least relaxation is necessary if the terms for x3,

w12, and w13 are removed. The resulting cut, now only valid for the current node, is

7.86 · 10−8w16 − 1.17 · 10−8w14 ≥ −13.94, which turns out to be no longer violated by

the solution to be separated. Since the relaxation of the cut used the bounds of x3,

w12, and w13, the only choice left to resolve the violation is to tighten these bounds.

Therefore, variables x3 and x6 (due to w13 = x36) are registered as branching candidates

(in the current implementation, only the left-hand side of constraints in (MINLPlp
ext) are

considered). In a later node, the whole procedure repeats, but since variable bounds are

tighter, cut cleanup results in the cut 7.86 · 10−8w16− 1.17 · 10−8w14 ≥ −12.68, which has

a higher chance to be violated. Eventually the instance can be solved to a gap below 1%,

but the challenging numerical properties and the costly way they are currently handled

take their toll on the performance.

5. If the separation algorithms were not successful, but branching candidates have been
collected, then these candidates are either passed on to the SCIP core as external
branching candidates or the branching rules of the nonlinear constraint handler are
employed. The latter is currently the default (parameter constraints/nonlinear/

branching/external) and described in more detail in Section 4.2.12 below.

In most situations, it is either possible to separate an infeasible solution or to find
a variable in a nonconvex term such that branching on that variable should reduce
the convexification gap, which would allow for a tighter linear relaxation. However,
enforcement needs to handle also the less likely situations where neither separation nor
branching was successful. This leads to the following (less strategical) attempts.

6. If vb > ε, then tollp is reduced to max(ε, vb/2) and a resolve of the LP is triggered.
As in Step 2, the hope is that separation methods will work better if the LP solution
is less outside the variable bounds.

7. If vh > ε and tollp > ε, then tollp is reduced to max(ε, vb/2) and a resolve of the LP
is triggered. The hope here is that i) less tolerance on the feasibility for previously
generated cuts may lead to a feasible solution, and ii) more cuts can be added if the
minimal required violation is reduced.

8. Domain propagation (Section 4.2.8) is run in the hope that some bound change that
hasn’t previously been found in the separation-and-propagation loop for the current
node is discovered now. This bound change may separate the current LP solution or
have an influence on the next separation attempts.

9. Any unfixed variable in violated nonlinear constraints is registered as external branch-
ing candidate. SCIP then branches on one of these variable and the hope is that
infeasibilities in child nodes will be easier to resolve. Note that when the domain
width of a variable is reduced to less than ε, then the variable is treated as if fixed to
a single value.

4The attentive reader observes that the constraint handler is partially responsible for its own misery
here by naively replacing each monomial by an auxiliary variable. Adding an automated scaling for
newly introduced variables or being more considerate in the simplification step may help here.

37

10. If all variables in violated constraints are fixed, then it may be the overestimation
of variable bounds that prevented domain propagation to conclude that the current
node is infeasible. The node will be cut off and a message issues to the log.

The constraint handler collects statistics on how often it added “weak” cuts, tightened
the LP feasibility tolerance (tollp is reset to tolfeas whenever processing of a new node
starts), branched on any unfixed variable, etc. The occurrence of such behavior is an
indication that SCIP has numerical problems to solve this instance. To see these statistics,
enable parameter table/cons nonlinear/active.

Finally, if the constraint handler has to enforce a solution of a relaxation other than
the LP (ENFORELAX), then almost the same algorithm is run as for enforcing LP solutions.
The only differences are that i) tolfeas is used instead of tollp as minimal required cut
violation and ii) reduction of tollp is omitted. Note, that the enforcement of relaxation
solutions has not been tested and would probably require some patching up to work
reliably.

4.2.12 Branching

The handler for nonlinear constraints now includes its own branching rule to select a
variable for branching among a number of candidates. The candidates are variables
that usually appear in nonconvex expressions of violated nonlinear constraints and are
collected while trying to find a cutting plane that separates a given relaxation solution
(Step 4 in the previous section). Branching on such a variable should reduce the gap that
is introduced by convexifying the nonconvex expression in both children because this
gap is typically proportional to the domain width.

Mapping Constraint Violation onto Variables Within the ESTIMATE and ENFO callbacks
of a nonlinear handler, the handler should register with the constraint handler those
variables of (MINLPlp

ext) where branching could potentially help to produce tighter
estimators or cutting planes. With the branching candidates a “violation score” is
enclosed, which typically is the relative violation of the nonlinear constraint in (MINLPlp

ext)
that is currently handled,

sv :=
|hlp
i (x̂, ŵlp

i+1, . . . , ŵ
lp
mlp)− ŵlp

i |
max(1, |ŵlp

i |)
(18)

This value serves as a proxy for the convexification gap associated with hlp
i (·).

For each branching candidate, the number of violation scores that have been added,
the maximal score, and the sum of scores are stored. If a nonlinear handler registers only
one branching candidate for an expression, then the value sv can be added to the score
of that variable immediately. For a multivariate function hlp

i (·), several candidates may
be registered, which requires distributing the sv onto several variables. Let xi1 , . . . , xik ,
{i1, . . . , ik} ⊆ N , be such a set of variables. Let ku be the number of unbounded variables
in this set,

ku := |{j ∈ {1, . . . , k} : xij = −∞ or xij =∞}|,
If ku > 0, then to each unbounded variable an equal part of the violation score is assigned.
That is, variable xij is assigned the score{

sv

ku
, if xij = −∞ or xij =∞,

0, otherwise.
(19)

Hence, only unbounded variables are considered for branching. This is because the
computation of a linear outer-approximation of (16) often depends on the presence of

38

variable bounds. If all variables are bounded, the following variable weights are considered
instead:

λj :=

max

(
0.05,

min(x̂ij−xij ,xij−x̂ij)

xij−xij

)
, if xij 6= xij ,

0, otherwise,
j = 1, . . . , k. (20)

Value λj ∈ [0.05, 0.5] measures the “midness” of the current solution point with respect to
the variables domain. Larger shares of the violation score are then assigned to variables
that are closer to the middle of the domain:

λj∑k
j′=1 λj′

sv. (21)

This choice is inspired by the observation that the convexification gap is typically smallest
at the boundary of the domain. Further, since a value close to x̂ij is typically selected as
branching point, this choice prefers variables that lead to children in the branch-and-
bound tree with similar domain sizes. The following alternatives to the weights (20)
for a bounded unfixed variable xij can be chosen (parameter constraints/nonlinear/
branching/violsplit):

uniform: 1.0

domain width: xij − xij

logarithmic scale of domain width:


10 log10(x

j
− xij), if x

j
− xij ≥ 10,

1
−10 log10(x

j
−xij) , if xj − xij ≤ 0.1,

x
j
− xij , otherwise.

Auxiliary Variables While the choice of notation in the previous section implied that
violation scores would only be distributed onto original variables xi, i ∈ N , it is clear
that the same formulas can be used if some or all variables are auxiliary variables of
the extended formulation (MINLPlp

ext). However, recall that an auxiliary variable wlp
i

is essentially just a proxy for a subexpression that is defined with respect to original
variables and other auxiliary variables wlp

i′ , i
′ > i. Due to this construction, branching

on original variables xi is usually preferred, as this tightens not only the bounds on
xi directly but also the bounds on one or several auxiliary variables implicitly (see
Section 4.2.8). On the other hand, there may be situations where branching on auxiliary
variables could be preferable (after all, such branching could tighten bounds on original
variables via domain propagation, too) as it has a more direct effect on the bounds on
auxiliary variables. As we have not come up with an intuitive criterion on when to allow
branching on auxiliary variables, currently only the minimal depth required for nodes
in the branch-and-bound tree to allow branching on auxiliary variables can be specified
(parameter constraints/nonlinear/branching/aux). The default is to never branch
on auxiliary variables, though. Therefore, when a nonlinear handler registers a set of
variables and a violation score for branching, each auxiliary variable wlp

i in this set is

replaced by the variables that are appear in hlp
i (x,wlp

i+1, . . . , w
lp
mlp). This is repeated until

only original variables are left. The violation score is then distributed among this set of
original variables.

If during enforcement, separation failed to find a cut (recall Step 4 in Section 4.2.11),
all variables with an assigned violation score are collected by default. Optionally, only
candidates from constraints which violation is a certain factor of vg are considered for
branching. However, this factor is by default 0 (parameter constraints/nonlinear/

branching/highviolfactor).

39

Branching Candidate Scores Let xi1 , . . . , xik , {i1, . . . , ik} ⊆ N , be the set of branching
candidates. With each candidate, up to five different scores are associated.

The violation score was already introduced in the previous paragraph. When for a
variable several violation scores have been added, then currently the sum of these values
is used:

svj := sum of violations scores (19) or (21) assigned to xij , j = 1, . . . , k.

Alternatively, also the average or maximum can be used (parameter constraints/

nonlinear/branching/scoreagg). Summing up has the effect that variables appearing
in several violated constraints are likely to be assigned a larger violation score.

The pseudo-costs score mimics the adaptation of pseudo costs to spatial branching
as it was introduced by Belotti et al. [12] and is implemented also in the SCIP core
and pscost branching rule plugin. Pseudo costs associated with a variable xi are
estimates on the change in the dual bound that is provided by the LP relaxation and that
result from branching on variable xi. For brevity, only a simplified explanation of the
calculation of pseudo costs and pseudo-cost branching scores for continuous variables and
the default setting for branching/lpgainnormalize is presented here. Assume that the
LP relaxation has been solved in a node of the branch-and-bound tree after branching on
variable xi at branching point x̃i. The pseudo costs ψ+

i and ψ−i store the average change
in the LP objective function value normalized by the change in the domain width of xi.
That is, if ∆ is the absolute change in the LP relaxations objective function value in the
node xi ≤ x̃i with respect to the parent node, then value ∆/(x̃i − xi) is used to update
the pseudo cost ψ+

i . Alternatively, for the node xi ≥ x̃i, ψ−i is updated with ∆/(xi− x̃i).
The pseudo-cost score is a prediction of the dual bound gain that can be expected

from branching on variable xij , j ∈ {1, . . . , k}. Let x̃ij ∈ (xij , xij) be the branching
point (see also end of this section) that would be chosen if branching on xij . Then the

quantities ψ+
ij

(x̃ij − xij) and ψ−ij (xij − x̃ij) are used to define the pseudo-cost branching
score:

spj :=



n/a, if xij = −∞ or xij =∞, otherwise

ψ+
ij

(x̃ij − xij) · ψ
−
ij

(xij − x̃ij), if both ψ+
ij

and ψ−ij are deemed reliable,

ψ+
ij

(x̃ij − xij), if only ψ+
ij

is deemed reliable,

ψ−ij (xij − x̃ij), if only ψ−ij is deemed reliable,

n/a, otherwise

A value ψ+
ij
/ψ−ij is deemed reliable if it has been updated at least twice (constraints/

nonlinear/branching/pscostreliable). The pseudo-cost score is not computed for
problems with constant objective function (c = 0 in (MINLP)).

The domain score aims on giving preference to variables with a domain that is not
very large or very small. The motivation is that relatively large domains may require
many branching operations until their domain is small enough to allow for a useful linear
relaxation and branching on relatively small domains may not reduce the convexification
gap considerably anymore. The domain score is therefore largest for domains of width 1
and slowly decreases for larger and smaller domains:

sbj :=

{
log10(2 · 1020/(xij − xij)), if xij − xij ≥ 1,

log10(2 · 1020 max(ε, xij − xij)), otherwise,

The appearance of 1020 in this formula is due to the implicit bound of 1020 (numerics/
infinity) that SCIP applies to unbounded variables. Thus, in this formula, xij and xij
should be understood as ±1020 if at infinity.

The integrality score aims on giving preference to variables that are of integral type
because the domains of integer branching variables in child nodes does not overlap.

40

Further, binary variables are preferred over integer variables as branching on a binary
variable will fix it in both children. The score is defined as

sij :=


1.0, if ij ∈ I, xij = 0, xij = 1,

0.1, if ij ∈ I, xij 6= 0 or xij 6= 1,

0.01, if ij ∈ N \ I, xij has been marked to be implicitly integer,

0.0, otherwise.

Finally, the dual score is a coarse idea that tries to evaluate the importance of
violation scores (18) from the perspective of the dual bound that the LP relaxation

provides. Assume that for a constraint hlp
i (x,wlp

i+1, . . . , w
lp
mlp) ≤ wlp

i of (MINLPlp
ext)

a cut `(x,wlp
i+1, . . . , w

lp
mlp) ≤ wlp

i , where `(·) is a linear underestimator of hlp
i (·), was

added to the LP. If µ denotes the dual variable associated with this cut in the LP, then
this cut contributes µ(`(x,wlp

i+1, . . . , w
lp
mlp)− wlp

i) to the Lagrangian function of the LP

relaxation. If instead of the cut the function hlp
i (·) could have been used in the LP, then

this would change the value of the Lagrangian function by µ(hlp
i (x,wlp

i+1, . . . , w
lp
mlp) −

`(x,wlp
i+1, . . . , w

lp
mlp)). Therefore, this product of dual variable and convexification gap is

used to evaluate the importance that the linear relaxation of this nonlinear constraint
has on the dual bound that is provided by the LP.

In the current experimental implementation, the convexification gap

|hlp
i (ˆ̂x, ˆ̂wlp

i+1, . . . ,
ˆ̂wlp
mlp)− `(ˆ̂x, ˆ̂wlp

i+1, . . . ,
ˆ̂wlp
mlp)|

in the LP solution (ˆ̂x, ˆ̂w) at the time the cut is generated is stored together with the cut.
(The use of the absolute value is to accommodate overestimators from the case where Qi
is ≥). To compute the dual score sdj of a variable xij , for all rows in the LP that contain

xij and that were generated from a nonlinear constraint of (MINLPlp
ext), the quantities

|µ̂(hlp
i (ˆ̂x, ˆ̂wlp

i+1, . . . ,
ˆ̂wlp
mlp)− `(ˆ̂x, ˆ̂wlp

i+1, . . . ,
ˆ̂wlp
mlp))| are added. Here, µ̂ refers to the dual

value of the cut in the current LP solution. The current implementation has a number
of disadvantages that will need to be addressed before the dual score could be usable
by default. For example, it would obviously be better to use the convexification gap in
the current LP solution instead of ˆ̂x. Further, cuts may be defined in terms of auxiliary
variables, but branching is done on original variables only. Thus, the replacement of
auxiliary variables by original variables (see paragraph “Auxiliary Variables” above)
would need to be considered here as well.

In a final step, the scores svj , spj , s
b
j , s

i
j , s

d
j are aggregated into a single score for each

variable. For that, weights γv, γp, γb, γi, γd are used, which can be set by parameters
constraints/nonlinear/branching/*weight and default to γv = 1.0, γp = 1.0, γb = 0,
γi = 0.5, γd = 0. Since the scores can be of different magnitudes, they are scaled by the
maximal score in each category. Thus, let svmax := maxj=1,...,k s

v
j and similar for spmax,

sbmax, simax, sdmax. Further, the case that pseudo-cost scores may not be available for each
variable needs to be considered. Therefore, for a variable where pseudo-cost scores are
available, the final score is computed as

sfj :=
γv

svj
svmax

+ γp
spj
spmax

+ γb
sbj
sbmax

+ γi
sij
simax

+ γd
sdj
sdmax

γv + γp + γb + γi + γd
.

If a pseudo-cost score is not available, then the other scores are magnified:

sfj :=
γv

svj
svmax

+ γb
sbj
sbmax

+ γi
sij
simax

+ γd
sdj
sdmax

γv + γb + γi + γd
.

41

Branching Variable and Coordinate Since the variable scores are rather a heuristic
guideline than a clear indication which variable is “best”, the code chooses from all vari-
able with final score at least 0.9 maxj=1,...,k s

f
j (constraints/nonlinear/branching/

highscorefactor) uniformly at random. This allows to exploits performance variability
due to branching decisions by changing the seed for the random number generator
(randomization/randomseedshift).

The branching point selection rule has not been changed since the last SCIP release.
For a bounded variable xj , a value x̃j between x̂j and 1

2 (xj + xj) is chosen, see also
Section 4.4.5 of the SCIP Optimization Suite 7.0 release report [36]. Two child nodes are
created, one with xj ≤ x̃j and another with xj ≥ x̃j , if j 6∈ I. For j ∈ I, domains are
ensured to be disjoint (xj ≤ bxjc, xj ≥ bxjc+ 1).

4.3 Nonlinear Handler for Quadratic Expressions

The quadratic nonlinear handler detects quadratic expressions, provides specialized
domain propagation, and generates intersection cuts.

4.3.1 Detection of Quadratic Expressions

An expression in a constraint of (MINLPdp
ext) or (MINLPlp

ext) is recognized as quadratic
if it is a sum of terms where at least one term is either a product expression of two
expressions or a power expression with exponent 2. Formally, the detection routine
checks whether the expression can be written as

q(y) =

k∑
i=1

qi(y) with qi(y) = aiy
2
i + ciyi +

∑
j∈Pi

bi,jyiyj (22)

where yi is either an original variable (x) or another expression, ai, ci ∈ R, bi,j ∈ R \ {0},
j ∈ Pi ⇒ i 6∈ Pj for all j ∈ Pi, Pi ⊂ {1, . . . , k}, i = 1, . . . , k. A bilinear term yiyj
is associated with yi (i.e., j ∈ Pi) if yi appears more often in q(y) than yj . This is a
heuristic choice that should be beneficial for domain propagation. In case of a tie, the
order of expressions (see Section 4.1) is used as tie-breaker. If q(y) is linear in y or
consists of one power or product term only, then detection is aborted.

After a quadratic structure (22) has been established, the construction of the extended

formulations for (MINLPdp
ext) and (MINLPlp

ext) can differ.

For domain propagation ((MINLPdp
ext)), the nonlinear handler checks further whether

the quadratic expression is propagable, by what is meant that the termwise domain
propagation does not necessarily yield the best possible results due to suffering from the
so-called dependency problem of interval arithmetics. Specifically, (22) is propagable if at
least one argument (yi) appears at least twice. For instance, x2 +y2 is not propagable, but
x2 + x is. Only if (22) is propagable, the nonlinear handler registers itself as responsible
for domain propagation. Otherwise, the default nonlinear and the expression handlers
for sum, product, and power will take care of a termwise propagation of domain.

To construct (MINLPdp
ext), the nonlinear handler requests an auxiliary variable (wdp)

for any yi that is an expression and not yet a variable, but with two notable exceptions.
If a variable yi appears only in a square term of (22) (ai 6= 0, ci = 0, i 6∈ Pi′ for all
i′ = 1, . . . , k), then an auxiliary variable is introduced for y2

i instead of yi. Similarly, if
two variable yi and yj appear only as one bilinear term yiyj (ai = 0, aj = 0, ci = 0,
cj = 0, Pi = {j} or Pj = {i}), then an auxiliary variable is introduced for yiyj instead of
yi and yj . That is, a non-propagable part of (22) is split off and treated as if linear since
this part does not suffer from the dependency-problem and sometimes better domain
propagation routines are available for the single terms y2

i or yiyj (for an example see the

42

bilinear nonlinear handler described in Section 4.5). For an example, consider xy+ z2 + z,

which is propagable because z appears twice. However, for (MINLPdp
ext), the reformulation

w + z2 + z, w = xy, is applied. The quadratic nonlinear handler then handles domain
propagation for w + z2 + z, while either the default or the bilinear nonlinear handler
handle domain propagation for w = xy. An additional advantage of this division of work
is that for other expression where xy appears, variable w and its domain information
can be reused.

For separation ((MINLPlp
ext)), the nonlinear handler registers itself for participation

if intersection cuts are enabled (nlhdlr/quadratic/useintersectioncuts, currently
disabled by default), no other nonlinear handler (for example the SOC nonlinear handler)

handles separation yet, and the corresponding constraint in (MINLPlp
ext) is nonconvex.

To decide the latter, the eigenvalues and eigenvectors of the quadratic coefficients matrix
(defined by ai and bi,j of (22)) are calculated via LAPACK and stored for later use. To

construct (MINLPlp
ext), the nonlinear handler requests an auxiliary variable (wlp) for any

yi that is an expression and not yet a variable. Thus, even when the quadratic nonlinear
handler participates in both domain propagation and separation, the created extended
formulations may differ if parts of (22) are not propagable. This flexibility is a feature of
the current design.

A nonlinear handler can choose whether it solely wants to be responsible for domain
propagation or separation, or only wants to participate in addition to other routines. The
separation by the quadratic nonlinear handler is such a case, i.e., the nonlinear handler
informs to the constraint handler that other possible nonlinear handlers should also be
requested for separation. Currently, this means that the default and bilinear nonlinear
handler will become active, auxiliary variables will be introduced for each square and
bilinear term, and corresponding under- and overestimators will be computed by these
routines if an intersection cut was not generated. These nonlinear handlers are also the
only ones that register branching candidates. For intersection cuts, bound information
is not used explicitly by default and the quadratic nonlinear handler does not register
variables for branching.

4.3.2 Propagation of Quadratic Expressions

The goal of domain propagation is to use existing bounds on y and q(y) in (22) to derive
possibly tighter bounds on q(y) and y, respectively. The implementation is similar to
the one of cons quadratic in SCIP 7 and before [115], but backward propagation has
been extended. For simplicity, the special treatment for some square or bilinear terms as
mentioned in the previous section is disregarded here.

Forward Propagation (INTEVAL, (13)) Here, the goal is to propagate bounds on y to
the quadratic expression q(y). To obtain the best bounds, it would be necessary to
maximize/minimize q(y) for y ∈ [y, y]. Since this is too expensive in general, bounds are
overestimated. For that, each quadratic term qi(y), i = 1, . . . , k, is considered separately.
If qi(y) is not univariate (Pi 6= ∅), then each yj , j ∈ Pi, is replaced by its current bounds
and the min/max of aiy

2
i + (ci +

∑
j∈Pi bi,j [yj , yj])yi are calculated [24].

Backward Propagation (REVERSEPROP, (14), (15)) The goal of backward propagation is
to derive bounds on each yi from given bounds [q, q] on q(y) and current bounds on y.
Similar to forward propagation, the tightest bounds can be derived by maximizing/mini-
mizing each yi w.r.t. y ∈ [y, y] and q(y) ∈ [q, q]. Since this is again too expensive to do
in general, bounds are overestimated again.

Let [q
i
, qi], i = 1, . . . , k, be bounds on each qi(y) for y ∈ [y, y]. These are computed

in forward propagation. Similar to forward propagation, bounds for each yi can be

43

computed by reduction to and solving of a univariate quadratic interval equation [24]:

aiy
2
i + (ci +

∑
j∈Pi

bi,j [yj , yj])yi ∈ [q, q]−
k∑

i′=1,i′ 6=i

[q
i′
, qi′]. (23)

A downside of this approach is that bounds for variables that appear less often may
not be deduced. For example, consider y2

1 + y1y2 + y1y3 + y2y3 + y3. As y2 has less
appearances than y1 and y3, this quadratic gets partitioned into q1(y) = y2

1 + y1y2 + y1y3,
q2(y) = 0, and q3(y) = (y3 + y3y2). Therefore, no bounds are computed for y2 in
backward propagation. The quadratic constraint handler of SCIP 7 handled the case of
qi ≡ 0 in certain situations where yi appeared in only one bilinear term. For SCIP 8,
this has been generalized. In the example, a bound on y2 is obtained by rewriting as
y2 + y3 ∈ ([q, q]− [q

3
, q3])/y1− y1, finding the min/max of the function on the right-hand

side, and using this interval for backward propagation on y2 + y3. In general, after
solving (23), the quadratic equation q(y) ∈ [q, q] is interpreted as

ci +
∑
j∈Pi

bi,jyj ∈
1

yi

[q, q]−
k∑

i′=1,i′ 6=i

[q
i′
, qi′]

− aiyi,
the min/max of the univariate interval function on the right-hand side are calculated,
and the resulting interval is used for backward propagation on ci +

∑
j∈Pi bi,jyj .

4.3.3 Intersection Cuts for Quadratic Constraints

For separation, assume the constraint of (MINLPlp
ext) is q(y) ≤ w with q(y) as in (22)

and w an auxiliary variable of (MINLPlp
ext). Further, assume that q(y) is nonconvex

(q(y) being convex is handled by the nonlinear handler for convex expressions, see
Section 4.6). The quadratic nonlinear handler implements the separation of intersection
cuts [111, 10, 41] for the set S := {(y, w) ∈ Rk : q(y) ≤ w} that is defined by this
constraint.

Let (ŷ, ŵ) be a basic feasible LP solution violating q(y) ≤ w. First, a convex inequality
g(y, w) < 0 is build that is satisfied by (ŷ, ŵ), but by no point of S. This defines a
so-called S-free set C = {(y, w) ∈ Rk+1 : g(y, w) ≤ 0}, that is, a convex set with
(ŷ, ŵ) ∈ int(C) containing no point of S in its interior. The quality of the resulting cut
highly depends on which S-free set is used. The tightest possible intersection cuts are
obtained by using maximal S-free sets as proposed by Muñoz and Serrano [81].

By using the conic relaxation K of the LP-feasible region defined by the nonbasic
variables at (ŷ, ŵ), the intersection points between the extreme rays of K and the
boundary of C are computed. The intersection cut is then defined by the hyperplane
going through these points and successfully separates (x̂, ŵ) and S. Adding this cut to
the LP relaxation excludes the violating point (x̂, ŵ) from the LP-feasible region and
thus enforces the quadratic constraint q(y) ≤ w. To obtain even better cuts, there is also
a strengthening procedure implemented that uses the idea of negative edge extension of
the cone K [42]. A detailed description of how the (strengthened) intersection cuts are
implemented can be found in the paper by Chmiela et al. [21].

4.4 Nonlinear Handler for Second-Order Cones

The nonlinear handler for second-order cone (SOC) structures replaces and extends the
previous constraint handler for second-order cone constraints. It detects second-order
cone constraints in the original or extended formulation and provides separation by
means of a disaggregated cone reformulation.

44

4.4.1 Detection

Given a constraint hlp
i (x) ≤ wlp

i (Qi being ≥ is handled similarly) of the extended

formulation (MINLPlp
ext), the nonlinear handler checks for four different structures. In

some cases, it distinguishes between constraints that are copies of an original constraint
with slack variable wlp

i added, that is, i ≤ m, and constraints that only exist in the
extended formulation due to the introduction of auxiliary variables, i.e., i > m. Further,
binary variables are treated as if they were squared, since this increases the likelihood of
finding a SOC-structure.

Euclidian Norm If i > m, it is checked whether hlp
i (x) has the form√√√√ k∑

j=1

(ajy2
j + bjyj) + c (24)

for some coefficients aj , bj , c ∈ R, aj > 0, and where yj is either an original variable (x)

or some subexpression of hlp
i (·), j = 1, . . . , k, for some k ≥ 2. Rewriting (24) reveals the

constraint √√√√ k∑
j=1

((
√
ajyj +

bj
2
√
aj

)2

−
b2j

4aj

)
+ c ≤ wlp

i . (25)

If c−∑k
j=1

b2j
4aj
≥ 0, then (25) has SOC-structure. Thus, the nonlinear handlers requests

auxiliary variables for each yj , j = 1, . . . , k, and declares that it will provide separation.
In a future version, any positive-semidefinite quadratic expression should be allowed for
the argument of

√· in (24).

If i ≤ m, then wlp
i is just a slack-variable and the constraint is equivalent to√∑k

j=1(ajy2
j + bjyj) + c ≤ gi. In that case, the nonlinear handler does not get ac-

tive. Assuming aj > 0 again, this will result in the extended formulation
√
w0 ≤ gi,∑k

j=1(ajwj + bjyj + c) ≤ w0, y2
j ≤ wj , j = 1, . . . , k, where w0, . . . , wk are new auxiliary

variables. We believe that separation for this formulation will be more efficient than
for (25) (constraint

√
w0 ≤ gi is easily enforced by domain propagation).

Simple Quadratics Check whether hlp
i (x) has the form

k∑
j=1

(ajy
2
j)− ak+1y

2
k+1 + c

where aj , c ∈ R, aj > 0, and yj is either an original variable (x) or some subexpression

of hlp
i (·), j = 1, . . . , k + 1, for some k ≥ 1. The relaxed constraint

k∑
j=1

(ajy
2
j)− ak+1y

2
k+1 + c ≤ wlp

i (26)

has SOC-structure if c − wlp
i ≥ 0. Thus, in this case the nonlinear handler requests

auxiliary variables for each yj , j = 1, . . . , k+1, and declares that it will provide separation.

If i ≤ m, then the replacement of the slack variable wlp
i by wlp

i will not be problematic

since it is sufficient to enforce the original constraint gi(x) ≤ gi (recall hlp
i = gi, w

lp
i = gi

initially). However, if i > m, then relaxing wlp
i to wlp

i could mean that infeasibility
in (MINLP) cannot be resolved by enforcing (26). Therefore, if i > m, then the nonlinear

45

handler indicates to the constraint handler that separation should be requested from
other nonlinear handlers as well. In the current configuration, this introduces auxiliary
variables for each square term in (26) by the default nonlinear handler. The same
distinction into i ≤ m and i > m applies to the following two structures.

Simple Quadratics (Rotated SOC Variant) Check whether hlp
i (x) has the form

k∑
j=1

(ajy
2
j)− ak+1yk+1yk+2 + c

where aj , c ∈ R, aj > 0, and yj is either an original variable (x) or some subexpression

of hlp
i (·), j = 1, . . . , k + 2, for some k ≥ 0. The relaxed constraint

k∑
j=1

(ajy
2
j) +

ak+1

4
(yk+1 − yk+2)2 − ak+1

4
(yk+1 + yk+2)2 + c ≤ wlp

i

has SOC-structure if c − wlp
i ≥ 0. Thus, in this case the nonlinear handler requests

auxiliary variables for each yj , j = 1, . . . , k+2, and declares that it will provide separation.

General Quadratics Check whether hlp
i (x) ≤ wlp

i is a quadratic constraint that is SOC-
representable. As suggested by Mahajan and Munson [66], this is done by computing
an eigenvalue-decomposition of the quadratic coefficients matrix via LAPACK and
attempting to rewrite hlp

i (x) as

k+1∑
j=1

λj(v
>
j y + βj)

2 + c

where λ1, . . . , λk+1 ∈ R are the nonzero eigenvalues with corresponding eigenvectors
v1, . . . , vk+1 ∈ R`, λj > 0, j = 1, . . . , k, λk+1 < 0, βj , c ∈ R, j = 1, . . . , k + 1, k ≥ 1,

and yj is either an original variable (x) or some subexpression of hlp
i (·), j = 1, . . . , `.

If 0 6∈ v>k+1[y, y] + βk+1 (thus
√

(v>k+1y + βk+1)2 = ±(v>k+1y + βk+1) is linear) and

c− wlp
i ≥ 0, then an SOC-structure has been detected, the nonlinear handler requests

auxiliary variables for each yj , j = 1, . . . , k, and declares that it will provide separation.

4.4.2 Separation

The SOC constraint that has been detected before is stored in the form√√√√ k∑
j=1

(v>j y + βj)2 ≤ v>k+1y + βk+1 (27)

with vj ∈ R`, j = 1, . . . , k + 1, where y1, . . . , y` are variables of (MINLPlp
ext).

Since the left-hand side of (27) is convex, a solution ŷ that violates (27) can be
separated by linearization of the left-hand side of (27) via a gradient cut:√√√√ k∑

j=1

(v>j ŷ + βj)2 +
∑̀
i=1

∂

∂yi

√√√√ k∑
j=1

(v>j y + βj)2 (yi − ŷi) ≤ v>k+1y + βk+1

46

However, if there are many terms on the left-hand side of (27) (k being large), then
it can require many cuts to provide a tight linear relaxation of (27). Thus, as suggested
by Vielma et al. [114], a disaggregation of the cone is used if k ≥ 3:

(v>j y + βj)
2 ≤ zj(v>k+1y + βk+1), j = 1, . . . , k, (28)

k∑
j=1

zj ≤ v>k+1y + βk+1, (29)

where variables z1, . . . , zk are new variables that are added to SCIP and marked as
“relaxation-only”. A solution (ŷ, ẑ) that violates (27) needs to violate also (28) for some
j ∈ {1, . . . , k} or (29). The latter is already linear and can be added as cut. If a rotated
second-order cone constraint (28) is violated from some j, then it is transformed into the
standard form√

4(v>j y + βj)2 + (v>k+1y + βk+1 − zj)2 ≤ v>k+1y + βk+1 + zj

and a gradient cut is constructed by linearization of the left-hand side.
If the constraint handler requests only “strong” cuts (see Section 4.2.10), then gradient

cuts are only added when their efficacy is at least 10−5 (nlhdlr/soc/mincutefficacy).
The efficacy is the violation of a cut divided by the Euclidian norm of its coefficient
vector.

4.5 Nonlinear Handler for Bilinear Expressions

The bilinear nonlinear handler identifies expressions of the form y1y2, where y1 and y2 are
either non-binary variables of (MINLPlp

ext) or other expressions. For a product y1y2, the
expressions handler for products already provides linear under- and overestimators and
domain propagation that is best possible when considering the bounds [y

1
, y1]× [y

2
, y2]

only. The nonlinear handler, however, can exploit linear inequalities over y1 and y2 to
provide possibly tighter linear estimates and variable bounds. These inequalities are
found by projection of the LP relaxation onto variables (y1, y2). For more details, see
Müller et al. [78].

4.6 Nonlinear Handler for Convex and Concave Expressions

Two nonlinear handlers are available that try to detect convexity or concavity of a given
expression hlp

i (x) and provide appropriate linear under- and overestimators. The naming
of the nonlinear handlers may be slightly confusing as the convex nonlinear handler
checks for concavity of hlp

i (x) if overestimators are desired and the concave nonlinear
handler checks for convexity if underestimators are desired. After all, the detection
algorithms of both nonlinear handlers are similar, so that they are discussed together
here. The linear estimators are computed differently, though.

In the following only the underestimating case (Qi being either ≤ or =) is considered.
The overestimating case is handled analogously. The nonlinear handlers do not contribute
to domain propagation so far.

4.6.1 Detection

Assume the constraint handler requests that underestimators of hlp
i (x) need to be found.

The convex nonlinear handler then seeks to find subexpressions of hlp
i (x) that need to be re-

placed by auxiliary variables wlp
i+1, . . . such that the remaining expression hlp

i (x,wlp
i+1, . . .)

47

is convex. Similarly, the concave nonlinear handler seeks for hlp
i (x,wlp

i+1, . . .) to be con-
cave. In both cases, the detection algorithm can aim for the remaining expression to be
as large as possible. This point will be revisited later.

To construct a maximal convex subexpression of hlp
i (x), the usual convexity and

concavity detection rules are inverted and applied on hlp
i (x) in reverse order. To do so,

the expression is traversed in depth-first-search order, starting from the root of hlp
i (x).

With each subexpression the requirement of it being convex and/or concave is associated.
For the root, this will be convexity. When a subexpression is considered, it is checked
whether the subexpression can have the required curvature. This is done by formulating
requirements on convexity/concavity on the children of the subexpression. If there are
no conditions under which a subexpression can have the required curvature, then it is
marked as to be replaced by an auxiliary variable.

For an example, consider the function −
√

exp(x)
√
y + exp(x) with y = 0. First, it

will be checked under which conditions on its arguments the sum will be convex. This
will create the requirements “

√
exp(x)

√
y must be concave” and “exp(x) needs to be

convex”. Checking the former, the special structure
√·√· (a product of two power

expressions, both exponents being 0.5) may be detected and the requirements “exp(x)
must be concave” and “y must be concave” are created. The check for “exp(x) must be
concave” fails, i.e., there are no conditions on x (other than x = x) such that exp(x) is
concave. Therefore, this appearance of exp(x) is marked for replacement by an auxiliary
variable. The check for “y must be concave” succeeds, since the function y 7→ y is both
convex and concave. The remaining check for “exp(x) needs to be convex” succeeds
under the new condition “x needs to be convex”, which is satisfied. Thus, the resulting
maximal convex subexpression is −√w√y + exp(x), where w is a new auxiliary variable
and w ≤ exp(x) is added to the extended formulation. As this example has shown,
it is possible that several appearances of the same subexpression (exp(x)) are treated
differently, depending on what requirements are imposed on the subexpression by its
parents.

Four checks whether a subexpression can have a required curvature are currently
implemented. These are called in the given order.

Product Composition (nlhdlr/{convex,concave}/cvxprodcomp) Check whether a gi-
ven expression is a product of the form af(bg(x) + c)g(x) with constants a, b, c and
repeating subexpression g(x). Considering the second derivative and by using available
information on bounds and the CURVATURE and MONOTONICITY callbacks of the expression
handlers, a condition on the curvature of g(·) can be derived that is sufficient for
af(bg(x) + c)g(x) to be convex or concave.

Signomial (nlhdlr/{convex,concave}/cvxsignomial) Check whether a given expres-

sion is a signomial, i.e., a product of power expressions, c
∏k
j=1 f

pj
j (x) with c, pj ∈ R and

subexpressions fj(x), j = 1, . . . , k. If f
j
≥ 0, then the product is convex if i) pj < 0 and

fj(x) is concave for all j = 1, . . . , k or ii)
∑k
j=1 pj ≥ 1 and there exists a j∗ ∈ {1, . . . , k}

such that pj < 0 and fj(x) is concave for all j 6= j∗ and fj∗(x) is convex. Further, the

product is concave if pj > 0 and fj(x) is concave for all j = 1, . . . , k and
∑k
j=1 pj ≤ 1.

These conditions are proven by Maranas and Floudas [69] and Chen and Huang [20] for
the case that each fj(x) is equal to a variable. If f j < 0, then one can adapt by replacing
fj by −fj . If the exponents satisfy the given conditions for convexity or concavity
of the product, conditions on convexity and concavity of the subexpressions fj(x) are
formulated.

Quadratics (nlhdlr/{convex,concave}/cvxquadratic) Check whether a given expres-
sion is quadratic, that is, is of the form q(y) given by (22), where each yj is either an

48

original variable or a subexpression. With the same methods as in the nonlinear handler
for quadratics, the sign of the eigenvalues of the quadratic coefficients matrix of q(y) can
be checked to decide whether q(y) is convex or concave. If q(y) has the desired curvature,
then it is required that every yj is linear.

The check on quadratics is currently disabled for the concave nonlinear handler. It is
not clear yet under which conditions it is beneficial to compute underestimators on a
multivariate concave q(y) via the methods of the concave nonlinear handler instead of
handling each square and bilinear term of q(y) separately.

Expression Handler For an expression f(g1(x), . . . , gk(x)), call the CURVATURE callback
of the expression handler for f(·). If implemented and successful, then it provides
convexity or concavity requirements for each gj(x).

As has been pointed out by Tawarmalani and Sahinidis [110], a tighter linear relaxation
of a convex set (in the sense that less cuts are required to achieve the same outer-
approximation) can usually be obtained when an extended formulation is used for
function composition. For instance, for f(g(x)) with both f(·) and g(·) being convex, f(·)
being monotonically increasing, and g(·) being nonlinear, it is beneficial to consider the
extended formulation f(w), w ≥ g(x). This is easily achieved in the detection algorithm
by changing the requirement on a subexpression from convex or concave to linear
(parameter nlhdlr/convex/extendedform). Furthermore, the nonlinear handlers ignore

expressions hlp
i (·) that are a sum with more than one non-constant term (parameters

nlhdlr/{convex,concave}/detectsum), unless the sum is a quadratic expression with
at least one bilinear term, for example, x2 + 2xy + y2.

For the concave nonlinear handler, however, the observation by Tawarmalani and
Sahinidis [110] does not apply. Instead, the number of variables in the expression for
which estimators need to be computed can be an issue. Therefore, here auxiliary variables
are requested for multivariate linear subexpressions. That is, even though concavity of
log(x+ y+ z) can be recognized, the extended formulation log(w), w Q x+ y+ z, is used.
This way, only one- instead of three-dimensional underestimators need to be calculated.

Finally, if hlp
i (x) were transformed by the nonlinear handler into hlp

i (x,wi+1, . . . , wmlp)
such that the corresponding expression has only original or auxiliary variables as children,
then the detection of the nonlinear handler is reported as failed (parameter nlhdlr/

{convex,concave}/handletrivial). Instead, the default nonlinear handler will provide
linear estimates via the ESTIMATE callback of the expression handlers. We assume that
these are more efficient than the generic implementation in the convex and concave
nonlinear handlers.

4.6.2 Underestimators for Convex Expressions

For the convex function hlp
i (x,wlp

i+1, . . . , w
lp
mlp) and reference point (x̂, ŵlp), an underesti-

mator is given by computing a tangent on the graph of hlp
i (·) at (x̂, ŵlp):

hlp
i (x̂, ŵlp

i+1, . . . , ŵ
lp
mlp) +∇hlp

i (x̂, ŵlp
i+1, . . . , ŵ

lp
mlp)

(
x− x̂

wlp − ŵlp

)
.

If, however, hlp
i (x,wlp

i+1, . . . , w
lp
mlp) is univariate, that is, hlp

i (x,wlp
i+1, . . . , w

lp
mlp) = f(y)

for some variable y, and y is integral, then taking the secant on the graph of f(y) can
give a tighter underestimator:

f(bŷc) + (f(bŷc+ 1)− f(bŷc)) (y − bŷc).

49

4.6.3 Underestimators for Concave Expressions

To simplify notation, let f(y), y ∈ Rk, be the concave function hlp
i (x,wlp

i+1, . . . , w
lp
mlp) for

which a linear underestimator needs to be computed. Assume further that variables that
are currently fixed have been replaced by the corresponding constant.

Since f(y) is concave, its convex envelope with respect to [y, y] is vertex-polyhedral,
that is, it is a polyhedral function which vertices correspond to the vertices of [y, y].
Therefore, any hyperplane αy + β that underestimates f(y) in all vertices of [y, y] is
a valid linear underestimator. Maximizing αŷ + β under these constraints gives an
underestimator that is as tight as possible in the reference point ŷ. For the frequent cases
k = 1 and k = 2, routines that directly compute such an underestimator are available.
For k > 2, a linear program is solved.

Since such underestimators need to be computed repeatedly for varying domains,
updates to the cut generating linear program (CGLP) are kept to a minimum. By use of
the linear transformation T : [0, 1]k → [y, y] given by T (ỹ)i = y

i
+(yi−yi)ỹi, i = 1, . . . , k,

the matrix of the CGLP can be kept constant:

max
α̃,β̃

α̃>T−1(ŷ) + β̃,

s.t. α̃>ỹ + β̃ ≤ f(T (ỹ)), ∀ỹ ∈ {0, 1}k.

The cut in the original y-space is then recovered via αj =
α̃j

yj−yj
, j = 1, . . . , k, and

β = β̃ −∑k
j=1 αjyj . Since the CGLP typically has more rows than columns, the dual of

CGLP is formulated and solved. To increase the chance that αy + β is a facet of the
convex envelope of f(y), the reference point is perturbed and moved into the interior of
[y, y].

At the moment, underestimators for concave functions in more than 14 variables are
not computed due to the size of the CGLP being exponential in k. In fact, the detection
algorithm in the concave nonlinear handler already returns unsuccessful if the recognized
concave expression has more than 14 variables. Dynamic row or column generation
methods could be added to overcome this limit [11].

Since the underestimator may not be tight at (ŷ, f(ŷ)), all variables are registered as
branching candidates by this nonlinear handler.

4.7 Nonlinear Handler for Quotients

Note that the available expression handlers (see Section 4.1) do not include a handler for
quotients since they can equivalently be written using a product and a power expression.
However, the default extended formulation for an expression y1y

−1
2 is given by replacing

y−1
2 by a new auxiliary variable w. The linear outer-approximation is then obtained by

estimating y1w and y−1
2 separately. The quotient nonlinear handler can provide tighter

estimates by checking whether a given function hlp
i (x) can be cast as

f(y) =
ay1 + b

cy2 + d
+ e (30)

with a, b, c, d, e ∈ R, a, c 6= 0, and y1 and y2 being either original variables (x) or

subexpressions of hlp
i (x). At the moment, only expressions hlp

i (·) that are of the form
ay1y

−1
2 or ay1y

−1
2 + by−1

2 + e are recognized as quotient and it is checked whether yj
equals a′jy

′
j + b′j for some a′j , b

′
j , j = 1, 2. For estimation and domain propagation, the

univariate (y1 = y2) and bivariate (y1 6= y2) cases are handled separately.

50

4.7.1 Univariate Quotients (y1 = y2)

If −d/c 6∈ [y
2
, y2], then f(y) is either convex or concave on [y, y]. Thus, under- and

overestimators are computed via a tangent or a secant on the graph of f(y). If the
singularity is in the domain of y, then no estimator can be computed.

For forward domain propagation, observe that the minimum and maximum of f(y) is
attained at y or y if −d/c 6∈ [y

2
, y2]. It is therefore sufficient for evaluate f(y) at y and y

to obtain f([y, y]). If the singularity is in the domain of y, then no finite bounds on f(y)
can be computed.

For backward domain propagation, let [f, f] be the bounds given for f(y). Invert-
ing (30) yields

y =
b− d[f, f]

c[f, f]− a
.

This interval can be evaluated as in forward propagation.

4.7.2 Bivariate Quotients

Let x, x, y, y denote lower and upper bounds on variables x and y, respectively. In
the bivariate case, estimators are computed for y′1/y

′
2 and then transformed back into

(y1, y2)-space. Thus, for the following, a = 1, b = 0, c = 1, d = 0 is assumed.
If 0 ∈ [y

2
, y2], then no estimators can be computed.

If y
1
≥ 0 and y

2
> 0, then an underestimator is obtained by computing a tangent

on the graph of the convex underestimator of f(y), which is given by Zamora and
Grossmann [120] as

1

y2

(
y1 +

√
y

1
y1

√y
1

+√y
1

)2

.

An overestimator is given by a hyperplane that passes either through the points (y
1
, y

2
,

y
1
/y

2
), (y

1
, y2, y1

/y2) and (y1, y2
, y1/y2

) or through the points (y
1
, y2, y1

/y2), (y1, y2
,

y1/y2
) and (x1, y2, y1/y2). The choice of the three points depends on which combination

yields the estimator that is tightest at the given reference point, for example, the LP
solution to be separated.

If 0 ∈ [y
1
, y1] and y

2
> 0, recall that the nonlinear handler works on the constraint

y1/y2 Qi w
lp
i in (MINLPlp

ext) and that it is valid to replace Qi by =. Rewriting as

y1 = y2w
lp
i , linear McCormick envelopes [76] are computed for y2w

lp
i . These inequalities

are then rearranged to obtain linear estimators on wlp
i .

The cases of y1 < 0 and/or y2 < 0 are handled similarly, up to swapping and negation
of bounds, coefficients, and inequality signs.

Since each variable appears only once in the expression, the default domain prop-
agation for f(y) does not suffer from the dependency problem of interval arithmetics.
Therefore, the nonlinear handler does not provide an extra implementation of domain
propagation for the bivariate case.

4.8 Nonlinear Handler for Perspective Reformulation

This nonlinear handler creates strengthened cutting planes for constraints that depend on
semi-continuous variables. A variable xj , j ∈ N , is semi-continuous with respect to the
binary indicator variable xj′ , j

′ ∈ I, if it is restricted to the domain [x1
j , x

1
j] when xj′ = 1

and has a fixed value x0
j when xj′ = 0. In the rest of this subsection, the superscript 0

denotes the value of a semi-continuous variable at xj′ = 0.

51

Consider the constraint
hlp
i (x,wlp

i+1, . . .) Q wlp
i (31)

and write hlp
i (·) as a sum of its nonlinear and linear parts:

hlp
i (x,wlp

i+1, . . .) = hnl
i (xnl, w

lp
nl) + hl

i(xl, w
lp
l),

where hnl
i (·) is a nonlinear function, hl

i(·) is a linear function, xnl and wlp
nl are the vectors

of variables x and wlp, respectively, that appear only in the nonlinear part of hlp
i , and

xl and wlp
l are the vectors of variables x and wlp, respectively, that appear only in the

linear part of hlp
i (·).

The perspective handler works on Constraint (31) if xnl and wlp
nl are semi-continuous

with respect to the same indicator variable xj′ , and at least one other nonlinear handler

provides estimation (ESTIMATE callback) for hlp
i (·). Thus, a nonlinear handler that

implements only the ENFO callback, such as, for example, the SOC handler, is not
suitable.

4.8.1 Detection of Semi-continuous Variables

To determine whether a variable xj is semi-continuous, the detection callback searches
for pairs of implied bounds on xj with the same indicator xj′ :

xj ≤ α(u)xj′ + β(u),

xj ≥ α(`)xj′ + β(`).

If β(u) = β(`), then xj is a semi-continuous variable and x0
j = β(u), x1

j = α(`) + β(`), and

x1
j = α(u) + β(u).

This information can be obtained either from linear constraints in xj and xj′ or by
finding implicit relations between xj and xj′ . Such relations can be detected by probing,
which fixes xj′ to its possible values and propagates all constraints in the problem, thus
detecting implications of xj′ = 0 and xj′ = 1. SCIP stores the implied bounds in a
globally available data structure.

The perspective nonlinear handler also detects semi-continuous auxiliary variables.
Given hlp

i (x,wlp
i+1, . . .) Qi w

lp
i , where x,wlp

i+1, . . . are semi-continuous variables depending

on the same indicator xj′ , the auxiliary variable wlp
i can also be assumed to be semi-

continuous since it is valid to replace Qi by =.

4.8.2 Separation

Suppose that the current relaxation solution violates Constraint (31). If the non-

perspective nonlinear handlers claimed that estimators of hlp
i (·) depend on variable

bounds, probably because the functions is nonconvex, then probing is first performed
for xj′ = 1 in order to tighten the implied bounds on variables x,wlp

i+1, Linear
underestimators (for “≤” constraints) or overestimators (for “≥” constraints) that are
valid when xj′ = 1 are then obtained for the tightened bounds. This estimator `(·) can

be separated into parts corresponding to the nonlinear and linear variables of hlp
i (·),

respectively:
`(x,wlp

i+1, . . .) = `nl(xnl, w
lp
nl) + `l(xl, w

lp
l)

An extension procedure is applied to the nonlinear part to ensure it is valid and
tight for xj′ = 0, while the linear part can remain unchanged since it shares none of the
variables with the nonlinear part:

`nl(xnl, w
lp
nl) +

(
hnl
i (x0

nl, w
lp,0
nl)− `nl(x0

nl, w
lp,0
nl)

)
(1− xj′) + `l(xl, w

lp
l).

52

This extension ensures that the estimator is equal to hlp
i (x,wlp

i+1, . . .) for xj′ = 0, xnl = x0
nl,

and wnl = w0
nl, and equal to `(x,wlp

i+1, . . .) for xj′ = 1. In the convex case, cuts
thus obtained are equivalent to the classic perspective cuts [28]. More details on the
implementation in SCIP can be found in the paper by Bestuzheva et al. [17].

4.9 Separator for Cuts from the Reformulation-Linearization Technique

A nonlinearity that appears frequently is a product between two variables and/or
functions. The separator for Reformulation-Linearization Technique (RLT) cuts [6, 7, 8]

for bilinear product relations in (MINLPlp
ext) and the separators discussed in the following

two sections focus on enforcing the relationship between a product of two variables
(original or auxiliary) and a corresponding auxiliary variable. The RLT separator can
additionally reveal linearized products between binary and continuous variables.

There exist variations of the RLT that can be applied to any (not necessarily quadratic)
polynomials [100]. This separator, however, deals with bilinear products only.

In the following, x refers to any variable of (MINLPlp
ext) and Xi,j refers to the auxiliary

variable (wlp) that is associated with a constraint xixj Q Xi,j in (MINLPlp
ext). Note that

Xi,j may not exist in (MINLPlp
ext) for every pair of xi and xj , even when xixj appears in

some constraint of (MINLP) (for example, auxiliary variables are not created for terms
in convex quadratic constraints). Both Xi,j and Xj,i refer to the same variable.

Given a product relation Xij = xixj , where xi ∈ [xi, xi], xj ∈ [xj , xj] and a linear

constraint a>x ≤ b, RLT cuts are derived by first multiplying the constraint by nonnega-
tive bound factors (xi − xi), (xi − xi), (xj − xj), and (xj − xj). For instance, consider
multiplication by the factor (xi − xi), which yields a valid nonlinear inequality:

a>x (xi − xi) ≤ b (xi − xi). (32)

This is referred to as the reformulation step.
The linearization step is then performed for all terms xkxi in (32). If a product relation

Xki = xkxi exists, then the product is replaced with Xki. If xk and xi are contained in
the same clique, the product is replaced with an equivalent linear expression. Otherwise,
it is replaced by a linear under- or overestimator such that the inequality remains valid.
By default, RLT cuts are constructed only for combinations of rows and bound factors
where all relations Xki = xkxi exist (parameter separating/rlt/maxunknownterms).

4.9.1 Implicit Product Detection

Bilinear product relations in which one of the multipliers is binary can equivalently be
written via mixed-integer linear constraints. Likewise, MILP constraints representing
such relations can be identified in order to derive these implicit bilinear products.

Consider two linear constraints depending on the same three variables xi, xj and xk,
where xi is binary:

a1xi + b1xk + c1xj ≤ d1, (33a)

a2xi + b2xk + c2xj ≤ d2. (33b)

If b1b2 > 0 and c2b1 − b2c1 6= 0, then these constraints imply a product relation,

Axi +Bxk + Cxj +D Q xixj , (34)

where the coefficients A, B, C, and D and the inequality sign are obtained by:

− setting xi to 1 in (33a) and (34), and requiring that the coefficients are similar for
each variable, and the constants are equal;

53

− setting xi to 0 in (33b) and (34), and similarly requiring equivalence;

− solving the linear system resulting from the first two steps.

SCIP analyses the linear constraints in the problem and stores all detected implicit
products. RLT cuts that use these products may strengthen the default continuous
relaxation {(xi, xj , xk) : xi ∈ [0, 1], (33)}.

4.9.2 Separation

Let (x̂, X̂) be the solution to be separated. In order to reduce the computational cost of
RLT cut separation, SCIP takes into account the signs of coefficients of linear constraints
and signs of product relation violations. In particular, when multiplying a constraint
a>x ≤ b by a bound factor, the resulting RLT cut can only be violated if akx̂kx̂j < akX̂kj ,
that is, when replacing the product with the corresponding variable increases the violation
of the inequality. This fact is used to ignore combinations of linear constraints and bound
factors that will not produce a violated cut, thus reducing the computational effort.

This is implemented via a row marking algorithm which, for every variable xi that
participates in bilinear products, iterates over all variables xj that appear in products
together with xi. When it encounters a violated product, the algorithm iterates over all
linear rows where xj has a nonzero coefficient and stores them in a sparse sorted array
together with the marks indicating which bound factors of xi it should be multiplied
with. The cut generation algorithm then iterates over the array of marked rows and
constructs RLT cuts from the products of each row with the suitable bound factors.

More details on the algorithms and implementation will be included in the upcoming
paper [?].

4.10 Separator for Principal Minors of X � xx>

Another new separator that enforces bilinear product relations in (MINLPlp
ext) is sepa

minor. The notation introduced in the previous section is used.
A convex relaxation of condition X = xx> is given by requiring X − xx> to be

positive definite. Separation for the set {(x,X) : X−xx> � 0} itself is possible, but cuts
are typically dense and may include variables Xij for products that do not exist in the
problem [86]. Therefore, sepa minor considers only (principle) 2× 2 minors of X − xx>,
which also need to be positive semi-definite. By Schurs complement, this means that the
condition

Aij(x,X) :=

 1 xi xj
xi Xii Xij

xj Xij Xjj

 � 0 (35)

needs to hold. The separator detects principle minors for which Xii, Xjj , Xij exist and
enforces Aij(x,X) � 0.

To identify which entries of the matrix X exist, the separator iterates over the
available nonlinear constraints. For each constraint, its expressions are explored and all
expressions of the form x2

i and xixj are collected. Then, the separator iterates through
the found bilinear terms xixj and if the corresponding expressions x2

i and x2
j exist, a

minor is detected.
Let (x̂, X̂) be a solution that violates (35), i.e., there exists an eigenvector v ∈ R3

of Aij(x̂, X̂) with v>Aij(x̂, X̂)v < 0. To separate (x̂, X̂), sepa minor adds the globally
valid linear inequality v>Aij(x,X)v ≥ 0 to the separation storage of SCIP.

For circle packing instances, the minor cuts are not really helpful [56]. Since experi-
ments showed that SCIP’s overall performance was negatively affected, circle packing
constraints are identified and their bilinear terms are ignored by sepa minor (parameter
separating/minor/ignorepackingconss).

54

4.11 Separator for Intersection Cuts on Rank-1 Constraint for X

Another new separator that enforces bilinear product relations in (MINLPlp
ext) is sepa

interminor. The notation introduced in Section 4.9 is used.

Since X = xx> has rank 1 in any feasible solution, any 2× 2 minor

(
Xi1j1 Xi1j2

Xi2j1 Xi2j2

)
of X needs to have determinant 0. That is, for any set of variable indices i1, i2, j1, j2
with i1 6= i2 and j1 6= j2, the condition

Xi1j1Xi2j2 = Xi1j2Xi2j1 (36)

needs to hold. If all variables in this constraint exist in the problem and the solution (x̂, X̂)
that is to be separated violates (36), the separation strategy described in Section 4.3.3
is used to add (strengthened) intersection cuts that separate (x̂, X̂). Additionally, it
is also possible (parameter separating/interminor/usebounds) to use the bounds on
xi1 , xi2 , xj1 , xj2 to improve the cut by enlarging the corresponding S-free set [21].

The separator is currently disabled by default.

4.12 Revised Primal Heuristic that Solves NLP Subproblem

The primal heuristic subnlp targets problems like (MINLP), but runs on any CIP where
the NLP relaxation is enabled. Given a point x̃ that satisfies the integrality requirements
(x̃i ∈ Z for all i ∈ I), the heuristic fixes all integer variables to the values given by x̃ in a
copy of the CIP, presolves this copy, and triggers a solution of the NLP relaxation by an
NLP solver using x̃ as starting point. If the NLP solver, such as Ipopt, finds a solution
that is feasible (and often also locally optimal) for the NLP relaxation, it is tried whether
it is also feasible for the CIP. If the CIP is a MINLP, then this should usually be the case.
The starting point x̃ can be the current solution of the LP relaxation if integer-feasible,
can be a point that a primal heuristic that searches for feasible solutions of the MILP
relaxation has computed, or can have been passed on by other primal heuristics that
look for MINLP solutions, such as undercover or mpec.

The subnlp primal heuristic, which is implemented in virtually any global MINLP
solver, had been added to SCIP together with the support for quadratic constraints
(SCIP 1.2.0). The rewrite of the algebraic expression system (Section 4.1) and the
handling of nonlinear constraints (Section 4.2) and the updates to the NLP solver
interfaces and NLP relaxation (Section 4.13) were a good opportunity for a thorough
revision of the heuristic.

Starting Condition and Iteration Limit By default, the heuristic is called in every node
of the branch-and-bound tree, but invoking an NLP solver whenever a starting point x̃ is
available would be too costly. After the heuristic has been run, it therefore waits until a
certain number of nodes have been processed. How many nodes these are depends on the
success of the heuristic in previous calls, the number of iterations the NLP solver used in
previous calls, and the iteration limit that would be imposed for the following NLP solve.
Previously, the iteration limit was essentially static, which could mean that on problems
with difficult NLPs a lot of effort was wasted on NLP solves that were interrupted by a
too small iteration limit.

With SCIP 8, the heuristic tries to adapt the iteration limit to the NLPs to be
solved. For that, the heuristic counts how often an NLP solve stopped due to an
iteration limit (niterlim) and how often it finished successfully, that is, stopped be-
cause convergence criteria were fulfilled (nokay). Let iiterlim be the highest iteration
limit used among all NLP solves that stopped due to an iteration limit and let iokay

be the total number of iterations used in all NLP solvers that finished successfully.

55

Further, let imin be a minimal number of iterations that should be granted to every
NLP solve (parameter heuristics/subnlp/itermin = 20). Finally, let ninit be the
number of initial NLP solves that should be granted iinit many iterations (parame-
ters heuristics/subnlp/ninitsolves = 2 and heuristics/subnlp/iterinit = 300).
The iteration limit inext for the next NLP solve is then decided as follows:

1. If niterlim > nokay, then inext := max(imin, 2iiterlim). That is, double the iteration limit
if more solves ran into an iteration limit than were successful.

2. Otherwise, if nokay > ninit, then inext := max(imin, 2 iokay

nokay). That is, if there were a
few successful solves to far, then use twice the average number of iterations spend in
these solves as iteration limit.

3. Otherwise, if nokay, then inext := max(imin, iinit, 2 i
okay

nokay). That is, consider also iinit if
there had not been enough successful solves so far.

4. Otherwise, inext := max(imin, iinit).

To decide whether to execute the heuristic, an iteration contingent icont is calculated
and checked against inext. Compared to SCIP 7, this has received only minor updates:

1. Initialize icont := 0.3(number of nodes processed + 1600) (parameters heuristics/

subnlp/{nodesfactor,nodesoffset}).
2. Weigh by previous success of heuristic: Let ntot the total number of times the heuristic

has run and nsol the number of solutions found by the heuristic. If the heuristic ran
a few times and is no longer in a phase where it tries to find a suitable iteration
limit, then weigh icont by success of heuristics. That is, if ntot − niter > ninit, then

icont := nsol+1
ntot+1 i

cont. Parameter β :=heuristics/subnlp/successrateexp allows to

replace nsol+1
ntot+1 by (n

sol+1
ntot+1)β .

3. Let itot be the total number of iterations used in all NLP solves (successful or not) so
far. Then icont := icont − itot.

4. If icont ≥ inext, then the heuristic is run with inext as iteration limit for the NLP
solver.

Presolve The heuristic triggers a solve of the NLP relaxation of SCIP in a copy of the
CIP. When the heuristic is run for a starting point x̃, integer variables are fixed to the
values given in x̃, the current primal bound is set as cutoff, and SCIP’s presolve is run
with presolve emphasis set to “fast”. The aim of the presolve is to propagate the fixing
of the integer variables in the problem since many NLP solvers, in particular those that
are interfaced by SCIP, only implement a very limited presolve. After presolve, if the
problem is not empty or infeasible, SCIP is put into a state where its NLP relaxation
can be solved. If the original CIP is a MINLP, then solutions that are feasible to this
NLP relaxation should also be feasible in the original problem. Further, also solutions
that are found during presolve are passed on to the original problem.

This process of fixing integer variables, setting a cutoff, and presolving the CIP repeats
every time the heuristic is run. If, however, there are no binary or integer variables, then
setting a cutoff and presolve is skipped and the copied problem is kept in a state where
its NLP relaxation can be solved.

NLP Solve The NLP relaxation in the presolved copied CIP instance is solved by a
NLP solver that is interfaced by SCIP. The solver is given x̃ as starting point and the
iteration limit is set to inext. If the NLP solver is Ipopt, then also the “expect infeasible
problem” heuristic of Ipopt is enabled.

If the solver claims to have found a feasible solution, then it is tried to add this
solution to the original problem. This can fail for three reasons: the objective function
value is not good enough, the NLP relaxation is missing some constraints of the original

56

CIP, or the solution is only slightly infeasible due to presolve reductions. For example,
due to tolerances, bounds of aggregated variables might be slightly violated. To work
around this case, if a solution is not accepted, its objective value is not worse than the
current primal bound, its maximal constraint violation is close to the feasibility tolerance,
and the copied problem has been presolved (I 6= ∅), then the NLP is resolved with a
tightened feasibility tolerance (parameter heuristics/subnlp/feastolfactor). For
this resolve, warmstart from the previous solution is enabled and the iteration count
of the previous NLP solve is used as iteration limit. If the NLP resolve succeeds and
produces a solution that is accepted in the original problem, then the tightened feasibility
tolerance is used for all following NLP solves by the heuristic.

4.13 NLP Relaxation and Interfaces to NLP Solvers and Automatic Differen-
tiation

The updated expressions framework (Section 4.1) triggered a revision of the NLP relax-
ation and the interfaces to NLP solvers (NLPI) and automatic differentiation (EXPRINT).

4.13.1 NLP Relaxation

The rows of the NLP relaxation (SCIP NLROW) no longer distinguish a quadratic part.
Therefore, rows now have the form

left-hand side ≤ linear terms + nonlinear term ≤ right-hand side

where the nonlinear term is given as a SCIP expression. When the nonlinear constraint
handler (see Section 4.2) creates an NLP row for a constraint g ≤ g(x) ≤ g of (MINLP),
it separates linear terms from g(x). The constraint handlers and, bounddisjunction,
knapsack, linear, linking, logicor, setppc, and varbound now add themselves to
the NLP relaxation. Previously, and, bounddisjunction, and linking constraints were
not added. For bounddisjunction, only univariate constraints are added.

Further, it is pointed out that the NLP relaxation of SCIP is no longer based on the
extended formulation (MINLPlp

ext), but is now closer to the continuous relaxation of the
original problem (MINLP).

4.13.2 Interfaces to NLP Solvers

Since expression handlers are now proper SCIP plugins that require a SCIP pointer for
many operations and since expressions are used to specify NLPs, also the NLP solver
interfaces (NLPI) are now proper SCIP plugins that require a SCIP pointer. However,
as before, the NLPs that are specified via an NLPI can be independent of the problem
that is solved by SCIP. For the expressions in the objective and constraints of such
an NLP this means that the “var” expression handler, which refers to a SCIP variable
(SCIP VAR*), cannot be used. Instead, the handler for “varidx” expressions, which refer
to a variable index, needs to be used. As a consequence, the evaluation and differentiation
methods of expressions, which work with a SCIP solution (SCIP SOL), are not available
(the EVAL callback of the “varidx” expression handler raises an error). Instead, the NLP
solver interfaces either implement their own evaluation and differentiation or resort to
the helper functions implemented in nlpioracle.{h,c}.

Next to the adjustments to the new expressions framework, further updates and
removals to the NLPI callbacks were implemented. For a detailed list, see the CHANGELOG.
A notable change, though, is that parameter settings that specify the working limits
and tolerances of an NLP solve are now passed directly to the NLPISOLVE callback and,

57

thus, are used for the corresponding solve only. The same applies to the NLP relaxation
of SCIP and SCIPsolveNLP() (now a macro). The default values for the NLP solve
parameters are now uniform among all NLP solvers and some parameters were added,
removed, or renamed. The solve statistics now include information on the violation of
constraints and variable bounds of the solution, if available.

The problem and optimization statistics that SCIP collects and prints on request
(display statistics) now include a table for each used NLP solver, which prints the
number of times the solver was used, the time spend, and how often each termination and
solution status occurred. Additionally, the time spend for evaluation and differentiation
can be shown (parameter timing/nlpieval).

As before, SCIP includes interfaces to the NLP solvers FilterSQP, Ipopt, and
WORHP. In particular the interface to Ipopt has been improved. Only some points are
mentioned here:

− Warmstarts from a primal/dual solution pair, either set via NLPISETINITIALGUESS

or by using the solution from the previous solve, are now available. Further, Ipopt
is instructed to reinitialize less datastructures if the structure of the NLP did not
change since the last solve.

− When Ipopt requests an evaluation of the Jacobian or Hessian, function reevaluation
is now skipped if possible.

− When Ipopt stops at a point that it claims to be locally infeasible, it is now checked
whether the solution proves infeasibility, see Berthold and Witzig [15, Theorem 1]. If
that is not the case, the solution status is changed to “unknown”.

− A few Ipopt parameters can now be set directly via SCIP parameters (nlpi/ipopt/*).

− Due to changes in how the Ipopt output is redirected into the SCIP log, the Ipopt
banner was no longer printed reliably for the first run of Ipopt anymore. Therefore,
the banner has now been disabled completely.

4.13.3 Interface to Algorithmic Differentiation

For the computation of first and second derivatives, SCIP traditionally relied on a
third-party automatic differentiation (AD) library. With the new expressions framework
(Section 4.1), first derivatives and Hessian-vector products are available in SCIP itself.
Their implementation relies on the BWDIFF, FWDIFF, and BWFWDIFF callbacks of the
expression handlers. The latter two are not implemented for every expression handler so
far. However, some NLP solvers make use of full Hessians and their sparsity pattern,
something that is not available in the expressions framework itself yet. Further, the
current datastructure for expressions with its many pointer-redirections does not perform
too well when a fixed expression needs to be evaluated repeatedly in many points.
Therefore, a separate AD library is still used in the interfaces to NLP solvers.

Currently, the only library that is interfaced is CppAD5. In the CppAD interface, a
given expression is compiled into the serial datastructure (the “tape”) that is used by
CppAD. Here, expression types (i.e., which handler is used) are checked and translated
into a form that is native to CppAD when possible. Since the CppAD interface is used
by NLPIs only, it only supports the “varidx” expression and not the “var” expression
(see begin of previous section). With SCIP 8, CppAD’s feature to optimize the tape has
been enabled.

Mapping of expression handlers to CppAD’s operator types is available for all
expression handler that are included in SCIP. For some expression types, such as
signpower, this translation has been improved to avoid repeated recompilation of an
expression. For expression handlers that are not known to the CppAD interface, the

5https://github.com/coin-or/CppAD

58

https://github.com/coin-or/CppAD

backward- and forward-differentiation callbacks of the expression handler are used to
provide first derivatives. However, second derivatives (Hessians) are not yet available. In
the Ipopt interface, the Hessian approximation will be activated in this case.

With SCIP 7, quadratic functions, including their derivatives, were treated differently
from other nonlinear function. Further, the NLPs to be solved were build from the
extended, thus sparse, formulation (MINLPlp

ext). Therefore, nonlinear functions typically
depended on only a few variables and, thus, it was usually sufficient to work with dense
Hessians. With SCIP 8, though, also the derivatives of quadratics are computed by the
AD library and the NLPs to be solved are closer to the original form (MINLP). For
these reasons, CppAD’s routines to compute sparse Hessians are used now unless more
than half of the Hessian entries are nonzero.

4.14 Performance Impact of Updates for Nonlinear Constraints

While Section 2.3 compared the performance of SCIP 7.0 and SCIP 8.0 on a set of
MINLP instances, this section takes a closer look on the effect of replacing only the
handling of nonlinear constraints in SCIP. That is, here the following two versions of
SCIP are compared:

classic: the main development branch of SCIP as of 23th of August 2021; in this
version, nonlinear constraints are handled as it has been in SCIP 7.0, with just a
few bugfixes added;

new: as classic, but with the handling of nonlinear constraints replaced as detailed in
this section and symmetry detection extended to handle nonlinear constraints (see
Section 3.2.2).

For this comparison, SCIP has been build with GCC 7.5.0 and uses PaPILO 1.0.2 for
MILP presolves, bliss 0.73 to find graph automorphisms, CPLEX 20.1.0.1 as LP solver,
Ipopt 3.14.4 as NLP solver, CppAD 20180000.0 for automatic differentiation, and Intel
MKL 2020.4.304 for linear algebra (LAPACK). Ipopt uses the same LAPACK and HSL
MA27 as linear solver. All runs are carried out on identical machines with Intel Xeon
CPUs E5-2660 v3 @ 2.60GHz and 128GB RAM in a single-threaded mode. As working
limits, a time limit of one hour, a memory limit of 100000MB, an absolute gap tolerance
of 10−6, and a relative gap tolerance of 10−4 are set. All 1678 instances of MINLPLib
(version 66559cbc from 2021-03-11) that can be handled by both the classic and the new
version are used. It is noted that MINLPLib is not designed to be benchmark set, though,
since, for example, some models are overrepresented with a large number of instance.
For each instance, two additional runs where the order of variables and constraints were
permuted by SCIP were conducted. Thus, in total 5034 jobs were run for each version of
SCIP.

Table 4 summarizes the results. A run is considered as failed if the reported primal
or dual bound conflicts with best known bounds for the instance, the solver aborted
prematurely due to a fatal error (for example, failure in solving the LP relaxation of
a node), or the solver did not terminate at the time limit. For this comparison, runs
where the final solution is not feasible are accounted separately. One can observe that
with the new version, for much fewer instances the final incumbent is not feasible for
the original problem, that is, the issue discussed in Section 4.2.1 has been resolved for
nonlinear constraints. For the remaining 49 instances, typically small violations of linear
constraints or variable bounds occur. Further, the reduction in “failed” instances by half
shows that the new version is also more robust regarding the computation of correct
primal and dual bounds. Finally, we see that the new version solves about 400 additional
instances than the classic one, but also does no longer solve about 200 instances within
the time limit.

59

Subset instances metric classic new both

all 5034 solution infeasible 481 49 20
failed 143 70 18
solved 2929 3131 2742
time limit 1962 1833 1598
memory limit 0 0 0

clean 4839 fastest 3733 3637 2531
mean time 75.9s 70.3s
mean nodes 2543 2601

[0, 3600) 2742 fastest 1990 1697 945
mean time 4.7s 5.4s
mean nodes 415 455

[10, 3600) 985 fastest 618 554 187
mean time 55.6s 66.0s
mean nodes 3960 4502

[100, 3600) 484 fastest 292 262 70
mean time 185.3s 231.9s
mean nodes 12620 17150

[1000, 3600) 141 fastest 72 81 12
mean time 803.5s 623.5s
mean nodes 43345 39014

Table 4: Comparison of performance of SCIP with classic versus new handling
of nonlinear constraints on MINLPLib.

Subset “clean” refers to all instances where both versions did not fail, i.e., either
solved to optimality or stopped due to the time limit. We count a version to be “fastest”
on an instance if it is not more than 25% slower than the other version. Mean times were
computed as explained in the beginning of Section 2. Due to the increase in the number
of solved instances, a reduction in the mean time with the new version on subset “clean”
can be observed, even though the new version is fastest on less instances than the classic
one.

For the remaining subsets, [t1, t2) refers to all instances where at least one version
ran for t1 or more seconds and both versions terminated in less than t2 seconds. That is,
only instances that could be solved to optimality by both versions are considered. For
most of these subsets, the new version is still slower more often and on average than the
classic version. Further, for a third of the instances that can be solved, both versions
perform similar. Only on the (rather small) subset [1000, 3600) of difficult-but-solvable
instances does the new version improve.

Figure 4 shows performance profiles that compare both versions w.r.t. the time to
solve an instance and the gap at termination. The time comparison visualizes what has
already been observed in Table 4: the new version solves more instances, but can be
slower. The gap comparison shows that on instances that are not solved, often the new
version gives a smaller optimality gap than the classic version.

Appendix A provides detailed results on the performance of both SCIP versions on
the considered MINLPLib instances. Further, information on the usage of the nonlinear
handlers and separators that were described in this section is given.

5 SoPlex

60

100 101 102

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

time factor to best (τ)

#
in

st
a
n

ce
s

Time to solve

classic
new

100 101 102

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

gap factor to best (τ)

Gap at termination

classic
new

Figure 4: Performance profiles on time and gap at termination of SCIP with
classic versus new handling of nonlinear constraints on MINLPLib. For a specific τ ,
the ordinate shows the number of instance for which the corresponding version of
the solver was at most this much worse (regarding time (left) or gap at termination
(right)) as the best of both versions. For the time plot, all instances that were
solved to optimality are considered for each version. For the gap plot, all instances
that did not fail are considered for each version.

5.1 Integration of PaPILO in SoPlex

As described in Section 6.1, version 2.0.0 of PaPILO supports postsolving of dual LP
solutions and basis information. This makes it possible to integrate PaPILO fully as a
presolving library into SoPlex. In version 6.0 of SoPlex, PaPILO is available as an
additional option for presolving. The previous presolving implementation continues to
be the default.

The PaPILO integration is handled similarly as in SCIP [36]. SoPlex calls a newly
added simplifier plugin that converts the current problem to PaPILO’s data structure
and then calls the presolve routine. The changes from PaPILO’s reduced problem are
communicated by deleting the current matrix in SoPlex and subsequently recreating it
from PaPILO’s reduced problem, if the number of columns or rows decreased.

5.2 Technical Improvements

Several other smaller changes and improvements have been made in SoPlex 6.0. First,
SoPlex was extended by a C interface, as explained in Section 7. Second, a rework of
the internal data structures was necessary to fix warnings that were issued by current
compiler versions. Third, the dependency on the Boost program options library has been
removed and the command line interface has been restored to its classic version.

Furthermore, it is now possible to use SoPlex rational solving mode without linking
a GMP library, using Boosts internal implementation of rational numbers. Finally, an
ongoing LP solve of SoPlex can now be interrupted from a different thread, by calling
the setInterrupt function of SoPlex. On the SCIP side, this is handled by calling
SCIPinterruptLP.

61

6 PaPILO

PaPILO, a C++ library, provides presolving routines for MILP and LP problems and
was introduced with SCIP Optimization Suite 7.0 [36]. PaPILO’s transaction-based
design generally allows presolvers to run in parallel without requiring expensive copies of
the problem and without special synchronization in the presolvers themselves. Instead of
applying the results immediately, presolvers return their reductions to the core, where
they are applied in a deterministic, sequential order. Modifications in the data structure
are tracked to avoid applying conflicting reductions. These conflicting reductions are
discarded.

The main new feature in PaPILO 2.0 is support for postsolving dual and basis
information, which is described in Section 6.1. This feature allows to use PaPILO as
an integrated presolving library in SoPlex, see Section 5.1. Furthermore, PaPILO 2.0
comes with several improvements to the existing code base and presolving routines,
described in Section 6.2. These changes result in a five percent improvement in the
runtime when compared to the previous release.

6.1 Postsolving Dual LP Solutions and Basis Information

After removing, substituting, and aggregating variables from the original problem during
presolving, the reduced problem (and solution) does not contain any information on
missing variables. To restore the solution values of these variables and obtain a feasible
original solution, corresponding data needs to be stored during the presolving process.
The process of recalculating the original solution from the reduced one is called postsolving
or post-processing [5].

Until version 1.0.2, PaPILO supported only postsolving primal solutions. In the
latest version, PaPILO supports postsolving also for the dual solutions, reduced costs,
the slack variables of the constraints, and the basic status of the variables and con-
straints for the presolvers: DominatedColumns, Dualfix, ParallelCols, ParallelRows,
Propagation, FixContinuous, ColSingleton, and SingletonStuffing. These form
the majority of the LP presolvers. The remaining presolvers are either only active in the
presence of integer variables6 or need to be disabled by the user7.

Furthermore, in dual postsolve mode PaPILO only applies variable bound tight-
enings when they fix a variable. Otherwise, the solution to the reduced problem may
correspond to a non-vertex solution in the original space and simple postsolving without
an expensive crossover may not be possible. If the basic information is irrelevant for the
user, the variable tightening without fixing can be turned on by setting the parameter
calculate basis for dual to false. An exception here is if a variable is unbounded. In
this case, the bound of this variable is set to a finite value, which is slightly worse than
the best possible bound so that the bound can not be tight in the reduced problem. This
applies only to instances with no integer variables. Variable tightening is still performed
for mixed-integer programs.

For primal postsolving only information about removed, substituted and aggregated
variables needs to be tracked. By contrast, dual postsolving needs to be informed about
every modification found during presolving. PaPILO 2.0 keeps tracks of these changes
and saves them in the postsolve stack analogously to primal postsolving. For example,
a row-bound change can lead to changes in the dual solution due to complementary
slackness.

6Presolvers only active for MILP: CoefficientStrenghtening, ImpliedInt, Probing,SimpleProbing,
SimplifyInequalities

7LP-Presolvers not supporting dual postsolving: DualInfer, SimpleSubstitution, Substitution,
Sparsify, ComponentDetection, LinearDependency, see also settings file lp presolvers with basis.set

in the PaPILO repository

62

After postsolving, PaPILO checks if the original solution passes the primal and dual
feasibility checks and fulfills the Karush-Kuhn-Tucker conditions [59] for LP. The result
of the checks is logged to the console. Since also infeasible solutions can be postsolved,
PaPILO does not abort if the checks fail and instead returns the result to the calling
method.

For debugging purposes, this check can be performed after every step in the postsolve
process. To activate this debugging feature, PaPILO needs to be built in debug mode
and the parameter validation after every postsolving step has to be turned on.
This may be expensive because the problem at the current stage needs to be calculated
from the original problem by applying all reductions until this point.

The introduction of dual postsolving allows using PaPILO as presolving library in
SoPlex. Section 5.1 contains a brief description of the integration.

6.2 Further Improvements

In this section we describe several smaller improvements in PaPILO 2.0. These changes
affect mostly only the performance of PaPILO and rarely change the resulting reduced
problem. All in all, these changes improve performance of PaPILO since the last release
by about five percent performance (using 16 threads) in terms of runtime and number of
presolving rounds, see Table 5 for details.

− When PaPILO 1.0 is run with only one thread, the presolvers are executed in
sequential order, but the reductions of every presolver are only applied at the end of
the presolving round. This is part of the parallel design of PaPILO and helps to
guarantee deterministic results independently of the number of threads used. However,
in sequential mode this does not guarantee best performance.

Instead, when PaPILO 2.0 is run with only one thread, the reductions are applied
before the next presolver, so that the next presolver can work on the modified problem.
This feature can be turned off by setting the parameter presolve.apply results -

immediately if run sequentially to false.

− DualFix handles an additional case with two conditions: first, the objective value
of the variable is zero; second, if the variable has only up-/down-locks, the lower-
/upperbound is (negative) infinity. Then, the variable can be set to infinity and
deleted from the model. PaPILO removes the variable and marks all constraints
containing the variable as redundant. In postsolving, the variable is set to the
maximum/minimum value such that the variable bounds and the constraints in which
it appeared in the original problem are not violated and hence, the solution stays
feasible.

− PaPILO uses a transaction-based design to allow parallelization within the presolvers.
This may generate conflicts when applying the reductions of the presolvers to the
core. Conflicting reductions need to be discarded since it can not be ensured that
the reduction is still valid. Conflicts make additional runs necessary to check if the
discarded or a reformulated reduction can still be applied. Therefore, we performed
a detailed analysis of the most prominent conflict relationships, introduced a new
reduction type in PaPILO 2.0, and rearranged the order of presolving reductions
reductions. In more detail, the improvements are as follows:

· ParallelRowDetection could generate unnecessary conflicts mainly for Parallel-
ColDetection. To avoid these reductions and additional runs, two new reduction
types RHS LESS RESTRICTIVE and LHS LESS RESTRICTIVE were introduced. In
contrast to RHS and LHS, the columns of a row are not marked as modified, if the
initial bound was (negative) infinity.

63

Table 5: Performance comparison for PaPILO on MIPLIB 2017 benchmark

PaPILO 1.0.3 PaPILO 2.0.0

subset instances time [s] rounds time [s] relative rounds relative

[0,tilim] 240 0.294557 19.57 0.281663 0.956 18.50 0.945
[0.01,tilim] 206 0.349799 22.15 0.334085 0.955 20.91 0.944
[0.1,tilim] 111 0.693586 33.02 0.660184 0.952 30.88 0.935
[1,tilim] 26 2.633462 43.69 2.477353 0.941 40.73 0.932

on a Intel Xeon CPU E5-2690 v4 @ 2.60GHz, 128GB - using 16 threads

· ParallelRowDetection, ParallelColDetection and, DominatedCol could gen-
erate internal conflicts, if multiple rows/columns were parallel or dominating each
other. To avoid these conflicts, bunches of parallel and dominating columns/rows
are handled separately.

· The order in which the reductions are applied to the core impacts the number of
conflicts between the presolvers. We analyzed the conflicts between the presolvers
and implement a new default order that minimizes the conflicts between the
presolvers.

The positive impact of these changes can be observed in the reduced number of rounds
reported in Table 5.

− SimpleSubstitution handles an additional case to detect infeasibility faster.

− The loops in which the presolvers ConstraintPropagation, DualFix, Simplify-

Inequality, CoefficientStrengthening, SimpleSubstitution, SimpleProbing,
and ImpliedInteger scan the rows or columns of the problems were parallelized.
Hence, these presolvers can distribute their workload on different threads and exploit
multiple threads internally.

Finally, two further features were introduced, improving transparency as well as the
ability to debug:

− For analysis and debug purposes, PaPILO can now log every transaction in the order
they were applied to the problem if verbosity level kDetailed is specified.

− PaPILO provides an additional way to validate its correctness. A feasible debug
solution can be passed via the command-line parameter -b. After presolving the
corresponding instance, PaPILO checks if the debug solution is still contained in the
reduced problem and if the reduced solution can be postsolved to the same solution
passed via command-line. It is recommended to turn off presolvers that use duality
reasoning to (correctly) cut off optimal solutions.

7 Interfaces

SCIP is available via interfaces to several programming languages. These interfaces
allow users to programmatically call SCIP with an API close to the C one or leverage a
higher-level syntax. The following interfaces are available:

− The Python interface PySCIPOpt, which can now also be installed as a Conda
package;

− The AMPL interface that comes as part of the main SCIP library and executable;

− The Julia package SCIP.jl;

− C wrapper for SoPlex;

− A Matlab interface.

We highlight below the main changes and development on interfaces to SCIP.

64

7.1 AMPL

The AMPL interface of SCIP has been rewritten and moved from being a separate project
(interfaces/ampl) to being a part of the main SCIP library and executable (src/scip).
The interface consists of a reader for .nl files as they are generated by AMPL and a
specific AMPL-mode for the SCIP executable.

The .nl reader now relies on ampl/mp8 instead of the AMPL solver library (ASL) to
read .nl files. Required source files of ampl/mp are redistributed with SCIP. Therefore,
building the .nl reader and the AMPL interface is enabled by default. The .nl reader
supports linear and nonlinear objective functions and constraints, continuous, binary,
and integer variables, and special-ordered sets. More than one objective function is
not supported by the interface. A nonlinear objective function is reformulated into a
constraint. In nonlinear functions, next to addition, subtraction, multiplication, and
division, operators for power, logarithm, exponentiation, sine, cosine, and absolute value
are supported. Variable and constraint flags (initial, separate, propagate, and others)
can be set via AMPL suffixes.

If the SCIP executable is called with -AMPL as second argument, it expects the
name of a .nl file (with .nl extension excluded) as first argument. In this mode,
a SCIP instance is created, a settings file scip.set is read, if present, the .nl file
is read, the problem is solved, an AMPL solution file (.sol) is written, and SCIP
exists. Two additional parameters are available in the AMPL mode: boolean parameter
display/statistics allows to enable printing the SCIP statistics after the solve; string
parameter display/logfile allows to specify the name of file to write the SCIP log to.
If the problem is an LP, SCIP presolve has not run, and the LP was solved, then a dual
solution is written to the solution file, too.

7.2 Julia

The Julia package SCIP.jl has been in development since SCIP 3 with several im-
provements since SCIP 7. It contains a lower-level interface matching the SCIP public
C API and a higher-level interface based on MathOptInterface.jl (MOI)[60]. The
lower-level interface is automatically generated with Clang.jl to match the public SCIP
C API, allowing for the direct conversion of C programs using SCIP into Julia ones.
MathOptInterface.jl is a uniform interface for constrained structured optimization in
Julia. Solvers specify the types of constraints they support and implement those only.
Users can use the common interface for multiple solvers across different classes of problems
including LP, MILP, (mixed-integer) conic optimization problems. Higher-level modeling
languages such as JuMP.jl are implemented on top of MOI, allowing practitioners to
define their optimization model in a syntax close to the mathematical specification and
solve it through SCIP or swap solvers in a single line.

The SCIP.jl package can also automatically download the appropriate compiled
binaries for SCIP and some of its dependencies on some platforms. This removes the
need for users to download and compile SCIP separately. Custom SCIP binaries can still
be passed to the Julia package when building it. This integration was made possible by
cross-compiling SCIP through the BinaryBuilder.jl infrastructure, creating binaries
for multiple combinations of OS, architecture, C runtime, and compiler. The binaries are
available through GitHub and versioned for other platforms to use outside of Julia.

8https://github.com/ampl/mp

65

https://github.com/ampl/mp

7.3 C Wrapper for SoPlex

With SCIP 8, there also comes a C wrapper for SoPlex. Since in some environments it is
much easier to interface with C code than it is with C++ (which is the language SoPlex
is written in), this wrapper paves the way for other projects to use SoPlex as a standalone
LP solver and not only through SCIP. By building a pure C, simple shared library and
header file, it is now possible to easily call SoPlex through the foreign function interface
from many other languages.

7.4 Matlab

In the past, two interfaces from Matlab to SCIP existed. SCIP came with a rudimentary
Matlab interface and there was the OPTI Toolbox by Jonathan Currie, available at
https://github.com/jonathancurrie/OPTI. However, the development of the OPTI
Toolbox stopped. In order to retain the advantages of this interface, a new interface was
based on it. This new interface is available through the Git repository

https://github.com/scipopt/MatlabSCIPInterface.

The following changes have been implemented:

− The new interface also runs under Linux and MacOS.

− It works for Octave (but note that at the time of writing there is a bug in Octave
that blocks the usage of the nonlinear part).

− The support of other solvers has been stripped away, but the interface to SCIP has
been revised and adapted to SCIP 8.0.

− The interface now also fully works for SCIP-SDP.

For the installation details, we refer to the corresponding web page. However, the
installation should only require calling

matlabSCIPInterface install.m or matlabSCIPSDPInterface install.m

from Matlab or Octave. Then the interface will be build and you are possibly asked
where to find the SCIP or SCIP-SDP installation (you can also supply this information
through the environment variables SCIPDIR/SCIPOPTDIR or SCIPSDPDIR).

To highlight the advantages of this interface, we briefly show an example. To solve
the NLP

min
x∈R2

{(x1 − 1)2 + (x2 − 1)2 : 0 ≤ x1, x2 ≤ 2},

one can use the symbolic definition of the objective function:

obj = @(x) (x(1) - 1)^2 + (x(2) - 1)^2;

The remaining code is

lb = [0.0; 2.0];

ub = [0.0; 2.0];

x0 = [0.0, 0.0];

Opt = opti(’obj’,obj,’lb’,lb,’ub’,ub)

[x,fval,exitflag,info] = solve(Opt,x0)

More examples are available in the repository.

66

https://github.com/jonathancurrie/OPTI
https://github.com/scipopt/MatlabSCIPInterface

8 ZIMPL

Zimpl 3.5.0 is released with the release of SCIP Optimization Suite 8.0. Zimpl now
allows also nonlinear objective functions. There has been quite some work to increase the
code quality further by augmenting the code with compiler attributes. Also the work has
been started to completely switch to C99 declarations, i.e, move the variable declarations
from the start of the functions further inside, use local loop variables, const as much
as possible, and in general try to initialize variables once they are created. Getting
the maximum out of gcc, clang, clang-analyzer, and pclint is an interesting experiment,
which however clearly shows that C was never mend to be validated.

A major additional feature in Zimpl is the ability to write out suitable instances
as a Quadratic Unconstrained Binary Optimization (QUBO) problem. Unfortunately,
there is no standard format for QUBO files yet, so we support several small varieties of a
sparse format for the moment. Furthermore, we have started to implement the ability to
automatically convert constraints into quadratic binary objective functions [43]. With
this release it is just a first experimental and limited ability, but we plan to extend this
continuously with the next releases.

9 The UG Framework

UG is a generic framework for parallelizing branch-and-bound based solvers in a dis-
tributed or shared memory computing environment. It was designed to parallelize
powerful state-of-the-art branch-and-bound based solvers (we call these “base solvers”.
Originally, the base solver is a branch-and-bound based solver, but in this release, it is
redefined as any solver that is being parallelized by UG) externally in order to exploit
their powerful performance. UG has been developed over 10 years as beta versions
to have general interfaces for the base solvers. Internally, we have developed parallel
solvers for SCIP [102, 106, 103], CPLEX (not developed anymore), FICO Xpress [104],
PIPS-SBB [79, 80], Concorde9, and QapNB [29]. In addition to the parallelization of
these branch-and-bound base solvers, UG was used to develop MAP-SVP [108], which is
a solver for the Shortest Vector Problem (SVP), and whose algorithm does not rely on
branch-and-bound. Developers of several solvers parallelized by UG needed to internally
modify the UG framework itself, since UG could not handle the base solvers directly.
Especially, a success of MAP-SVP, which updated several records of the SVP challenge10,
motivated us to develop generalized UG, in which all solvers developed so far can be
handled by a single unified framework. The generalized UG is included in this version of
SCIP Optimization Suite as UG version 1.0.

UG version 1.0 is completely different from the previous versions internally, though its
interfaces for branch-and-bound base solvers remain the same as far as possible. Figure 5
shows the class hierarchy of UG version 1.0. The original UG base classes are separated
into branch-and-bound related codes and the others, so that non-branch-and-bound
solvers can be parallelized naturally. In the original UG, the ParaSolver class, which
wraps the “base solver”, and the ParaComm class, which warps communication codes or
parallelization libraries, are abstracted. On top of these abstractions, in UG version
1.0, the ParaLoadCoordinator class, which is a controller of the parallel solver, and
the ParaParamSet class, which defines the parameter set, are also abstracted so that
a “base solver” specific parallel algorithm can be implemented flexibly with the “base
solver” specific parameters. The flexibility of UG version 1.0 can be observed in the
paper of CMAP-LAP (Configurable Massively Parallel solver framework for LAttice
Problems) [109], which is another parallel solver framework for lattice problems. On top

9https://www.math.uwaterloo.ca/tsp/concorde.html
10http://latticechallenge.org/svp-challenge

67

https://www.math.uwaterloo.ca/tsp/concorde.html
http://latticechallenge.org/svp-challenge

Figure 5: Class hierarchy and source code directory organization of the UG
version 1.0

of CMAP-LAP, CMAP-DeepBKZ [?] has been developed, which is the successor of
MAP-SVP and the first application of the generalized UG.

For the UG version 1.0, proper documentation of software is started, and Doxygen
style documentation is introduced. Moreover, a CMake build system is included. In this
opportunity, we made the following several modifications in FiberSCIP architecture and
added a selfsplit ramp-up feature to FiberSCIP and ParaSCIP.

9.1 Join ParaSolver Threads of FiberSCIP

The ramp-up is a process which runs until all CPU cores become busy. For a gen-
eral discussion of the ramp-up process for parallel branch-and-bound, see Ralphs et
al. [87] and for the ramp-up process of FiberSCIP see Shinano et al. [106]. One of the
distinguishing features of FiberSCIP is racing ramp-up. FiberSCIP is composed of a
ParaLoadCoordinator thread and several ParaSolver threads. During the ramp-up
phase, all ParaSolver threads solve the same root node with different parameter settings
until certain termination criteria is met, that is, FiberSCIP generates multiple search
trees in parallel and selects the winner within the ParaSolver threads, and afterward
the winner search tree is solved in parallel. FiberSCIP is composed of an LC thread and
several ParaSolver threads.

In previous versions, the ParaSolver threads were detached. The reason why the
ParaSolver threads were detached is to enable terminating FiberSICP as soon as possible
when one of the racing ParaSolver threads has solved the instance. When we developed
FiberSCIP for the first time, it was very hard to interrupt SCIP when an LP solve is being
executed. Therefore, all ParaSolver threads were detached, and the main thread exits
when one of the ParaSolver threads has solved the instance. However, this mechanism
leads to some instability in FiberSCIP. The latest version of SCIP can interrupt solving
appropriately while LP is running. In this version of FiberSCIP, all ParaSolver threads
are joined and FiberSCIP is terminated cleanly.

68

9.2 Time Limit Feature Implementation of FiberSCIP

In the previous versions of FiberSCIP, when a time limit is specified in the parame-
ter, FiberSCIP created a ParaTimeLimitMonitor thread to create the time limit no-
tification message to the ParaLoadCoordinator. The thread sleeps until the time
limit, wakes up when time limit is reached, and sends the notification message to the
ParaLoadCoordinator. The ParaLoadCoordinator tries to interrupt all ParaSolver
threads. However, these interruptions within a reasonable time could be failed when
LP is running within SCIP, since it did not have a chance to receive the message. From
the performance point of view, creating the ParaTimeLimitMonitor is not good, but
ParaLoadCoordinator works as a kind of event-driven controller, and then an event to
notify the time limit was needed.

With UG version 1.0, this mechanism was changed to set a time limit when each
SCIP solves a sub-MIP and hopes to detect the time limit on the ParaSolver side. How
it works well depends on how accurately SCIP can terminate for the time limit setting.
Unfortunately, it has several irregular timings and FiberSCIP needs to handle such cases
currently. However, from the performance point of view, it has a benefit of running
FiberSCIP without the ParaTimeLimitMonitor thread.

9.3 SelfSplit Ramp-up

In the general terminology of parallel branch-and-bound, ramp-up is a part of the
initialization phase of the computation. The initialization phase is summarized by
Henrich [46]. The enumerative initialization broadcasts the root node to all processes,
which then perform an initial tree search according to the sequential algorithm. When
the number of leaf nodes on each processor is at least the number of processes, processes
can stop expanding. The ith process then keeps the ith node and deletes the rest. In
this method, all processes are working from the very beginning and no communication is
required. The SelfSplit [27] is refined in the enumerative initialization phase so that the
open nodes are ordered more accurately to each solver that has a similar amount of work
and so that a parallel MILP solver can perform static load balancing more efficiently. For
QapNB parallelization, the enumeration initialization has a benefit, see Fujii et al. [29].
In UG version 1.0, the initialization method is implemented in B&B base classes as shown
in Figure 5 so that any “base solver” can use it and name it SelfSplit ramp-up, that is,
in the case of FiberSCIP, it is not limited to MILP, but also works for MINLP. Unlike in
the original SelfSplit, it is used as a ramp-up and can perform dynamic load balancing
after ramp-up, also, in order to cooperate with the other features of UG, it does layered
presolving for sub-MIPs generated by SelfSplit and the sub-MIPs are checkpointing.
FiberSCIP and ParaSCIP included in this release have this SelfSplit ramp-up feature.

9.4 Memory usage estimation

To make FiberSCIP stable, one of the features needed is handling the memory limit, since
memory overuse makes FiberSCIP abort. However, memory usage estimation is very
hard for FiberSCIP. By using SCIP functions for memory usage estimation (plus Linux
system feature of memory usage, in case of FiberSCIP runs on Linux), the FiberSCIP
memory usage estimation feature is implemented. When the estimation is more than
the system memory, the latest version of FiberSCIP terminates with ”memory limit
reached”.

69

10 The GCG Decomposition Solver

SCIP allows to implement decomposition-based algorithms within its framework. GCG is
an extension that turns SCIP into a generic decomposition-based solver for MILPs. While
GCG’s focus is on Dantzig-Wolfe reformulation (DWR) and Lagrangian decomposition,
Benders decomposition (BD) is also supported. The philosophy behind GCG is that
decomposition-based algorithms like branch-price-and-cut (BP&C) can be routinely
applied to MILPs without the user’s interaction or even knowledge, just like branch-
and-cut. To this end, GCG automatically detects a model structure that admits a
decomposition, and then performs the corresponding reformulation. This results in a
master problem and one or several subproblems, which are usually formulated as MILP
problems. The latter are solved as sub-SCIPs or using specialized solvers. Based on
the reformulation, the linear relaxation in every node is solved by column generation (in
the DWR case), respectively, Benders cut generation (in the BD case). GCG features
primal heuristics and separation of cutting planes, several of which are adapted from
SCIP, but some are tailored to the decomposition situation in which both, an original
and a reformulated model are available.

Since the last major release 3.0 in 2018, most development efforts went into improving
the usability for experts and beginners alike. Besides few algorithmic features and code
refactoring, the new release comes with more interfaces, a much improved documentation,
and a collection of tools to support computational experiments and even more their eval-
uation/visualization. Even though not visible to the user, we improved the development
process, in particular by establishing continuous integration pipelines etc. We like to
think of GCG 3.5 as (the first half of) an ecosystem release.

10.1 Detection Loop Refactoring

Decomposition-based algorithms rely on model structures, such as a block-angular
constraint matrix. For an automatic identification of such structures, GCG features
a modular detection loop, which was introduced with version 3.0. So-called detectors
iteratively assign roles like “master” or “block” to variables and/or constraints, potentially
only to subsets, and possibly in several rounds. This way, usually many different potential
decompositions are found. We refer to the SCIP Optimization Suite 6.0 release report [39]
for a more detailed overview. Detectors are implemented as plugins such that new ones
can be added conveniently. In every round, each detector works on existing (but possibly
empty) partial or finished decompositions. An empirically very successful detection
concept builds on the classification of constraints and variables, which is performed prior
to the actual detection process, using so-called classifiers. Classifiers group variables
or constraints according to arbitrary decomposition-relevant information, like type or
name. Detectors then may or may not use the resulting classes to create (partial)
decompositions.

GCG 3.5 comes with a refactored detection loop. Large parts of the code base were
rewritten, moved, or renamed, while the general idea and procedure of the modular
detection loop were maintained. Consequently, the interface changed significantly. First,
(partial) decompositions, which were propagated, finished, or post-processed by the
detectors, are represented by objects of the class PARTIALDECOMP (formerly Seeed).
Objects of the class DETPROBDATA (formerly Seeedpool) manage all decompositions
that were created during a run of the detection loop. Since the class DETPROBDATA

should only manage the partial decompositions, many functions of Seeedpool were
moved. Formerly, Seeedpool provided the functionality to classify constraints and
variables. With version 3.5, variable and constraint classifiers are implemented as
plugins as well. All classifiers are called at the beginning of the detection process. Each
classifier can produce partitions of constraints or variables, which are represented by

70

objects of the classes ConsPartition (formerly ConsClassifier) and VarPartition

(formerly VarClassifier), respectively. Both classes implement the abstract class
IndexPartition (formerly IndexClassifier). This modular design allows users to
easily add classifiers.

Furthermore, many parameters were changed. For a complete overview we refer to the
CHANGELOG. Users can enable or disable the entire detection process using the parameter
detection/enabled. Moreover, the parameter detection/postprocess enables or
disables the post-processing of decompositions. Parameters related to classification were
moved to detection/classification/. By default, GCG 3.5 preprocesses an instance,
runs the detection, then solves. If detection should run already on the un-preprocessed
model, it must be initiated manually before presolve starts; by default, a second round
of detection is then still performed on the preprocessed model. With this more intuitive
behavior, the parameters origenabled of detectors and classifiers were removed.

The legacy detection mode (for detectors prior to version 3.0) is no longer available. All
corresponding parameters and legacy detectors were removed. Users have to implement
detectors using the new callbacks and API.

10.2 Strong Branching in Branch-and-Price

In GCG, two general branching rules are implemented (branching on original vari-
ables [116] and Vanderbeck’s generic branching [113]) as well as one rule that applies
only to set partitioning master problems (Ryan and Foster branching [93]). While
these rules differ quite significantly (creating two child nodes vs. several child nodes;
branching on variables vs. on constraints), the general procedure at a node comes in two
common stages: First, one determines the set of candidates we could possibly branch
on (called the branching rule here). Second, the branching candidate selection heuristic
then actually selects one of the available candidates. In SCIP the latter is done by
ranking the candidates according to a score. Both the branching rule and the selection
heuristic can have a significant impact on the size of the branch-and-bound tree, and
hence on the runtime of the entire algorithm. GCG previously contained only pseudo
cost, most fractional, and random branching as selection heuristics for original variable
branching, and first-index branching for Ryan-Foster and Vanderbeck’s generic branching.
In GCG 3.5, several new selection heuristics are added, all of which are based on strong
branching. For an overview of which selection heuristics are available for which branching
rules see Table 6. In the following, we briefly describe the new selection heuristics. For
more detailed descriptions, we refer to [37].

10.2.1 Branching Candidate Selection Heuristics Background

Given a set of branching candidates, the selection heuristic usually creates a ranking and
selects a winner. One ranking criterion is the expected gain, that is, the improvement in
dual bound in the child nodes when compared to the current node. However, computing
the exact gains amounts to performing all full strong branching. In a branch-and-price
context this means evaluating all branching candidates by solving all child node LP
relaxations with column generation to optimality. With often hard pricing problems, this
variant is an even (much) larger computational burden than it is in the standard branch-
and-cut context. Yet, strong branching has demonstrated potential in branch-and-price
for hard instances [83, 92]. In particular, strong branching generally creates small trees
(compared to other branching rules).

To alleviate the computational effort, relaxations of strong branching are considered,
such as not evaluating all candidates, or not solving the LP relaxations to optimality. In
branch-and-price, one has even more degrees of freedom. In particular, we can choose to

71

Table 6: Branching candidate selection heuristics available in GCG 3.5.

selection heuristic

branching rule

original Ryan-Foster Vanderbeck

random/index-based
branching

X X X

most fractional/infeasible
branching

X X2

pseudocost branching X X2

strong branching
with column generation1 X X

strong branching
without column generation1 X X

hybrid branching1 X X3

reliability branching1 X X3

hierarchical branching1 X X3

1The strong branching based heuristics can be combined. 2GCG can only aggregate the respective scores
of the (two) individual variables. 3These heuristics originally use both strong and pseudocost branching;
however, pseudocost branching can also be substituted by any other heuristic, with varying performance.

not perform column generation when evaluating the candidates. Thus, we differentiate
between strong branching without column generation (SBw/oCG) and strong branching
with column generation (SBw/CG). In principle, one has the entire spectrum in between
(partial or heuristic pricing, etc.) but this is beyond the scope here.

Another alternative to exact computations are gain predictions. A classical approach is
pseudocost branching. Pseudocosts measure the average gain per eliminated fractionality
for down and up branch separately, with the average being calculated from candidates
which we branched on in the past that correspond to the same variable. Pseudocosts
can be calculated very fast, however, using them also creates larger trees than strong
branching. In particular, pseudocost scores are unreliable at the top of the tree, as there
is only little/no historic data from which the averages can be calculated.

To combine the strengths and reduce the weaknesses of strong branching and pseu-
docost branching, they can also be used together. The three options for this that were
added to GCG 3.5 are hybrid strong/pseudocost branching [63], reliability branching [4],
and hierarchical strong branching [37, 83, 92]. In hybrid strong/pseudocost branching,
strong branching is applied only for nodes up to a given depth, and pseudocost branching
to the rest.

For reliability branching, each candidate is assigned a reliability score, which is
simply the minimum of the number of down and up branches in the tree of candidates
corresponding to the same variable. The reliability score of a candidate reflects how close
the pseudocost score for the candidate is likely to be to the actual gain, that is, how
reliable the prediction is. Candidates whose reliability score is below a certain threshold
are evaluated with strong branching, while the remaining candidates are again evaluated
using pseudocosts.

For hierarchical strong branching, the selection process is divided into three phases
(also called a hierarchy in the literature), where

− in phase 0, the candidates are filtered based on some heuristic that is quick to compute
(such as pseudocost, most fractional, or random branching), then

− in phase 1, the remaining candidates are filtered based on their SBw/oCG scores, and
finally

− in phase 2, a candidate is selected out of the remaining candidates based on the score

72

the candidates received from SBw/CG.

The effort at a given node depends on the assumed importance of evaluating the node
precisely (a larger estimated size of the subtree gives more importance to a candidate),
and on the difference in computational effort vs. quality of predictions between the phases.
The intuition here is that only the most promising candidates (based on the scores from
the earlier heuristics) should receive the largest evaluation effort (and best evaluation
quality).

In the same way that strong branching can be combined with pseudocost branching to
obtain hybrid strong/pseudocost branching and reliability branching, we can also combine
hierarchical strong branching with hybrid strong/pseudocost branching and reliability
branching to obtain hybrid hierarchical strong/pseudocost branching and hierarchical
reliability branching [37]: for hierarchical reliability branching, we only perform strong
branching in phase 1 and 2 on candidates that are not yet reliable, with different
thresholds for phase 1 and phase 2. For hybrid hierarchical strong/pseudocost branching,
we only perform phase 0 starting from a given depth, and phases 1 and 2 up to a given
depth (again separate thresholds for each phase).

Strong branching is implemented using SCIP’s probing mode. The columns generated
when evaluating a node using SBw/CG are kept in GCG’s column pool. The (potentially
positive side) effect of this needs still to be evaluated.

10.2.2 Parameters for Strong Branching

By default, like in SCIP, strong branching is disabled. It can be enabled for original
variable branching or Ryan-Foster branching by setting branching/orig/usestrong or
branching/ryanfoster/usestrong, respectively, to TRUE. By default, this performs a
hybrid hierarchical branching. Furthermore, there are several parameters that allow to
completely change the behavior of the heuristics. In fact, all of the strong branching
heuristics use the same implementation, just with different parameter settings. Preset
settings files for each of the previously described selection heuristics as well as a template
file can be found in GCG’s settings folder. Table 7 lists most of the available parameters.
Further information can be found in the paper by Gaul [37] and in GCG’s documentation.

10.2.3 Performance Evaluation

A preliminary performance comparison (for original variable branching only) regarding
the number of nodes and computation times can be found in the tables in Appendix B
and in Figure 6. The computations were performed using an Intel Xeon L5630 Quad Core
with 2.13 GHz and 16 GB of RAM. The time limit was set to 3600 seconds. All instances
in our testset are taken from the unreleased strIPlib (striplib.or.rwth-aachen.de).
Instances contained in strIPlib are all known to contain a model structure to which a
DWR is applicable. We selected instances that need at least 1000 nodes to solve (with a
previous GCG version). Diversity of the testset was controlled in a manner similar to
the creation of the MIPLIB 2017 benchmark set [40]. We refer to Gaul [37] for further
information about the experiments.

The preliminary results suggest that it is conceivable to have strong branching
components enabled in branch-and-price by default. A potential explanation is that
solving the subproblems is very costly, and processing a node is more expensive than in
standard branch-and-bound; thus there is an ever stronger incentive to have a smaller
tree in branch-and-price. Certainly, this needs more investigation.

73

striplib.or.rwth-aachen.de

Table 7: Parameters for strong branching.

Parameter Effect

branching/[orig,ryanfoster]/...

minphase[0,1]outcands minimum number of output candidates from phase [0,1]

maxphase[0,1]outcands maximum number of output candidates from phase [0,1]

maxphase[0,1]outcandsfrac maximum number of output candidates from phase 0 as fraction of total
candidates, takes precedence over minphase[0,1]outcands

phase[1,2]gapweight how much influence the nodegap has on the number of output candidates
from phase [1,2]−1

branching/bpstrong/...

histweight fraction of candidates in phase 0 that are chosen based on historical
strong branching performance

mincolgencands minimum number of candidates for phase 2 to be performed, otherwise
the best previous candidate will be chosen

maxsblpiters,
maxsbpricerounds

upper bound on number of simplex iterations/pricing rounds, sets upper
bound to twice the average if set to 0

immediateinf if set to TRUE, candidates with infeasible children are selected immediately

reevalage reevaluation age

maxlookahead upper bound for the look ahead

lookaheadscales by how much the look ahead scales with the overall evaluation effort
(currently lookaheadscales * maxlookahead is the minimum look ahead)

closepercentage fraction of the chosen candidate’s phase 2 score the phase 0 heuristic’s
choice needs to have in order to be considered close

maxconsecheurclose number of times in a row the phase 0 heuristic needs to be close for strong
branching to be stopped entirely

minphase0depth,
maxphase[1,2]depth,
depthlogweight,
depthlogbase,
depthlogphase[0,2]frac

κ+1 = λ1depth + ρdepth · logλbase
(ncands), where κ+i is the depth un-

til which phase i is performed, λ1depth = maxphase1depth, ρdepth =

depthlogweight, λbase = depthlogbase and ncands is number of vari-
ables that we could branch on (usually all integer and binary vari-
ables). κ+2 = κ+1 · depthlogphase2frac, but at most maxphase2depth.
The minimum depth from which on phase 0 is performed is equal to
κ+1 · depthlogphase0frac, but at least minphase0depth

phase[1,2]reliable min count of pseudocost scores for a variable to be considered reliable in
phase [1,2]

74

pseudo

random

mostfrac

SBw/oCG

SBw/CG

hierarchical

hybrid
reliable

reliable hier.

hybrid hier.

0

0.2

0.4

0.6

0.8

1

ti
m

e
(r

el
at

iv
e

to
h

ig
h

es
t

en
tr

y
) geo. mean arith. mean

pseudo

random

mostfrac

SBw/oCG

SBw/CG

hierarchical

hybrid
reliable

reliable hier.

hybrid hier.

0

10

20

#
in

st
an

ce
s

best time best # nodes w/o SBw/CG # timeouts

pseudo

random

mostfrac

SBw/oCG

SBw/CG

hierarchical

hybrid
reliable

reliable hier.

hybrid hier.

0

0.2

0.4

0.6

0.8

1

#
n

o
d

es
(r

el
at

iv
e

to
h

ig
h

es
t

en
tr

y
)

geo. mean arith. mean

Figure 6: Visualizations for original variable branching based on tables from
Appendix B. The upper plot shows the geometric and arithmetic mean for the
amount of time needed relative to the highest in each category. The lower plot
shows the same for the number of nodes needed. The middle figure shows the
number of timeouts for each heuristic, and the number of times a heuristic was
the best for a given instance regarding nodes (excluding full strong branching)
and time.

75

10.3 Python Interface

With GCG 3.5 we introduce PyGCGOpt which extends SCIP’s existing Python
interface [67] for GCG. It is implemented in Cython (cython.org) and is distributed as a
package independent from the optimization suite under github.com/scipopt/PyGCGOpt.
All the existing functionality for the modeling of MILPs is inherited from PySCIPOpt.
As a result, any MILP modeled in Python can also be solved with GCG without
additional effort. This lowers the technical hurdle to try out a branch-and-price approach
for any existing problem. In its first incarnation, the interface supports specifying custom
decompositions and exploration of automatically detected decompositions. They can be
visualized directly within Jupyter notebooks. In addition, GCG plugins for detectors
and pricing solvers can be implemented in Python.

In the following code listing, the capacitated p-median problem (CPMP) is modeled
with PySCIPOpt’s expression syntax. The specified textbook decomposition [19] is
solved by GCG with Dantzig-Wolfe reformulation upon the call to m.optimize(). Note
that the automatic structure detection functionality of GCG remains intact, so that the
user does not need to (but can) specify a decomposition.

1 from pygcgopt import gcgModel , quicksum as qs

2

3 n_locs = 5

4 n_clusters = 2

5 distances = {0: {0: 0, 1: 6, 2: 54, 3: 52, 4: 19}, 1: {0: 6, 1: 0, 2: 28,

3: 75, 4: 61}, 2: {0: 54, 1: 28, 2: 0, 3: 91, 4: 40}, 3: {0: 52, 1:

75, 2: 91, 3: 0, 4: 28}, 4: {0: 19, 1: 61, 2: 40, 3: 28, 4: 0}}

6 demands = {0: 14, 1: 13, 2: 9, 3: 15, 4: 6}

7 capacities = {0: 39, 1: 39, 2: 39, 3: 39, 4: 39}

8

9 m = gcgModel ()

10 x = {(i, j): m.addVar(f"x_{i}_{j}", vtype="B", obj=distances[i][j]) for i

in range(n_locs) for j in range(n_locs)}

11 y = {j: m.addVar(f"y_{j}", vtype="B") for j in range(n_locs)}

12

13 conss_assignment = m.addConss(

14 [qs(x[i, j] for j in range(n_locs)) == 1 for i in range(n_locs)])

15 conss_capacity = m.addConss(

16 [qs(demands[i] * x[i, j] for i in range(n_locs)) <= capacities[j] * y[j]

for j in range(n_locs)])

17 cons_pmedian = m.addCons(qs(y[j] for j in range(n_locs)) == n_clusters)

18

19 master_conss = conss_assignment + [cons_pmedian]

20 block_conss = [[cons] forimize ()

The Python interface required refactoring within the codebase of GCG. Before, a lot of
core functionality of the solver was implemented within dialog handlers. This made it hard
to use GCG as a library in external programs. The functions gcgtransformProb(), gcg-
presolve(), gcgdetect(), gcgsolve(), gcggetDualbound(), gcggetPrimalbound(),
and gcggetGap() were added to the public interface and are called from the dialog
handlers as well as the Python interface. As a side effect, GCG can now be used better
as a C/C++ shared library.

10.4 Visualization Suite

Visualizations of algorithmic behavior can yield understanding and intuition for interesting
parts of a solving process. With GCG 3.5, we include a visualization suite that offers
different visualization scripts to show processes and results related to detection, branching,
or pricing, among others. These scripts are written in Python 3 and included in the
folder stats and use the .out, .res and .vbc files generated when executing make test

STATISTICS=true (possible additional requirements are given in the documentation).

76

cython.org
github.com/scipopt/PyGCGOpt

1 28 55 76 83 90 95 115 142 169 196 223 250 277 304 331 358 385 412
Pricing Round

0

5

10

15

20

25

30

35

40

P
ri

ci
n

g
P

ro
b

le
m

ID

Bs02 Settings: default SCIP Status: optimal solution found

Pricer has found at least one variable Variables were taken from column pool (ID −1) Pricer has found at least one variable in stab. round

End of Root
End of initial Farkas Pricing

0 10
% of found variables

Figure 7: Bubble plot visualizing how the pricing problems performed during
GCG’s Branch-and-Price process. This visualization was automatically generated
using the new comparison report functionality.

Furthermore, the suite also allows for two additional ways of accessing the visualization
scripts:

1. Reporting functionality: With two different scripts, callable via make visu, users can
easily generate reports similar to the decomposition report that was already available
in GCG 3.0, which offers an overview over all decompositions that GCG found during
its detection process. The generated documents include all visualizations offered by
the suite along with descriptions of them in the captions. While the testset report
shows information about a single run of one selected testset, the comparison report
also compares two or more runs. Examples of both reports can now be found in the
GCG website documentation, see Section 10.5.

2. Jupyter notebook: Since the scripts themselves already require a working installation
of Python 3, we now added a visualization notebook with which one can read data
(sample data provided in the GCG website documentation), clean, and filter it
interactively, and visualize the results afterwards. The scripts of the visualization suite
are imported and returned plots can be shown, exported, and even further edited.

Just like GCG should facilitate experimenting with a decomposition approach without
having to implement it, the visualization suite should facilitate producing and presenting
computational results and algorithmic behavior. Also this is an ongoing long term effort.

10.5 Website Documentation

The online documentation of GCG was lagging behind the progress made with the code
itself. As part of this release, we offer a user-group targeted website documentation.
It enables users to make themselves familiar with GCG by means of very accessible

77

Figure 8: Time Distribution of a set of randomly drawn samples from the
strIPlib. This visualization was generated using the included Jupyter notebook.

feature descriptions for functionality such as the explore menu or the visualization suite
and by a set of use cases to follow and reproduce. For developers, we now include a
guide explaining the peculiarities of the interplay between GCG and SCIP (“Getting
Started: Developer’s Edition”). Within the “Developer’s Guide”, descriptions of existing
code and algorithmics such as detection, branching, and pricing are provided to allow
developers to familiarize themselves with them, if required. Updates to the “How to use”
(for instance, conducting experiments) and “How to add” (for instance, adding branching
rules) sections completes the documentation.

11 SCIP-SDP

SCIP-SDP is a framework for solving mixed-integer semidefinite programs of the following
form

inf b>y

s.t.

m∑
k=1

Ak yk −A0 � 0,

`i ≤ yi ≤ ui ∀ i ∈ [m],

yi ∈ Z ∀ i ∈ I,

(37)

with symmetric matrices Ak ∈ Rn×n for i ∈ {0, . . . ,m}, b ∈ Rm, `i ∈ R ∪ {−∞},
ui ∈ R∪{∞} for all i ∈ [m] := {1, . . . ,m}. The set of indices of integer variables is given
by I ⊆ [m] and M � 0 denotes that a matrix M is positive semidefinite.

SCIP-SDP was initiated by Sonja Mars and Lars Schewe, see Mars [74], and then
continued by Gally et al. [32] and Gally [30]. It features interfaces to the SDP-solvers
DSDP, Mosek, and SDPA. In the following, we briefly report on the changes since the
last version 3.2.0.

SCIP-SDP 4.0 contains about 50 000 lines of C-code. Since the last version most
of these lines have been touched. In particular, the interface to the SDP-solvers has
been completely revised. One benefit is that the memory footprint of SCIP-SDP is now
smaller for large instances. Moreover, many bugs have been fixed.

Two important parameter changes that impact performance are:

78

− By default the number of used threads is 1 (it was previously set to “automatic”).
This change speeds-up the solution process by about 40 % for most smaller to medium
sized SDPs.

− The feasibility and optimality tolerances have been set to 10−5. The exception is
Mosek for which is is set to 10−6, because this leads to more reliable results.

Further changes in a nutshell are the following:

− If the SDP-relaxation only has a single variable, it is solved using a semismooth
Newton method. This slightly speeds up solution times and significantly decreases
the times for heuristics. In particular, this holds for rounding heuristics on instances
in which all integral variables are fixed except a single continuous variable. This
continuous variable is often used for expressing the objective function, for example in
cardinality least squares problems.

− The LP-rows that are added to the LP-relaxation are strengthened using standard
LP-preprocessing routines (coefficient tightening).

− A new heuristic heur fracround has been added which iteratively rounds integer
variables based on their fractional values in the last SDP-relaxation. In between, it
performs propagation and solves a final SDP if unfixed continuous variables remain.
This heuristic helps to significantly improve the overall running times. Propagation is
now also used by the heuristic heur sdprand to improve its success rate for instances
with additional linear constraints. Furthermore, both heuristics are correcting nearly
integral values of integral variables in order to avoid small rounding errors, which
might add up to significant amounts.

− Several new presolving techniques have been introduced, which are discussed and
evaluated in detail by Matter and Pfetsch [75]. This includes two propagation methods
to fix variables based on 2× 2-minors and the upper bounds of other variables.

− SCIP-SDP also allows to use LP-solving instead of SDP-relaxations using the pa-
rameter misc/solvesdps. It then generates so-called eigenvector cuts. The behavior
of these cuts has been changed as follows. One can now add eigenvector cuts for all
negative eigenvalues of the current infeasible relaxation. Moreover, SDP-relaxations
can be solved in enforcing, that is, after all integer variables have integral values.
Furthermore, the cuts can be sparsified.

− The display of SCIP-SDP now changes depending on whether SDPs or LPs are
solved for the relaxations. Moreover, the default settings are redefined for solving
SDPs.

− One can also generate a second-order cone relaxation, but so far this has not shown a
run time improvement.

− The readers for the SDPA and CBF formats have been completely revised (and
rewritten for SDPA). They are now much faster and produce more warnings if errors
occur.

− SCIP-SDP can also handle rank-1 constraints, that is, the requirement that the
resulting matrix has rank 1. This is achieved by adding quadratic constraints for
2× 2-minors. Rank-1 constraints regularly appear in the literature, but are usually
very hard to solve. The handling of these constraints has been revised.

− The locking information (capturing whether the matrices Ak are positive/negative
semidefinite) is now copied to sub-SCIPs.

− The statistics for solving SDP-relaxations has been extended and now reports more
details.

− There is a new file scipsdpdef.h that contains defines for the SCIP-SDP version.
This enables code to depend on different SCIP-SDP versions.

79

Table 8: Performance comparison of SCIP-SDP 4.0 vs. SCIP-SDP 3.2

opt # nodes time [s]

SCIP-SDP 3.2 185 617.3 42.9
SCIP-SDP 4.0 187 497.3 26.6

− It is now possible to add SDP-constraints within the solving process.

− SCIP-SDP can now run concurrently, for example, by writing concurrentopt in the
command line if SCIP and SCIP-SDP are compiled using the TPI.

− The updated Matlab Interface presented in Section 7 also allows to use SCIP-SDP.

Before we present some computational results, let us add some words of caution.
Although SCIP-SDP is numerically quite robust, accurately solving SDPs is more
demanding than solving LPs. This can lead to wrong results on some instances11 and the
results often depend on the chosen tolerances. Technical reasons are that the SDPs are
solved using interior point solvers, which produce solutions with more “numerical noise”
(since they do not have nonbasic variables). Moreover, the solvers use relative tolerances,
while SCIP-SDP uses absolute tolerances. Finally, for Mosek, we use a slightly tighter
tolerance than in SCIP-SDP.

Table 8 shows a comparison between SCIP-SDP 3.2 and 4.0 on the same testset
as used by Gally et al. [32], which consists of 194 instances. Reported are the number
of optimally solved instances, as well as the shifted geometric means of the number of
processed nodes and the CPU time in seconds. We use Mosek 9.2.40 for solving the
continuous SDP-relaxations. The tests were performed on a Linux cluster with 3.5 GHz
Intel Xeon E5-1620 Quad-Core CPUs, having 32 GB main memory and 10 MB cache.
All computations were run single-threaded and with a timelimit of one hour.

As can be seen from the results, SCIP-SDP 4.0 is significantly faster than SCIP-SDP
3.2, but we recall that we have relaxed the the tolerances (see above). Nevertheless, the
conclusion is that SCIP-SDP 4.0 has significantly improved since the last version.

12 SCIP-Jack: Solving Steiner Tree and Related Problems

Given an undirected, connected graph G = (V,E), costs (or weights) c : E → R+ and
a set T ⊆ V of terminals, the Steiner tree problem in graphs (SPG) asks for a tree
S = (V (S), E(S)) ⊆ G such that T ⊆ V (S) holds and

∑
e∈E(S) c(e) is minimized. The

SPG is a fundamental NP-hard problem [54], and one of the most studied problems
in combinatorial optimization. Moreover, many related problems have been extensively
described in the literature and can be found in a wide range of practical applications [64].

Since version 3.2, the SCIP Optimization Suite has contained SCIP-Jack, an exact
solver not only for the SPG but also for 11 related problems. This release of the SCIP
Optimization Suite contains the new SCIP-Jack 2.012, which can handle two additional
problem classes: the maximum-weight connected subgraph problem with budgets, and the
partial-terminal Steiner tree problem. Furthermore, SCIP-Jack 2.0 comes with major
improvements on almost all problem classes it can handle. Most importantly, the latest
SCIP-Jack outperforms the well-known SPG solver by Polzin and Vahdati [84, 112] on
almost all nontrivial benchmark testsets from the literature. See the preprint [88] for
more details. Notably, Polzin and Vahdati [84, 112] had remained out of reach for almost
20 years for any other SPG solver.

11For instance, in seldom cases, the dual bound might exceed the value of a primal feasible solution.
12see also http://scipjack.zib.de

80

http://scipjack.zib.de

The large number of newly implemented algorithms (and data structures) also results
in an increase of the SCIP-Jack code base by a factor of almost 3: To roughly 110 000
lines of code. Additionally, the implementation of many existing methods has been
improved. We list several of the most important new features.

For SPG, a central new feature is a distance concept that provably dominates the
well-known bottleneck Steiner distance from Duin and Volgenant [25], see Rehfeldt and
Koch [90] for details. This distance concept is used in several (new) reduction methods
implemented in SCIP-Jack 2.0. Also, the new SCIP-Jack includes a full-fledged
implementation of so-called extended reduction techniques. These methods are provably
stronger than the state-of-the-art implementation [85], and also yield strong practical
results, see Rehfeldt and Koch [88] for details. Furthermore, decomposition methods for
the SPG have been implemented, for example to exploit the existence of biconnected
components in the underlying graph. Also, dynamic programming algorithms have been
implemented to efficiently solve subproblems with special structures that sometimes arise
after decomposition.

The improvements for SPG also have an immediate impact on problems that are
transformed to SPG within SCIP-Jack, such as the group Steiner tree problem. Even for
the Euclidean Steiner tree problem, large improvements are possible (the SPG can be used
for full Steiner tree concatenation after the discretization of the problem): SCIP-Jack
2.0 is able to solve 19 Euclidean Steiner tree problems with up to 100 000 terminals for
the first time to optimality, see Rehfeldt and Koch [88]. Notably, the state-of-the-art
Euclidean Steiner tree solver GeoSteiner 5.1 [49] could not solve any of these instances
even after one week of computation. In contrast, SCIP-Jack 2.0 solves all of them
within 12 minutes, some even within two minutes.

Considerable problem-specific improvements have also been made for the prize-
collecting Steiner tree problem and (to a lesser extent) for the maximum-weight connect
subgraph problem. For details on the improvements for the prize-collecting Steiner tree
problem see Rehfeldt and Koch [89], for the maximum-weight connect subgraph problem
see Rehfeldt, Franz, and Koch [91]. The improvements encompass primal and dual
heuristics as well as reduction techniques. As a result, SCIP-Jack 2.0 can solve many
previously unsolved benchmark instances from both problem classes to optimality—the
largest of these instances have up to 10 million edges. Additionally, for the prize-collecting
Steiner tree problem SCIP-Jack 2.0 can solve most benchmark sets from the literature
more than two times faster than its predecessor with respect to the shifted geometric
mean (with a shift of 1 second).

13 Final Remarks

The SCIP Optimization Suite 8.0 release provides new functionality and improved perfor-
mance and reliability. In SCIP, new symmetry handling features were added, including
the handling of symmetries of general integer and continuous variables, improving detec-
tion routines and adding a strategy for symmetry handling routine selection. Mixing
cutting planes were implemented, which considerably improve the performance on chance
constrained programs. A decomposition primal heuristic was updated to further improve
the found solutions, and a new decomposition primal heuristic was added. A new cut
strengthening procedure was added to the Benders decomposition framework, and a new
type of plugin for cut selection was introduced.

With this release also comes a thorough revision of how nonlinear constraints are
handled in SCIP, in particular how extended formulations are created. In the new version,
the original formulation is preserved and the extended formulation is used for relaxations
only, which drastically improves the reliability of solutions. High- and low-level nonlinear
structures are now handled by plugins of different types in order to avoid expression type
ambiguity. Simultaneously, a number of new MINLP features were introduced such as

81

various new cutting planes, symmetry detection for nonlinear constraints, support for
sine and cosine functions, and others.

Regarding usability, the Julia package SCIP.jl was improved in several aspects and
a new MATLAB interface to SCIP was implemented. UG was generalized to enable
the parallelization of all solvers via a unified framework, without the need to modify
the framework for each solver; its internal structure has been completely reworked.
The new version of GCG includes new algorithmic features and substantial ecosystem
improvements, such as extended interfaces, improved documentation, added utility for
running and analyzing computational experiments. PaPILO features a new postsolving
functionality for dual solutions when applied to pure LPs. The handling of relaxations
in SCIP-SDP was revised, and new heuristics and presolving methods were added. The
new version of SCIP-Jack can handle two additional problem classes and comes with
major performance improvements.

These developments yield a considerable performance improvement on nonconvex
MINLP instances and reduce the overall number of numerical failures on the MINLP
testset, although a slowdown is observed on convex instances due to a lack of recognition
of a structure present in one instance group. Nonetheless, we observe an overall runtime
reduction of about 21%. A substantial speed-up is observed on MILP instances with
about a 50% shorter runtime on the most challenging instances, as well as special problem
classes such as SDP and Steiner tree problems and their variants.

Acknowledgements

The authors want to thank all previous developers and contributors to the SCIP Opti-
mization Suite and all users that reported bugs and often also helped reproducing and
fixing the bugs. In particular, thanks go to Suresh Bolusani, Didier Chételat, Gregor Hen-
del, Andreas Schmitt, Helena Völker, Robert Schwarz, Matthias Miltenberger, Matthias
Walter, and Antoine Prouvoust and the Ecole team. The Matlab-SCIP(-SDP) interface
was set up with the big help of Nicolai Simon.

Contributions of the Authors

The material presented in the article is highly related to code and software. In the
following we try to make the corresponding contributions of the authors and possible
contact points more transparent.

JvD, CH, and MP are responsible for the changes of the symmetry handling routines
(Section 3.2). The extension of symmetry handling to nonlinear constraints (Section 3.2.2)
is by FW. WC and MP implemented the mixing cut separator (Section 3.3). The update
of PADM and the new DPS heuristic (Section 3.4) are due to KH and DW. SJM is responsible
for the updates to the Benders’ decomposition framework (Section 3.5). MT and FeS
implemented the new cut selector plugin (Section 3.6). Various technical improvements
(Section 3.7) were added by MP and SV. The new expressions framework (Section 4.1)
is by BM, FeS, FW, KB, and SV. The rewritten handler for nonlinear constraints
(Section 4.2) is by BM, FeS, KB, and SV. The nonlinear handler for quadratic expressions
(Section 4.3) and the separator sepa interminor (Section 4.11) are by AC and FeS. The
nonlinear handler for second-order cones (Section 4.4) is by BM, FeS, and FW. The
nonlinear handler for bilinear expressions (Section 4.5) and the separator sepa minor

(Section 4.10) are by BM. The nonlinear handler for convex and concave expressions
(Section 4.6) are by BM, KB, and SV. The nonlinear handler for quotients (Section 4.7)
is by BM and FW. The nonlinear handler for perspective reformulations (Section 4.8)
is by KB. The separator for RLT cuts (Section 4.9) is by FW and KB. The separator
for principal minors of X � xx> (Section 4.10) is by BM and FW. The separator for

82

intersection cuts on the rank-1 constraint for a matrix (Section 4.11) is by AC and FeS.
The revised primal heuristic subnlp (Section 4.12) and the updates to NLP, NLPI, and
AD interfaces (Section 4.13) are by SV.

The changes to SoPlex (Section 5) are due to LE and AH. AH and AG are responsible
for the new dual postsolving functionality in PaPILO (Section 6). The new AMPL
interface of SCIP (Section 7.1) was implemented by SV. The Julia interface SCIP.jl

(Section 7.2) was extended and updated by MB, Erik Tadewaldt, Robert Schwarz,
and Yupei Qi. The SoPlex C interface (Section 7.3) was developed by AC, LE, and
MB. Nicolai Simon and MP updated the Matlab-interface (Section 7.4). The work on
ZIMPL (Section 8) was done by TK. The updates to the UG framework (Section 9) are
by YS. Concerning GCG (Section 10), EM refactored the detector loop; the website
documentation and visualization suite is due to TD; OG created the strong branching
code; and SS implemented PyGCGOpt. FM and MP implemented the changes in
SCIP-SDP (Section 11). DR is responsible for SCIP-Jack (Section 12).

The work by FrS on the continuous integration system, regular test and bench-
mark runs, binary distributions, websites, and many more has been invaluable for all
developments.

References

[1] A. Abdi and R. Fukasawa. On the mixing set with a knapsack constraint. Mathematical
Programming, 157:191–217, 2016. doi:10.1007/s10107-016-0979-5.

[2] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität
Berlin, 2007.

[3] T. Achterberg. SCIP: Solving Constraint Integer Programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[4] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33(1):42–54, 2005.

[5] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Presolve reductions
in mixed integer programming. INFORMS Journal on Computing, 32(2):473–506, 2020.
doi:10.1287/ijoc.2018.0857.

[6] W. P. Adams and H. D. Sherali. A tight linearization and an algorithm for zero-one
quadratic programming problems. Management Science, 32(10):1274–1290, 1986.

[7] W. P. Adams and H. D. Sherali. Linearization strategies for a class of zero-one mixed
integer programming problems. Operations Research, 38(2):217–226, 1990.

[8] W. P. Adams and H. D. Sherali. Mixed-integer bilinear programming problems. Mathe-
matical Programming, 59(1):279–305, 1993.

[9] A. Atamtürk, G. L. Nemhauser, and M. W. Savelsbergh. The mixed vertex packing
problem. Mathematical Programming, 89:35–53, 2000. doi:10.1007/s101070000154.

[10] E. Balas. Intersection cuts—a new type of cutting planes for integer programming.
Operations Research, 19:19–39, 1971.

[11] X. Bao, N. V. Sahinidis, and M. Tawarmalani. Multiterm polyhedral relaxations for
nonconvex, quadratically-constrained quadratic programs. Optimization Methods and
Software, 24(4-5):485–504, 2009. doi:10.1080/10556780902883184.

[12] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening
techniques for non-convex MINLP. Optimization Methods and Software, 24(4-5):597–634,
2009. doi:10.1080/10556780903087124.

[13] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan. Mixed-integer
nonlinear optimization. Acta Numerica, 22:1–131, 2013. doi:10.1017/S0962492913000032.

[14] P. Bendotti, P. Fouilhoux, and C. Rottner. Orbitopal fixing for the full (sub-)orbitope and
application to the unit commitment problem. Mathematical Programming, 186:337–372,
2021. doi:10.1007/s10107-019-01457-1.

[15] T. Berthold and J. Witzig. Conflict analysis for minlp. INFORMS Journal on Computing,
33(2):421–435, 2021. doi:10.1287/ijoc.2020.1050.

83

https://doi.org/10.1007/s10107-016-0979-5
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1007/s101070000154.
https://doi.org/10.1080/10556780902883184
https://doi.org/10.1080/10556780903087124
https://doi.org/10.1017/S0962492913000032
https://doi.org/10.1007/s10107-019-01457-1
https://doi.org/10.1287/ijoc.2020.1050

[16] T. Berthold, S. Heinz, and M. E. Pfetsch. Nonlinear pseudo-boolean optimization: relax-
ation or propagation? In O. Kullmann, editor, Theory and Applications of Satisfiability
Testing – SAT 2009, number 5584 in LNCS, pages 441–446. Springer, 2009.

[17] K. Bestuzheva, A. Gleixner, and S. Vigerske. A computational study of perspective cuts.
ZIB Report 21-07, Zuse Institute Berlin, 2021.

[18] R. Borndörfer, C. E. Ferreira, and A. Martin. Decomposing matrices into blocks. SIAM
Journal on Optimization, 9(1):236–269, 1998. doi:10.1137/S1052623497318682.

[19] A. Ceselli and G. Righini. A branch-and-price algorithm for the capacitated p-
median problem. Networks, 45(3):125–142, 5 2005. doi:10.1002/net.20059. URL
www.interscience.wiley.

[20] J.-S. Chen and C.-H. Huang. A note on convexity of two signomial functions. Journal of
Nonlinear and Convex Analysis, 10(3):429–435, 2009.

[21] A. Chmiela, G. Muñoz, and F. Serrano. On the implementation and strengthening of
intersection cuts for QCQPs. Integer Programming and Combinatorial Optimization
Proceedings, 22:134–147, 2021. doi:10.1007/978-3-030-73879-2 10.

[22] Concorde. Concorde tsp solver. https://www.math.uwaterloo.ca/tsp/concorde.html,
2021.

[23] S. S. Dey and M. Molinaro. Theoretical challenges towards cutting-plane selection.
Mathematical Programming, 170(1):237–266, 2018.

[24] F. Domes and A. Neumaier. Constraint propagation on quadratic constraints. Constraints,
15(3):404–429, 2010. ISSN 1383-7133. doi:10.1007/s10601-009-9076-1.

[25] C. Duin and A. Volgenant. An edge elimination test for the Steiner problem in graphs.
Operations Research Letters, 8(2):79–83, 1989. doi:10.1016/0167-6377(89)90005-9.

[26] M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of
mixed-integer nonlinear programs. Mathematical Programming, 36(3):307–339, 1986.
doi:10.1007/BF02592064.

[27] M. Fischetti, M. Monaci, and D. Salvagnin. Selfsplit parallelization for mixed-
integer linear programming. Computers and Operations Research, 93:101–112, 2018.
doi:https://doi.org/10.1016/j.cor.2018.01.011.

[28] A. Frangioni and C. Gentile. Perspective cuts for a class of convex 0–1 mixed integer
programs. Mathematical Programming, 106(2):225–236, 2006.

[29] K. Fujii, N. Ito, S. Kim, M. Kojima, Y. Shinano, and K.-C. Toh. Solving challenging large
scale qaps. Technical Report 21-02, ZIB, Takustr. 7, 14195 Berlin, 2021.

[30] T. Gally. Computational Mixed-Integer Semidefinite Programming. PhD thesis, TU
Darmstadt, 2019.

[31] T. Gally, M. E. Pfetsch, and S. Ulbrich. A framework for solving mixed-integer
semidefinite programs. Optimization Methods and Software, 33(3):594–632, 2017.
doi:10.1080/10556788.2017.1322081.

[32] T. Gally, M. E. Pfetsch, and S. Ulbrich. A framework for solving mixed-integer semidefinite
programs. Optimization Methods and Software, 33(3):594–632, 2018.

[33] G. Gamrath and M. E. Lübbecke. Experiments with a generic Dantzig-Wolfe decomposition
for integer programs. In P. Festa, editor, Experimental Algorithms, volume 6049 of
Lecture Notes in Computer Science, pages 239–252. Springer Berlin Heidelberg, 2010.
doi:10.1007/978-3-642-13193-6 21.

[34] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T. Koch, S. J. Maher, M. Mil-
tenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz,
F. Serrano, Y. Shinano, S. Vigerske, D. Weninger, M. Winkler, J. T. Witt, and J. Witzig.
The SCIP Optimization Suite 3.2. Technical report, Optimization Online, 2016. URL
http://www.optimization-online.org/DB_HTML/2016/03/5360.html.

[35] G. Gamrath, T. Koch, S. J. Maher, D. Rehfeldt, and Y. Shinano. SCIP-Jack—a solver for
STP and variants with parallelization extensions. Mathematical Programming Computation,
9(2):231–296, 2017. doi:10.1007/s12532-016-0114-x.

[36] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander,
A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P. L. Bodic, S. J.
Maher, F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. E. Pfetsch, F. Schlösser,
F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger, and

84

https://doi.org/10.1137/S1052623497318682
https://doi.org/10.1002/net.20059
www.interscience.wiley.
https://doi.org/10.1007/978-3-030-73879-2_10
https://www.math.uwaterloo.ca/tsp/concorde.html
https://doi.org/10.1007/s10601-009-9076-1
https://doi.org/10.1016/0167-6377(89)90005-9
https://doi.org/10.1007/BF02592064
https://doi.org/https://doi.org/10.1016/j.cor.2018.01.011
https://doi.org/10.1080/10556788.2017.1322081
https://doi.org/10.1007/978-3-642-13193-6_21
http://www.optimization-online.org/DB_HTML/2016/03/5360.html
https://doi.org/10.1007/s12532-016-0114-x

J. Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization Online, 2020.
http://www.optimization-online.org/DB_HTML/2020/03/7705.html.

[37] O. Gaul. Hierarchical strong branching and other strong branching-based branching can-
didate selection heuristics in branch-and-price. Master’s thesis, RWTH Aachen University,
2021.

[38] B. Geißler, A. Morsi, L. Schewe, and M. Schmidt. Penalty Alternating Direction Methods
for Mixed-Integer Optimization: A New View on Feasibility Pumps. SIAM Journal on
Optimization, 27:1611–1636, 2017. doi:10.1137/16M1069687.

[39] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel,
C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E.
Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano,
J. M. Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP
Optimization Suite 6.0. Technical report, Optimization Online, 2018. URL http://www.

optimization-online.org/DB_HTML/2018/07/6692.html.

[40] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold,
P. Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübbecke, H. Mittelmann, D. Ozyurt,
T. Ralphs, D. Salvagnin, and Y. Shinano. MIPLIB 2017: Data-driven compilation of the
6th Mixed-Integer Programming Library. Mathematical Programming Computation, 13:
443–490, 2021. doi:10.1007/s12532-020-00194-3.

[41] F. Glover. Convexity cuts and cut search. Operations Research, 21:123–134, 1973.

[42] F. Glover. Polyhedral convexity cuts and negative edge extensions. Zeitschrift für
Operations Research, 18:181–186, 1974.

[43] F. Glover, G. Kochenberger, and Y. Du. Quantum bridge analytics i: a tutorial on
formulating and using qubo models. 4OR, 17(4):335–371, 2019.

[44] O. Günlük and Y. Pochet. Mixing mixed-integer inequalities. Mathematical Programming,
90:429–457, 2001. doi:10.1007/PL00011430.

[45] P. Hansen, B. Jaumard, M. Ruiz, and J. Xiong. Global minimization of indefinite quadratic
functions subject to box constraints. Naval Research Logistics (NRL), 40(3):373–392, 1993.
doi:10.1002/1520-6750(199304)40:3<373::AID-NAV3220400307>3.0.CO;2-A.

[46] D. Henrich. Initialization of parallel branch-and-bound algorithms. In Second International
Workshop on Parallel Processing for Artificial Intelligence(PPAI-93), August 1993.

[47] C. Hojny. Packing, partitioning, and covering symresacks. Discrete Applied Mathematics,
283:689–717, 2020. doi:10.1016/j.dam.2020.03.002.

[48] C. Hojny and M. E. Pfetsch. Polytopes associated with symmetry handling. Mathematical
Programming, 175(1):197–240, 2019. doi:10.1007/s10107-018-1239-7.

[49] D. Juhl, D. M. Warme, P. Winter, and M. Zachariasen. The GeoSteiner software package
for computing Steiner trees in the plane: an updated computational study. Mathematical
Programming Computation, 10(4):487–532, 2018. doi:10.1007/s12532-018-0135-8.

[50] T. Junttila and P. Kaski. bliss: A tool for computing automorphism groups and canonical
labelings of graphs. http://www.tcs.hut.fi/Software/bliss/, 2012.

[51] V. Kaibel and A. Loos. Finding descriptions of polytopes via extended formulations and
liftings. In A. R. Mahjoub, editor, Progress in Combinatorial Optimization. Wiley, 2011.

[52] V. Kaibel and M. E. Pfetsch. Packing and partitioning orbitopes. Mathematical Program-
ming, 114(1):1–36, 2008. doi:10.1007/s10107-006-0081-5.

[53] V. Kaibel, M. Peinhardt, and M. E. Pfetsch. Orbitopal fixing. Discrete Optimization, 8
(4):595–610, 2011. doi:10.1016/j.disopt.2011.07.001.

[54] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. Plenum Press, 1972. doi:10.1007/978-
1-4684-2001-2 9.

[55] J. E. Kelley. The cutting-plane method for solving convex programs. Journal of the
Society for Industrial and Applied Mathematics, 8(4):703–712, 1960. doi:10.1137/0108053.

[56] A. Khajavirad. Packing circles in a square: a theoretical comparison of various con-
vexification techniques. Technical report, Optimization Online, 2017. http://www.

optimization-online.org/DB_HTML/2017/03/5911.html.

[57] T. Koch. Rapid Mathematical Prototyping. PhD thesis, Technische Universität Berlin,
2004.

85

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://doi.org/10.1137/16M1069687
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/PL00011430
https://doi.org/10.1002/1520-6750(199304)40:3%3C373::AID-NAV3220400307%3E3.0.CO;2-A
https://doi.org/10.1016/j.dam.2020.03.002
https://doi.org/10.1007/s10107-018-1239-7
https://doi.org/10.1007/s12532-018-0135-8
http://www.tcs.hut.fi/Software/bliss/
https://doi.org/10.1007/s10107-006-0081-5
https://doi.org/10.1016/j.disopt.2011.07.001
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/0108053
http://www.optimization-online.org/DB_HTML/2017/03/5911.html
http://www.optimization-online.org/DB_HTML/2017/03/5911.html

[58] S. Küçükyavuz. On mixing sets arising in chance-constrained programming. Mathematical
Programming, 132:31–56, 2012. doi:10.1007/s10107-010-0385-3.

[59] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability, 1950, pages 481–492,
Berkeley and Los Angeles, 1951. University of California Press.

[60] B. Legat, O. Dowson, J. Garcia, and M. Lubin. MathOptInterface: a data structure for
mathematical optimization problems. INFORMS Journal on Computing, in press.

[61] L. Liberti. Reformulations in mathematical programming: automatic symmetry
detection and exploitation. Mathematical Programming, 131(1):273–304, Feb 2012.
doi:10.1007/s10107-010-0351-0.

[62] L. Liberti and J. Ostrowski. Stabilizer-based symmetry breaking constraints for mathe-
matical programs. Journal of Global Optimization, 60:183–194, 2014.

[63] LINDO. Api users manual. http://www.lindo.com/, 2003.

[64] I. Ljubic. Solving Steiner Trees — Recent Advances, Challenges and Perspectives. Networks,
2020. Accepted for publication.

[65] J. Luedtke, S. Ahmed, and G. L. Nemhauser. An integer programming approach for linear
programs with probabilistic constraints. Mathematical Programming, 122:247–272, 2010.
doi:10.1007/s10107-008-0247-4.

[66] A. Mahajan and T. Munson. Exploiting second-order cone structure for global optimization.
Technical Report ANL/MCS-P1801-1010, Argonne National Laboratory, 2010. URL
http://www.optimization-online.org/DB_HTML/2010/10/2780.html.

[67] S. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and F. Serrano.
PySCIPOpt: Mathematical programming in python with the SCIP optimization suite. In
Mathematical Software – ICMS 2016, pages 301–307. Springer International Publishing,
2016. doi:10.1007/978-3-319-42432-3 37.

[68] S. J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald, G. Hendel,
T. Koch, M. E. Lübbecke, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert,
D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, D. Weninger, J. T. Witt,
and J. Witzig. The SCIP Optimization Suite 4.0. Technical report, Optimization Online,
2017. URL http://www.optimization-online.org/DB_HTML/2017/03/5895.html.

[69] C. D. Maranas and C. A. Floudas. Finding all solutions of nonlinearly constrained systems
of equations. Journal of Global Optimization, 7(2):143–182, 1995. doi:10.1007/BF01097059.

[70] H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding to solve MIPs.
Operations Research, 49(3):363–371, 2001. doi:10.1287/opre.49.3.363.11211.

[71] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94
(1):71–90, 2002. doi:10.1007/s10107-002-0358-2.

[72] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming, 98(1–3):3–21,
2003. doi:10.1007/s10107-003-0394-6.

[73] F. Margot. Symmetry in integer linear programming. In M. Jünger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey,
editors, 50 Years of Integer Programming, pages 647–686. Springer, 2010.

[74] S. Mars. Mixed-Integer Semidefinite Programming with an Application to Truss Topology
Design. PhD thesis, FAU Erlangen-Nürnberg, 2013.

[75] F. Matter and M. E. Pfetsch. Presolving for mixed-integer semidefinite optimization.
Technical report, Optimization Online, 2021. http://www.optimization-online.org/

DB{_}HTML/2021/10/8614.html.

[76] G. P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I – convex underestimating problems. Mathematical Programming, 10(1):147–175,
1976. doi:10.1007/BF01580665.

[77] MINLPLIB. MINLP library. http://www.minlplib.org.

[78] B. Müller, F. Serrano, and A. Gleixner. Using Two-Dimensional Projections for Stronger
Separation and Propagation of Bilinear Terms. SIAM Journal on Optimization, 30(2):
1339–1365, 2020. doi:10.1137/19m1249825.

[79] L.-M. Mungúıa, G. Oxberry, and D. Rajan. Pips-sbb: A parallel distributed-memory
branch-and-bound algorithm for stochastic mixed-integer programs. In 2016 IEEE Inter-

86

https://doi.org/10.1007/s10107-010-0385-3
https://doi.org/10.1007/s10107-010-0351-0
http://www.lindo.com/
https://doi.org/10.1007/s10107-008-0247-4
http://www.optimization-online.org/DB_HTML/2010/10/2780.html
https://doi.org/10.1007/978-3-319-42432-3_37
http://www.optimization-online.org/DB_HTML/2017/03/5895.html
https://doi.org/10.1007/BF01097059
https://doi.org/10.1287/opre.49.3.363.11211
https://doi.org/10.1007/s10107-002-0358-2
https://doi.org/10.1007/s10107-003-0394-6
http://www.optimization-online.org/DB{_}HTML/2021/10/8614.html
http://www.optimization-online.org/DB{_}HTML/2021/10/8614.html
https://doi.org/10.1007/BF01580665
http://www.minlplib.org
https://doi.org/10.1137/19m1249825

national Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages
730–739, 2016. doi:10.1109/IPDPSW.2016.159.

[80] L.-M. Mungúıa, G. Oxberry, D. Rajan, and Y. Shinano. Parallel pips-sbb: multi-level
parallelism for stochastic mixed-integer programs. Computational Optimization and
Applications, 73(2):575–601, 2019. doi:10.1007/s10589-019-00074-0. URL https://doi.

org/10.1007/s10589-019-00074-0.

[81] G. Muñoz and F. Serrano. Maximal quadratic-free sets. Integer Programming and
Combinatorial Optimization Proceedings, 21:307–321, 2020. doi:10.1007/978-3-030-45771-
6 24.

[82] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathematical
Programming, 126(1):147–178, 2011. doi:10.1007/s10107-009-0273-x.

[83] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-and-price for ca-
pacitated vehicle routing. In J. Lee and J. Vygen, editors, Integer Programming and
Combinatorial Optimization, pages 393–403, Cham, 2014. Springer International Publish-
ing.

[84] T. Polzin. Algorithms for the Steiner problem in networks. PhD thesis, Saarland University,
2003.

[85] T. Polzin and S. V. Daneshmand. Extending Reduction Techniques for the Steiner Tree
Problem, pages 795–807. Springer, Berlin, Heidelberg, 2002. doi:10.1007/3-540-45749-6 69.

[86] A. Qualizza, P. Belotti, and F. Margot. Linear programming relaxations of quadratically
constrained quadratic programs. In J. Lee and S. Leyffer, editors, Mixed Integer Nonlinear
Programming, pages 407–426, New York, NY, 2012. Springer New York. doi:10.1007/978-
1-4614-1927-3 14.

[87] T. Ralphs, Y. Shinano, T. Berthold, and T. Koch. Parallel solvers for mixed integer linear
optimization. In Y. Hamadi and L. Sais, editors, Handbook of parallel constraint reasoning,
pages 283–336. Springer, 2018. doi:10.1007/978-3-319-63516-3 8.

[88] D. Rehfeldt and T. Koch. Implications, conflicts, and reductions for Steiner trees. ZIB-
Report 20-28, Zuse Institute Berlin, 2020.

[89] D. Rehfeldt and T. Koch. On the exact solution of prize-collecting Steiner tree problems.
INFORMS Journal on Computing, 2021. Accepted for publication.

[90] D. Rehfeldt and T. Koch. Implications, conflicts, and reductions for steiner trees. In
M. Singh and D. P. Williamson, editors, Proceedings: Integer Programming and Combina-
torial Optimization – 22nd International Conference, IPCO 2021, volume 12707 of LNCS,
pages 473–487. Springer, 2021. doi:10.1007/978-3-030-73879-2 33.

[91] D. Rehfeldt, H. Franz, and T. Koch. Optimal connected subgraphs: Formulations and
algorithms. ZIB-Report 20-23, Zuse Institute Berlin, 2020.

[92] S. Røpke. Branching decisions in branch-and-cut-and-price algorithms for vehicle routing
problems, 2012. Presentation in Column Generation.

[93] D. Ryan and B.A.Foster. An integer programming approach to scheduling. In A. Wren,
editor, Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew
Scheduling, pages 269–280. North Holland, Amsterdam, 1981.

[94] D. Salvagnin. A dominance procedure for integer programming. Master’s thesis, Universtà
degli studi di Padova, 2005.

[95] D. Salvagnin. Symmetry breaking inequalities from the Schreier-Sims table. In W.-J.
van Hoeve, editor, Integration of Constraint Programming, Artificial Intelligence, and
Operations Research, pages 521–529, Cham, 2018. Springer.

[96] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer program-
ming problems. ORSA Journal on Computing, 6(4):445–454, 1994. doi:10.1287/ijoc.6.4.445.

[97] L. Schewe, M. Schmidt, and D. Weninger. A Decomposition Heuristic for Mixed-Integer
Supply Chain Problems. Operations Research Letters, 2020. doi:10.1016/j.orl.2020.02.006.

[98] M. Schneider, N. Gama, P. Baumann, and L. Nobach. SVP challenge (2010). URL:
http://latticechallenge.org/svp-challenge.

[99] F. Serrano, R. Schwarz, and A. Gleixner. On the relation between the extended supporting
hyperplane algorithm and Kelley’s cutting plane algorithm. Journal of Global Optimization,
78(1):161–179, 2020. doi:10.1007/s10898-020-00906-y.

87

https://doi.org/10.1109/IPDPSW.2016.159
https://doi.org/10.1007/s10589-019-00074-0
https://doi.org/10.1007/s10589-019-00074-0
https://doi.org/10.1007/s10589-019-00074-0
https://doi.org/10.1007/978-3-030-45771-6_24
https://doi.org/10.1007/978-3-030-45771-6_24
https://doi.org/10.1007/s10107-009-0273-x
https://doi.org/10.1007/3-540-45749-6_69
https://doi.org/10.1007/978-1-4614-1927-3_14
https://doi.org/10.1007/978-1-4614-1927-3_14
https://doi.org/10.1007/978-3-319-63516-3_8
https://doi.org/10.1007/978-3-030-73879-2_33
https://doi.org/10.1287/ijoc.6.4.445
https://doi.org/10.1016/j.orl.2020.02.006
https://doi.org/10.1007/s10898-020-00906-y

[100] H. D. Sherali and C. H. Tuncbilek. A global optimization algorithm for polynomial
programming problems using a reformulation-linearization technique. Journal of Global
Optimization, 2(1):101–112, 1992.

[101] Y. Shinano. The Ubiquity Generator framework: 7 years of progress in parallelizing
branch-and-bound. In N. Kliewer, J. F. Ehmke, and R. Borndörfer, editors, Operations
Research Proceedings 2017, pages 143–149. Springer International Publishing, 2018.

[102] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. Parascip: A parallel
extension of scip. In C. Bischof, H.-G. Hegering, W. E. Nagel, and G. Wittum, editors,
Competence in High Performance Computing 2010, pages 135–148, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. ISBN 978-3-642-24025-6.

[103] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, and M. Winkler. Solving open
mip instances with parascip on supercomputers using up to 80,000 cores. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 770–779,
2016. doi:10.1109/IPDPS.2016.56.

[104] Y. Shinano, T. Berthold, and S. Heinz. Paraxpress: an experimental extension of the
fico xpress-optimizer to solve hard mips on supercomputers. Optimization Methods
and Software, 33(3):530–539, 2018. doi:10.1080/10556788.2018.1428602. URL https:

//doi.org/10.1080/10556788.2018.1428602.

[105] Y. Shinano, S. Heinz, S. Vigerske, and M. Winkler. Fiberscip—a shared mem-
ory parallelization of scip. INFORMS Journal on Computing, 30(1):11–30, 2018.
doi:10.1287/ijoc.2017.0762. URL https://doi.org/10.1287/ijoc.2017.0762.

[106] Y. Shinano, S. Heinz, S. Vigerske, and M. Winkler. FiberSCIP: A shared mem-
ory parallelization of SCIP. INFORMS Journal on Computing, 30(1):11–30, 2018.
doi:10.1287/ijoc.2017.0762. URL https://doi.org/10.1287/ijoc.2017.0762.

[107] E. Smith and C. Pantelides. A symbolic reformulation/spatial branch-and-bound algorithm
for the global optimisation of nonconvex MINLPs. Computers & Chemical Engineering,
23(4-5):457–478, 1999. doi:10.1016/s0098-1354(98)00286-5.

[108] N. Tateiwa, Y. Shinano, S. Nakamura, A. Yoshida, S. Kaji, M. Yasuda, and K. Fujisawa.
Massive parallelization for finding shortest lattice vectors based on ubiquity generator
framework. In SC20: International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–15, 2020. doi:10.1109/SC41405.2020.00064.

[109] N. Tateiwa, Y. Shinano, K. Yamamura, A. Yoshida, S. Kaji, M. Yasuda, and K. Fujisawa.
Cmap-lap: Configurable massively parallel solver for lattice problems. Technical Report
21-16, ZIB, Takustr. 7, 14195 Berlin, 2021.

[110] M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming, 103(2):225–249, 2005. doi:10.1007/s10107-005-
0581-8.

[111] H. Tuy. Concave programming with linear constraints. Doklady Akademii Nauk, 159:
32–35, 1964.

[112] S. Vahdati Daneshmand. Algorithmic approaches to the Steiner problem in networks. PhD
thesis, Universität Mannheim, 2004.

[113] F. Vanderbeck. Branching in branch-and-price: A generic scheme. Mathematical Program-
ming, 130(2):249–294, 2011.

[114] J. P. Vielma, I. Dunning, J. Huchette, and M. Lubin. Extended formulations in mixed
integer conic quadratic programming. Mathematical Programming Computation, 9(3):
369–418, 2016. doi:10.1007/s12532-016-0113-y.

[115] S. Vigerske and A. Gleixner. SCIP: Global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. Optimization Methods & Software, 33(3):
563–593, 2017. doi:10.1080/10556788.2017.1335312.

[116] D. Villeneuve, J. Desrosiers, M. Lübbecke, and F. Soumis. On compact formulations for
integer programs solved by column generation. Annals of Operations Research, 139(1):
375–388, 2005. doi:10.1007/s10479-005-3455-9.

[117] F. Wegscheider. Exploiting symmetry in mixed-integer nonlinear programming. Master’s
thesis, Zuse Institute Berlin, 2019.

[118] F. Wesselmann and U. Suhl. Implementing cutting plane management and selection
techniques. Technical report, University of Paderborn, 2012.

88

https://doi.org/10.1109/IPDPS.2016.56
https://doi.org/10.1080/10556788.2018.1428602
https://doi.org/10.1080/10556788.2018.1428602
https://doi.org/10.1080/10556788.2018.1428602
https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.1016/s0098-1354(98)00286-5
https://doi.org/10.1109/SC41405.2020.00064
https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/s12532-016-0113-y
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1007/s10479-005-3455-9

[119] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis,
Technische Universität Berlin, 1996.

[120] J. M. Zamora and I. E. Grossmann. Continuous Global Optimization of Structured Process
Systems Models. Comp. Chem. Eng., 22(12):1749–1770, 1998.

[121] M. Zhao, K. Huang, and B. Zeng. A polyhedral study on chance constrained program with
random right-hand side. Mathematical Programming, 166:19–64, 2017. doi:10.1007/s10107-
016-1103-6.

Author Affiliations

Ksenia Bestuzheva
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: bestuzheva@zib.de
ORCID: 0000-0002-7018-7099

Mathieu Besançon
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: besancon@zib.de
ORCID: 0000-0002-6284-3033

Wei-Kun Chen
School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
E-mail: chenweikun@bit.edu.cn
ORCID: 0000-0003-4147-1346

Antonia Chmiela
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: chmiela@zib.de
ORCID: 0000-0002-4809-2958

Tim Donkiewicz
RWTH Aachen University, Lehrstuhl für Operations Research, Kackertstr. 7, 52072 Aachen,
Germany
E-mail: tim.donkiewicz@rwth-aachen.de
ORCID: 0000-0002-5721-3563

Jasper van Doornmalen
Technische Universiteit Eindhoven, Department of Mathematics and Computer Science, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: m.j.v.doornmalen@tue.nl
ORCID: 0000-0002-2494-0705

Leon Eifler
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: eifler@zib.de
ORCID: 0000-0003-0245-9344

Oliver Gaul
RWTH Aachen University, Lehrstuhl für Operations Research, Kackertstr. 7, 52072 Aachen,
Germany
E-mail: oliver.gaul@rwth-aachen.de
ORCID: 0000-0002-2131-1911

Gerald Gamrath
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
and I2DAMO GmbH, Englerallee 19, 14195 Berlin, Germany

89

https://doi.org/10.1007/s10107-016-1103-6
https://doi.org/10.1007/s10107-016-1103-6
bestuzheva@zib.de
https://orcid.org/0000-0002-7018-7099
besancon@zib.de
https://orcid.org/0000-0002-6284-3033
chenweikun@bit.edu.cn
https://orcid.org/0000-0003-4147-1346
chmiela@zib.de
https://orcid.org/0000-0002-4809-2958
tim.donkiewicz@rwth-aachen.de
https://orcid.org/0000-0002-5721-3563
m.j.v.doornmalen@tue.nl
https://orcid.org/0000-0002-2494-0705
eifler@zib.de
https://orcid.org/0000-0003-0245-9344
oliver.gaul@rwth-aachen.de
https://orcid.org/0000-0002-2131-1911

E-mail: gamrath@zib.de
ORCID: 0000-0001-6141-5937

Ambros Gleixner
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: gleixner@zib.de
ORCID: 0000-0003-0391-5903

Leona Gottwald
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: gottwald@zib.de
ORCID: 0000-0002-8894-5011

Christoph Graczyk
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: graczyk@zib.de

Katrin Halbig
Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Data Science, Cauerstr. 11,
91058 Erlangen, Germany
E-mail: katrin.halbig@fau.de
ORCID: 0000-0002-8730-3447

Alexander Hoen
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: hoen@zib.de
ORCID: 0000-0003-1065-1651

Christopher Hojny
Technische Universiteit Eindhoven, Department of Mathematics and Computer Science, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: c.hojny@tue.nl
ORCID: 0000-0002-5324-8996

Rolf van der Hulst
University of Twente, Department of Discrete Mathematics and Mathematical Programming,
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: r.p.vanderhulst@utwente.nl

Thorsten Koch
Technische Universität Berlin, Chair of Software and Algorithms for Discrete Optimization,
Straße des 17. Juni 135, 10623 Berlin, Germany, and
Zuse Institute Berlin, Department A2IM, Takustr. 7, 14195 Berlin, Germany
E-mail: koch@zib.de
ORCID: 0000-0002-1967-0077

Marco Lübbecke
RWTH Aachen University, Lehrstuhl für Operations Research, Kackertstr. 7, 52072 Aachen,
Germany
E-mail: marco.luebbecke@rwth-aachen.de
ORCID: 0000-0002-2635-0522

Stephen J. Maher
University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter, United
Kingdom
E-mail: s.j.maher@exeter.ac.uk
ORCID: 0000-0003-3773-6882

90

gamrath@zib.de
https://orcid.org/0000-0001-6141-5937
gleixner@zib.de
https://orcid.org/0000-0003-0391-5903
gottwald@zib.de
https://orcid.org/0000-0002-8894-5011
graczyk@zib.de
katrin.halbig@fau.de
https://orcid.org/0000-0002-8730-3447
hoen@zib.de
https://orcid.org/0000-0003-1065-1651
c.hojny@tue.nl
https://orcid.org/0000-0002-5324-8996
r.p.vanderhulst@utwente.nl
koch@zib.de
https://orcid.org/0000-0002-1967-0077
marco.luebbecke@rwth-aachen.de
https://orcid.org/0000-0002-2635-0522
s.j.maher@exeter.ac.uk
https://orcid.org/0000-0003-3773-6882

Frederic Matter
Technische Universität Darmstadt, Fachbereich Mathematik, Dolivostr. 15, 64293 Darmstadt,
Germany
E-mail: matter@mathematik.tu-darmstadt.de
ORCID: 0000-0002-0499-1820

Erik Mühmer
RWTH Aachen University, Lehrstuhl für Operations Research, Kackertstr. 7, 52072 Aachen
E-mail: erik.muehmer@rwth-aachen.de
ORCID: 0000-0003-1114-3800

Benjamin Müller
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: benjamin.mueller@zib.de
ORCID: 0000-0002-4463-2873

Marc E. Pfetsch
Technische Universität Darmstadt, Fachbereich Mathematik, Dolivostr. 15, 64293 Darmstadt,
Germany
E-mail: pfetsch@mathematik.tu-darmstadt.de
ORCID: 0000-0002-0947-7193

Daniel Rehfeldt
Zuse Institute Berlin, Department A2IM, Takustr. 7, 14195 Berlin, Germany
E-mail: rehfeldt@zib.de
ORCID: 0000-0002-2877-074X

Steffan Schlein
RWTH Aachen University, Lehrstuhl für Operations Research, Kackertstr. 7, 52072 Aachen,
Germany
E-mail: steffan.schlein@rwth-aachen.de

Franziska Schlösser
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: schloesser@zib.de

Felipe Serrano
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: serrano@zib.de
ORCID: 0000-0002-7892-3951

Yuji Shinano
Zuse Institute Berlin, Department A2IM, Takustr. 7, 14195 Berlin, Germany
E-mail: shinano@zib.de
ORCID: 0000-0002-2902-882X

Boro Sofranac
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany and
Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
E-mail: sofranac@zib.de
ORCID: 0000-0003-2252-9469

Mark Turner
Zuse Institute Berlin, Department A2IM, Takustr. 7, 14195 Berlin, Germany
and Chair of Software and Algorithms for Discrete Optimization, Institute of Mathematics,
Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
E-mail: turner@zib.de
ORCID: 0000-0001-7270-1496

91

matter@mathematik.tu-darmstadt.de
https://orcid.org/0000-0002-0499-1820
erik.muehmer@rwth-aachen.de
https://orcid.org/0000-0003-1114-3800
benjamin.mueller@zib.de
https://orcid.org/0000-0002-4463-2873
pfetsch@mathematik.tu-darmstadt.de
https://orcid.org/0000-0002-0947-7193
rehfeldt@zib.de
https://orcid.org/0000-0002-2877-074X
steffan.schlein@rwth-aachen.de
schloesser@zib.de
serrano@zib.de
https://orcid.org/0000-0002-7892-3951
shinano@zib.de
https://orcid.org/0000-0002-2902-882X
sofranac@zib.de
https://orcid.org/0000-0003-2252-9469
turner@zib.de
https://orcid.org/0000-0001-7270-1496

Stefan Vigerske
GAMS Software GmbH, c/o Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin,
Germany
E-mail: svigerske@gams.com

Fabian Wegscheider
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: wegscheider@zib.de

Philipp Wellner
E-mail: p.we@fu-berlin.de

Dieter Weninger
Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Data Science, Cauerstr. 11,
91058 Erlangen, Germany
E-mail: dieter.weninger@fau.de
ORCID: 0000-0002-1333-8591

Jakob Witzig
Zuse Institute Berlin, Department AIS2T, Takustr. 7, 14195 Berlin, Germany
E-mail: witzig@zib.de
ORCID: 0000-0003-2698-0767

92

svigerske@gams.com
wegscheider@zib.de
p.we@fu-berlin.de
dieter.weninger@fau.de
https://orcid.org/0000-0002-1333-8591
witzig@zib.de
https://orcid.org/0000-0003-2698-0767

Appendices
A Detailed Computational Results to Section 4.14 (Performance Impact of Updates

for Nonlinear Constraints)

The following table lists the results for running the classic code (SCIP 7) and the new code (SCIP 8) for each considered

instance of MINLPLib. Only results for the non-permuted instances are given.

Column “time/gap” gives the time it took to solve the instance to optimality (with respect to specified gap tolerances)

or the gap at termination if solving stopped at the time limit. If the time or gap of a version is not worse than the other

version, the time or gap is printed in a bold font. If a version did not return a result or the reported bounds conflict

with best known bounds, then “fail” is printed.

For the classic version, columns “quad”, “soc”, “abspow”, and “nonlin” give the number of quadratic, second-order

cone, abspower, and nonlinear constraints, respectively, after presolve. Due to the reformulations that are applied in

presolve, nonlinear constraints are sums of convex or concave functions, quadratic terms (including bilinear products) are

parts of quadratic constraint, unless an upgrade to a soc constraint was possible. Monomials of odd degree, signpowers,

and monomials of even degree with fixed sign are handled by the abspower constraint handler.

For the new version, columns “quad”, “bilin”, “soc”, “convex”, “concave”, “quot”, “persp”, “def” give the number

of expressions for which the detection algorithm of the nonlinear handlers quadratic, bilinear, soc, convex, concave,

quotient, perspective, and default, respectively (see Sections 4.3–4.8 and 4.2.6) reported success, that is, registered

themselve for domain propagation or separation after presolve. Recall that by default the quadratic nonlinear handler

only gets active for propagable quadratic expressions (see Section 4.3.1) and the convex and concave nonlinear handlers

only handle nontrivial expressions (Section 4.6.1). Further, the nonlinear handler for bilinear expressions (Section 4.5)

currently registers itself for any product of two non-binary variables (original or auxiliary) and only checks when called

later whether linear inequalities in the two variables are available, because the latter are computed after the extended

formulations are initialized. Columns “minor” and “rlt” report the number of cuts that were generated by the respective

separators (Sections 4.10 and 4.9) and got added to the LP. Here, if cuts were generated but not applied, a zero is

printed.

The last row summarizes on how many instances each constraint handler, nonlinear handler, or separator was used,

i.e., the number of nonzeros in each column.

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

4stufen 61.4% 26 16 14.6% 11 26 5 5 12 153

abel 0.8s 1 0.0s 58

alan 0.1s 1 0.1s 1 1 4

alkyl 0.2s 9 0.3s 3 8 32

alkylation 1.2% 7 1 0.13% 5 7 1 3 28

arki0001 0.1s 1 0.3s 1026

arki0002 ∞ 1 1824 ∞ 1824 912 6258

arki0003 7.5s 4669 360 2.1s 1080 77 6243

arki0004 ∞ 3336 54 ∞ 1040 4114 2027 8289

arki0005 ∞ 2376 ∞ 19 4414

arki0006 ∞ 2376 ∞ 1 19 1 3405

arki0008 fail ∞ 1750 3549 1003 1002 1500 10913 121116 0

arki0009 ∞ 40 50 191 50.9% 90 201 109 3669

arki0010 ∞ 20 25 96 45.2% 45 106 59 1809

arki0011 ∞ 135 286 ∞ 135 295 159 7125

arki0012 ∞ 135 286 ∞ 135 295 159 7125

arki0013 ∞ 135 286 ∞ 135 295 159 7260

arki0014 ∞ 135 286 ∞ 135 295 159 7125

arki0015 3% 231 992 3.1% 472 824 614 4904

arki0016 ∞ 1983 2652 ∞ 1440 4629 12 2652 16634 0

arki0017 >1000% 1828 2201 >1000% 727 4015 26 2200 14310 0

arki0018 ∞ 1 9804 ∞ 9804 9804 39218

arki0019 149% 1018 1 45.2% 1225 509 509 4489

arki0020 147% 2522 1 31.8% 3136 1261 1261 11319

arki0021 >1000% 6372 1 27.3% 7056 3186 3186 26859

arki0022 139% 8302 1 22.4% 14400 4151 4151 45407

arki0023 ∞ 17770 1 18.8% 27225 8885 8885 89993

arki0024 ∞ 3422 32 47 7.4% 90 663 55 55 3715

autocorr bern20-03 0.0s 0.0s

autocorr bern20-05 12.6s 14.2s

autocorr bern20-10 113.4s 134.8s

93

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

autocorr bern20-15 401.1s 407.4s

autocorr bern25-03 0.0s 0.0s

autocorr bern25-06 225.9s 150.7s

autocorr bern25-13 3411.4s 1787.5s

autocorr bern25-19 121% 59.2%

autocorr bern25-25 358% 228%

autocorr bern30-04 35.7s 41.3s

autocorr bern30-08 37.7% 18.2%

autocorr bern30-15 103% 73.1%

autocorr bern30-23 491% 240%

autocorr bern30-30 666% 403%

autocorr bern35-04 70.7s 90.3s

autocorr bern35-09 133% 51.8%

autocorr bern35-18 340% 278%

autocorr bern35-26 >1000% 692%

autocorr bern35-35 >1000%12752 942%

autocorr bern35-35fix >1000% 942%

autocorr bern40-05 2235.3s 2702.2s

autocorr bern40-10 353% 146%

autocorr bern40-20 672% 521%

autocorr bern40-30 >1000% 789%

autocorr bern40-40 >1000% >1000%

autocorr bern45-05 40.6% 10.2%

autocorr bern45-11 380% 269%

autocorr bern45-23 >1000% 767%

autocorr bern45-34 >1000% 971%

autocorr bern45-45 >1000% >1000%

autocorr bern50-06 128% 74.3%

autocorr bern50-13 603% 502%

autocorr bern50-25 >1000% 893%

autocorr bern50-38 >1000% >1000%

autocorr bern50-50 >1000% >1000%

autocorr bern55-06 173% 90.2%

autocorr bern55-14 >1000% 660%

autocorr bern55-28 >1000% >1000%

autocorr bern55-41 >1000% >1000%

autocorr bern55-55 >1000% >1000%

autocorr bern60-08 470% 367%

autocorr bern60-15 >1000% 881%

autocorr bern60-30 >1000% >1000%

autocorr bern60-45 >1000% >1000%

autocorr bern60-60 >1000% >1000%

ball mk2 10 0.0s 1 0.0s 1 21

ball mk2 30 0.0s 1 0.0s 1 61

ball mk3 10 0.0s 1 0.0s 1 1

ball mk3 20 0.0s 1 0.0s 1 41

ball mk3 30 0.0s 1 0.0s 1 61

ball mk4 05 1.9s 1 1.6s 1 1 10

ball mk4 10 1456.0s 1 1836.8s 1 1 20

ball mk4 15 ∞ 1 ∞ 1 1 30

batch 0.6s 2 0.3s 11 46

batch0812 0.8s 2 0.4s 20 80

batch0812 nc 1.9s 89 11 1.6s 5 6 4 4 58

batch nc 0.9s 36 6 1.1s 38 5 74

batchdes 0.1s 2 0.1s 5 23

batchs101006m 8.3s 2 5.6s 29 110

batchs121208m 15.8s 2 6.5s 35 130

batchs151208m 19.8s 2 8.4s 38 136

batchs201210m 22.8s 2 20.4s 43 156

bayes2 10 ∞ 52 ∞ 54 384 502 0

bayes2 20 ∞ 54 ∞ 55 385 505 0

bayes2 30 ∞ 54 ∞ 55 385 505 0

bayes2 50 1404.7s 54 1680.7s 55 385 1 505 0

bchoco05 5% 53 3 13 ∞ 14 133 14 13

bchoco06 4.4% 101 11 ∞ 19 207 33

bchoco07 4.5% 261 25 ∞ 26 309 64 11

bchoco08 1.4s 652 48 fail 33 516 149 137

bearing 9.5s 8 1 2 3 fail 2 8 1 1 43

beuster >1000% 44 16 408% 18 30 4 4 12 209 2

blend029 15.2s 12 3.0s 8 32 83

blend146 3.2% 24 630.8s 16 128 260

blend480 3013.6s 32 148.8s 24 188 364

blend531 194.4s 30 20.0s 22 156 304

blend718 107% 24 1475.0s 16 120 247

blend721 51.7s 24 20.7s 16 128 264

blend852 0.08% 32 71.7s 24 188 371

btest14 22.5% 41 5 45 0.98% 43 71 372 48727

camcns ∞ 101 9 66 ∞ 4 159 30 12 36 647

camshape100 7.3% 101 6.1% 100 197 397 3772

camshape200 14.8% 201 13.3% 200 397 797 3011

camshape400 18.6% 401 18.4% 400 797 1597 325

camshape800 21.4% 801 21.6% 800 1597 3197 228

cardqp inlp 7.6% 2893.5s

cardqp iqp 7.3% 2900.3s

carton7 379.4s 60 18.7s 12 6 116 1

carton9 193% 68 41.2s 12 21 172 79

casctanks 177.4s 263 5 59 ∞ 35 233 977 2

94

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

case 1scv2 >1000% 999 300 ∞ 696 609 4 9 4410

catmix100 ∞ 200 ∞ 200 200 701

catmix200 ∞ 400 ∞ 400 400 1401

catmix400 ∞ 800 ∞ 800 800 2801

catmix800 ∞ 1600 ∞ 1600 1600 5601

cecil 13 1247.5s 174 174 640.5s 58 725 12

celar6-sub0 ∞ 3281.3s

cesam2cent fail >1000% 28 28 1 13 157 629

cesam2log ∞ 28 170 ∞ 29 185 1 13 157 786

chain100 ∞ 102 101 ∞ 99 101 101 605

chain200 ∞ 202 201 ∞ 199 201 201 1205

chain400 ∞ 402 401 ∞ 399 401 401 2405

chain50 ∞ 52 51 ∞ 49 51 51 305

chakra 0.0s 22 0.1s 118

chance 0.1s 1 1 0.0s 1 11

chem 1650.5s 11 10 1012.9s 1 20 10 44

chenery 4.6s 11 20 0.5s 1 16 8 8 108

chimera k64ising-01 10.4s 44.6s

chimera k64ising-02 10.0s 49.3s

chimera k64maxcut-01 181.8s 604.6s

chimera k64maxcut-02 152.7s 509.1s

chimera lga-01 3.2% 2.9%

chimera lga-02 4.4% 3.8%

chimera mgw-c16-2031-01 22.3% 32.3%

chimera mgw-c16-2031-02 22.4% 27.9%

chimera mgw-c8-439-onc8-001 141.3s 132.4s

chimera mgw-c8-439-onc8-002 224.0s 194.4s

chimera mgw-c8-507-onc8-01 5.6% 4.9%

chimera mgw-c8-507-onc8-02 4.2% 4%

chimera mis-01 10.2s 4.4s

chimera mis-02 10.3s 6.0s

chimera rfr-01 8.2% 25.2%

chimera rfr-02 8.1% 17.7%

chimera selby-c16-01 42.2% 44.7%

chimera selby-c16-02 30.0% 29.3%

chimera selby-c8-onc8-01 8.7% 6.9%

chimera selby-c8-onc8-02 3.3% 3.8%

chp partload ∞ 516 6 82 383 ∞ 363 1058 7 31 16 181 2633 2866 10

chp shorttermplan1a 13.3s 444 130 15.3s 86 230 44 33

chp shorttermplan1b 2% 836 310 1.2% 768 2500 288

chp shorttermplan2a 32.0s 432 670 12.4s 768 2165 216 0

chp shorttermplan2b 15.0% 1152 192 1398.6s 672 192 2592 192 418 2

chp shorttermplan2c ∞ 864 1148 ∞ 1344 3660 384 0

chp shorttermplan2d ∞ 1968 576 ∞ 1344 240 5720 480 1239

circle 0.0s 10 0.0s 10 10 4

clay0203h 1.6s 168 49.7s 24 24 9 9 12 117 6

clay0203hfsg 1.4s 288 1.3s 24 24 9 9 12 117 6

clay0203m 0.6s 24 0.4s 24 39

clay0204h 4.9s 224 6.4s 32 32 12 12 16 156 8

clay0204hfsg 8.6s 384 3.7s 32 32 12 12 16 156 8

clay0204m 1.1s 32 1.4s 32 52

clay0205h 38.7s 280 50.7s 40 40 15 15 20 195 10

clay0205hfsg 51.6s 480 21.9s 40 40 15 15 20 195 10

clay0205m 6.9s 40 9.1s 40 65

clay0303h 2.4s 252 13.1s 36 36 9 9 18 180 18

clay0303hfsg 2.6s 432 2.4s 36 36 9 9 18 180 18

clay0303m 0.6s 36 0.6s 36 55

clay0304h 7.3s 336 183.2s 48 48 12 12 24 240 24

clay0304hfsg 6.8s 576 10.6s 48 48 12 12 24 240 24

clay0304m 1.4s 48 1.1s 48 74

clay0305h 72.7s 420 61.9s 60 60 15 15 30 300 30

clay0305hfsg 156.3s 720 fail 60 60 15 15 30 300 30

clay0305m 9.0s 60 9.6s 58 89

color lab2 4x0 ∞ ∞
color lab3 3x0 32.7% 20.4%

color lab3 4x0 255% 138%

color lab6b 4x20 ∞ ∞
cont6-qq 20.9% 39602 ∞ 39602 39601 237410

contvar 106% 258 4 194 67.2% 35 71 187 68 25 867

crossdock 15x7 98.9% 64.0%

crossdock 15x8 210% 124%

crudeoil lee1 05 1.4s 6 2.7s 2 42 119 2

crudeoil lee1 06 5.8s 30 4.9s 2 60 170 2

crudeoil lee1 07 3.6s 36 2.9s 2 72 204 2

crudeoil lee1 08 22.4s 42 6.5s 2 84 238 2

crudeoil lee1 09 12.9s 48 20.7s 2 84 238 2

crudeoil lee1 10 32.7s 54 11.7s 2 108 306 2

crudeoil lee2 05 17.7s 16 13.5s 2 27 74

crudeoil lee2 06 29.6s 64 18.3s 2 134 348 5

crudeoil lee2 07 161.2s 70 27.6s 2 162 421 5

crudeoil lee2 08 40.7s 95 57.9s 4 184 478 2 0

crudeoil lee2 09 47.4s 109 50.2s 2 218 567 5

crudeoil lee2 10 67.7s 123 110.7s 2 246 640 5

crudeoil lee3 05 29.6s 106 34.7s 5 199 523 1

crudeoil lee3 06 64.6s 141 54.5s 1 275 717 3

crudeoil lee3 07 91.1s 176 259.1s 3 333 863 1

crudeoil lee3 08 384.1s 211 233.9s 1 415 1073 3

95

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

crudeoil lee3 09 273.5s 246 267.5s 1 485 1251 3

crudeoil lee3 10 363.9s 281 594.0s 1 555 1429 3

crudeoil lee4 05 15.4s 58 8.2s 1 146 366 4

crudeoil lee4 06 15.2s 92 17.3s 1 184 461 4

crudeoil lee4 07 60.8s 103 52.9s 1 206 522 4

crudeoil lee4 08 27.5s 130 43.5s 1 260 651 4

crudeoil lee4 09 129.9s 141 69.0s 1 298 746 4

crudeoil lee4 10 64.2s 168 62.5s 1 336 841 4

crudeoil li01 0.65% 56 0.47% 56 228

crudeoil li02 1.1% 15 1.3% 15 58

crudeoil li03 2% 192 2.1% 192 720

crudeoil li05 10.7% 192 10.3% 192 716

crudeoil li06 552.0s 192 531.0s 192 719

crudeoil li11 1.7% 192 7.1% 192 720

crudeoil li21 2.2% 192 5.9% 192 720

crudeoil pooling ct1 37.7% 37 25.1% 3 76 233 10

crudeoil pooling ct2 0.14% 70 14.6s 2 70 280 22

crudeoil pooling ct3 49.6% 182 35.1% 2 274 839 19

crudeoil pooling ct4 3.6% 95 12.8s 1 95 365 21

crudeoil pooling dt1 fail 570 6.6% 2 570 2470 86

crudeoil pooling dt2 19.0% 1106 16.5% 2 1106 4424 134

crudeoil pooling dt3 20.4% 2707 ∞ 1 2707 10795 0

crudeoil pooling dt4 8.2% 1121 8.3% 1 1121 4307 59

csched1 4.3s 4 3 3.9s 1 7 3 3 3 25

csched1a 0.4s 5 3 7.6s 1 9 3 9 31

csched2 775% 29 28 >1000% 1 57 28 28 28 200

csched2a >1000% 30 28 >1000% 1 84 28 84 256

cvxnonsep normcon20 1.4s 1 1 0.1s 42

cvxnonsep normcon20r 0.2s 20 0.1s 80

cvxnonsep normcon30 5.3s 1 1 0.1s 62

cvxnonsep normcon30r 0.4s 30 0.1s 120

cvxnonsep normcon40 64.5s 1 1 0.1s 82

cvxnonsep normcon40r 0.4s 40 0.2s 160

cvxnonsep nsig20 106.4s 1 253.0s 1 42

cvxnonsep nsig20r 0.1s 20 0.1s 80

cvxnonsep nsig30 3.1% 1 18.2% 1 62

cvxnonsep nsig30r 0.3s 30 0.1s 120

cvxnonsep nsig40 17.6% 1 25.5% 1 82

cvxnonsep nsig40r 0.3s 38 0.1s 2 162

cvxnonsep pcon20 0.2s 1 19 4.3s 190 400

cvxnonsep pcon20r 0.3s 19 0.2s 19 96

cvxnonsep pcon30 0.4s 1 29 77.7s 435 900

cvxnonsep pcon30r 1.2s 29 0.2s 29 146

cvxnonsep pcon40 0.6s 1 39 350.5s 705 1448

cvxnonsep pcon40r 0.5s 39 0.7s 32 173

cvxnonsep psig20 17.2s 1 18.9s 1 43

cvxnonsep psig20r 0.2s 21 0.2s 83

cvxnonsep psig30 2638.6s 1 116.1s 1 63

cvxnonsep psig30r 0.1s 31 0.2s 123

cvxnonsep psig40 9% 1 8.3% 1 83

cvxnonsep psig40r 0.3s 41 0.2s 164

demo7 0.0s 2 0.0s 2 19

densitymod ∞ 106 ∞ 105 422

dispatch 0.0s 2 0.0s 1 3 1 16 6

dtoc5 fail ∞ 49998 249995

du-opt 15.6s 1 17.2s 1 1 21

du-opt5 0.5s 1 0.4s 1 1 19

edgecross10-010 0.1s 0.1s

edgecross10-020 0.8s 0.3s

edgecross10-030 0.4s 1.3s

edgecross10-040 5.3s 10.5s

edgecross10-050 16.2s 29.8s

edgecross10-060 569.0s 1 38.4s 1 27 1074 953

edgecross10-070 72.9s 174.8s

edgecross10-080 194.3s 1 53.0s 1 1050 37

edgecross10-090 1.2s 3.4s

edgecross14-019 1.0s 0.9s

edgecross14-039 3230.2s 1 26.4s 1 155 784 253

edgecross14-058 86.9s 124.8s

edgecross14-078 74.3% 1 14.0% 1 2364 167

edgecross14-098 3200.7s 32.0%

edgecross14-117 20.4% 22.9%

edgecross14-137 1038.0s 15.4%

edgecross14-156 26.5% 1 12.6% 1 3563 263

edgecross14-176 128.4s 244.2s

edgecross20-040 14.3s 33.0s

edgecross20-080 1714.8s 2186.0s

edgecross22-048 30.3s 64.3s

edgecross22-096 87.7% 162%

edgecross24-057 403.1s 1035.5s

edgecross24-115 141% 199%

eg all s ∞ 24541 17 16878 166% 2619 1320 4055

eg disc2 s ∞ 29815 21 16878 ∞ 2619 1320 4057

eg disc s ∞ 29715 22 16878 154% 2619 1320 4057

eg int s ∞ 24685 9 16878 21.4% 2619 1320 4055

eigena2 ∞ 1276 ∞ 61250 67527 14447

elec100 211% 5050 1 145% 4950 14850 4950 20502 8655

96

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

elec200 ∞ 20100 1 ∞ 19900 59700 19900 81002 13816

elec25 165% 325 1 61.2% 300 900 300 1377 417914 427

elec50 193% 1275 1 83.5% 1225 3675 1225 5252 262433 76

elf 0.8s 27 0.6s 24 3 3 87

emfl050 3 3 1.8s 522 1.3s 441 522 1449

emfl050 5 5 fail 1850 6.0s 1225 1850 6825

emfl100 3 3 2.2s 972 0.01% 891 972 2349

emfl100 5 5 76.2s 3100 26.3s 2475 3100 9325

eniplac 1.0s 21 24 2.5s 24 159 23 1

enpro48pb 5.2s 2 1.9s 13 52

enpro56pb 4.2s 2 3.5s 12 51

eq6 1 293% 29 28 546% 29 56 29 117 24483

etamac >1000% 19 0.81% 18 10 117

ethanolh 131% 36 1 55 0.2s 3 39

ethanolm 46.9% 24 1 31 1.6s 3 39

ex1221 0.0s 2 0.0s 8 2

ex1222 0.0s 1 1 0.0s 1 7

ex1223 0.1s 1 2 1 0.1s 1 1 18

ex1223a 0.0s 2 2 0.0s 14

ex1223b 0.1s 1 2 1 0.0s 1 1 18

ex1224 0.1s 2 3 0.0s 3 2 23

ex1225 0.0s 1 2 0.0s 1 6

ex1226 0.0s 1 1 2 0.0s 1 1 8

ex1233 13.7% 33 12 1.9% 5 11 4 72 6

ex1243 0.8s 12 1.1s 1 12 12 6 12 58 6

ex1244 1076.2s 17 26.2s 1 16 16 6 16 82 5

ex1252 12.7s 21 9 0.43% 3 15 3 68 24 9174

ex1252a 18.3% 21 9 0.2% 3 15 3 68 24 10211

ex1263 0.2s 4 0.3s 16 40 13 2

ex1263a 0.4s 4 0.5s 16 40 13 1

ex1264 0.1s 4 0.1s 16 40 12 0

ex1264a 0.3s 4 0.1s 16 40 12 1

ex1265 0.1s 5 0.2s 25 60 25 0

ex1265a 0.7s 5 0.3s 25 60 25 1

ex1266 0.1s 6 0.2s 36 84 24 0

ex1266a 0.1s 6 0.6s 36 84 24 7

ex14 1 1 0.6s 4 2 0.0s 4 1 12

ex14 1 2 0.5s 15 1 0.0s 9 4 22

ex14 1 3 0.1s 2 2 0.0s 1 2 2 12

ex14 1 5 0.7s 8 0.0s 9

ex14 1 6 0.0s 14 0.0s 6 2 31

ex14 1 7 551.9s 42 8 8.7s 8 7 8 8 67

ex14 1 8 0.2s 6 2 0.1s 4 3 5 5 2 20

ex14 1 9 >1000% 2 2 0.0s 2 1 2 2 10

ex14 2 1 0.0s 18 6 0.0s 3 9 3 3 29

ex14 2 2 0.0s 8 4 0.0s 4 1 6 6 2 17

ex14 2 3 0.0s 32 8 0.0s 4 12 4 4 38

ex14 2 4 0.0s 48 6 0.0s 9 12 12 3 9 50

ex14 2 5 0.0s 16 2 4 0.0s 6 4 9 7 6 24

ex14 2 6 0.0s 24 6 0.0s 6 6 13 3 6 39

ex14 2 7 0.1s 40 8 0.0s 8 8 16 4 8 49

ex14 2 8 0.0s 16 4 0.0s 4 3 10 10 3 22

ex14 2 9 0.0s 12 4 0.0s 4 3 10 10 3 22

ex2 1 1 0.1s 1 0.1s 12

ex2 1 10 0.1s 1 0.1s 32

ex2 1 2 0.0s 1 0.0s 12

ex2 1 3 0.0s 1 0.0s 10

ex2 1 4 0.0s 1 0.0s 4

ex2 1 5 0.0s 1 0.0s 16

ex2 1 6 0.1s 1 0.1s 22

ex2 1 7 0.8s 1 1.6s 42

ex2 1 8 0.1s 1 0.1s 50

ex2 1 9 0.4s 1 4.2s 1 22 34

ex3 1 1 1.8s 3 0.2s 2 2 1 8

ex3 1 2 0.0s 7 0.0s 2 5 14

ex3 1 3 0.1s 3 0.1s 2 18

ex3 1 4 0.1s 1 0.1s 1 3 10 0

ex3pb 0.1s 5 0.1s 2 2 19

ex4 fail 26 1.6s 16 46

ex4 1 1 0.2s 2 1 0.1s 1 8

ex4 1 2 0.3s 1 0.4s 1 52

ex4 1 3 0.2s 1 0.2s 1 7

ex4 1 4 0.5s 1 1 0.2s 6

ex4 1 5 ∞ 1 1 1.7s 1 1 5

ex4 1 6 0.3s 1 0.2s 6

ex4 1 7 0.1s 1 1 0.1s 1 6

ex4 1 8 0.0s 2 0.0s 7

ex4 1 9 0.2s 2 0.1s 1 7

ex5 2 2 case1 0.7s 3 0.1s 1 2 14

ex5 2 2 case2 0.3s 3 0.1s 1 2 14

ex5 2 2 case3 0.2s 3 0.0s 1 2 14

ex5 2 4 0.5s 4 0.3s 4 6 18 1

ex5 2 5 116% 12 27.5% 12 60 105 13

ex5 3 2 0.2s 9 0.2s 6 9 33 0

ex5 3 3 77.1% 35 12.4% 6 69 158 26

ex5 4 2 0.4s 3 0.1s 2 2 1 8

ex5 4 3 0.4s 6 1 0.3s 4 8 2 25 0

97

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

ex5 4 4 27.4s 9 1 5.5s 6 15 3 44 16

ex6 1 1 188.7s 5 6 >1000% 5 14 6 2 34

ex6 1 2 0.3s 3 2 2.8s 3 3 1 2 1 12

ex6 1 3 1766.1s 7 8 216% 7 27 8 3 54

ex6 1 4 29.0s 4 3 0.2s 4 9 23 1

ex6 2 10 274% 19 28 65.5% 10 42 22 3 27 109

ex6 2 11 fail 10 14 >1000% 1 21 6 9 51

ex6 2 12 0.11% 11 16 1.7% 6 20 15 2 15 65

ex6 2 13 369% 15 22 66.1% 8 28 19 3 21 87

ex6 2 14 0.04% 13 20 83.1s 7 24 20 2 18 80

ex6 2 5 >1000% 4 21 884% 1 24 11 3 70

ex6 2 6 3.2% 1 9 21.7s 1 9 5 29

ex6 2 7 >1000% 1 24 >1000% 1 27 15 80

ex6 2 8 0.01% 1 8 12.9s 1 9 5 28

ex6 2 9 562% 13 20 94.3% 7 28 19 2 18 82

ex7 2 1 3.8% 27 2 7 2.4% 5 9 1 8 41

ex7 2 2 0.3s 4 1 0.3s 4 4 17

ex7 2 3 236% 13 2 212% 3 10 1 1 12 29

ex7 2 4 27.1s 8 1 4 6.7s 2 8 2 4 34

ex7 3 1 0.1s 8 4 0.0s 1 11 23 0

ex7 3 2 0.3s 2 2 0.0s 1 2 8

ex7 3 3 0.1s 2 0.1s 2 2 9

ex7 3 4 8.5s 20 2 1.2s 2 9 36 15

ex7 3 5 fail 28 4 338.2s 5 12 41 4862

ex7 3 6 0.1s 1 2 1 0.0s 17

ex8 1 3 ∞ 7 ∞ 1 28 46 8

ex8 1 4 ∞ 1 1 239.5s 1 1 5

ex8 1 5 ∞ 1 1 ∞ 1 1 10

ex8 1 6 0.1s 3 1 0.1s 3 12

ex8 1 7 0.9s 6 2 1 0.7s 1 1 3 18

ex8 2 1b 0.8s 25 3 1.0s 50 5 2 146

ex8 2 2b 2.4% 1875 13 2682.8s 6156 18 12 13923

ex8 2 3b 324.3s 3125 6 0.15% 9065 11 5 19988

ex8 2 4b 0.5s 75 7 0.9s 106 7 4 242

ex8 2 5b 0.08% 3750 25 1774.7s 12312 28 22 17558

ex8 3 1 >1000% 59 5 30 >1000% 20 204 15 15 413 94

ex8 3 11 >1000% 59 5 30 >1000% 20 204 15 15 413 32

ex8 3 12 ∞ 49 20 906% 20 204 15 15 418 22

ex8 3 13 416% 64 5 30 139% 20 184 10 10 398 45

ex8 3 14 ∞ 69 40 >1000% 20 174 20 10 398 12

ex8 3 2 >1000% 44 5 >1000% 20 189 338 380

ex8 3 3 >1000% 44 5 >1000% 20 189 338 2382

ex8 3 4 179% 44 5 179% 20 189 338 273

ex8 3 5 >1000% 49 >1000% 20 189 338 1065

ex8 3 7 fail >1000% 25 241 1 430 4873

ex8 3 8 207% 55 10 207% 25 239 424 4854

ex8 3 9 >1000% 27 >1000% 10 92 192 37

ex8 4 1 141.5s 11 0.8s 10 64

ex8 4 2 >1000% 32 19 0.96% 30 96

ex8 4 3 ∞ 1 25 6.7s 25 179

ex8 4 4 57.7s 13 6 1.9s 12 6 6 67

ex8 4 5 7.3s 23 826.6s 11 3 11 83

ex8 4 6 0.68% 17 24 ∞ 24 24 24 112

ex8 4 7 35.0% 51 20 13.5% 20 40 10 10 224

ex8 4 8 bnd ∞ 104 7 40 ∞ 10 5 40 30 250 187

ex8 5 1 ∞ 6 2 4 3.4s 2 8 1 2 30 7

ex8 5 2 ∞ 6 2 4 0.6% 2 8 1 2 30 5

ex8 5 3 fail 0.5s 2 5 3 1 27 2

ex8 5 4 fail 1.2s 2 5 4 1 26 5

ex8 5 5 fail 1.1s 3 7 3 2 30 1

ex8 5 6 ∞ 9 3 5 41.7s 3 10 3 2 38 131

ex8 6 1 fail ∞ 36 85 44 404 1628

ex8 6 2 41.1% 45 45 >1000% 72 85 81 45 412 162393 10

ex9 1 1 0.0s 0.0s 1 5 15

ex9 1 2 0.0s 0.0s 4 12

ex9 1 4 0.0s 0.0s 3 9

ex9 1 5 0.0s 0.0s 5 15

ex9 1 8 0.0s 0.0s 1 2 7

ex9 2 2 0.1s 1 0.0s 1 1 9

ex9 2 3 0.0s 0.2s 2 6 18

ex9 2 4 0.1s 1 0.0s 2 10

ex9 2 5 0.1s 1 0.1s 3 15

ex9 2 6 0.1s 1 0.0s 3 4 20

ex9 2 7 0.1s 1 0.1s 4 17

ex9 2 8 0.0s 0.0s

fac1 0.1s 0.3s

fac2 0.5s 1 0.7s 3 62 3

fac3 0.2s 1 0.9s 1 1 55

faclay20h 1042.4s 1510.0s

faclay25 92.0% 98.1%

faclay30 237% 205%

faclay30h 216% 133%

faclay33 320% 189%

faclay35 380% 275%

faclay60 >1000% >1000%

faclay70 ∞ >1000%

faclay75 ∞ ∞

98

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

faclay80 ∞ ∞
fdesign10 0.0s 1 0.0s 1 1 4

fdesign25 0.1s 1 0.0s 1 1 4

fdesign50 0.1s 1 0.1s 1 1 4

feedtray ∞ 134 18 72 2.9s 38 323 144 126 54 654 3

feedtray2 0.1s 147 0.1s 89 79 12 274

filter 0.0s 3 3 0.0s 1 2 2 2 3 11

fin2bb 8.8s 42 60.1s 42 21 189

flay02h 0.6s 2 0.4s 8

flay02m 0.4s 2 0.3s 8

flay03h 1.1s 3 1.3s 12

flay03m 0.7s 3 0.7s 12

flay04h 22.0s 4 7.3s 16

flay04m 4.0s 4 3.9s 16

flay05h 323.0s 5 356.1s 20

flay05m 110.9s 5 131.0s 20

flay06h 7.9% 6 12.4% 24

flay06m 3.8% 6 3.8% 24

flowchan100fix 0.4s 400 1.1s 800 3200

flowchan200fix 0.9s 800 fail

flowchan400fix 1.0s 1600 fail

flowchan50fix 0.2s 200 0.2s 400 1600

fo7 139.4s 14 160.6s 42

fo7 2 191.9s 14 53.1s 42

fo7 ar25 1 38.8s 14 44.5s 42

fo7 ar2 1 47.4s 14 38.7s 42

fo7 ar3 1 52.9s 14 169.3s 42

fo7 ar4 1 54.6s 14 65.9s 42

fo7 ar5 1 40.2s 14 42.9s 42

fo8 179.9s 16 171.7s 48

fo8 ar25 1 201.5s 16 240.0s 48

fo8 ar2 1 404.5s 16 374.2s 48

fo8 ar3 1 73.8s 16 145.6s 48

fo8 ar4 1 52.8s 16 144.5s 48

fo8 ar5 1 109.0s 16 151.8s 48

fo9 1082.0s 18 530.3s 54

fo9 ar25 1 19.2% 18 20.5% 54

fo9 ar2 1 1577.5s 18 2247.3s 54

fo9 ar3 1 149.6s 18 149.8s 54

fo9 ar4 1 218.1s 18 119.2s 54

fo9 ar5 1 331.5s 18 1793.3s 54

forest 43.1% 24 85.1s 23 90 1 205 11

fuel 0.0s 1 3 0.0s 4 18 3

gabriel01 2300.2s 48 263.4s 32 256 436

gabriel02 25.8% 96 2372.0s 64 512 782

gabriel04 4.9% 128 148.3s 96 752 1120

gabriel05 ∞ 192 ∞ 168 1284 1948

gabriel06 ∞ 640 ∞ 608 4592 6578

gabriel07 ∞ 800 ∞ 760 5740 8052

gabriel08 ∞ 1600 ∞ 1520 20600 25864

gabriel09 ∞ 288 ∞ 216 4284 5624

gabriel10 ∞ 3200 ∞ 3040 77680 90768

gams01 >1000% 110 111 >1000% 110 120 384

gams02 363% 1 192 990% 193 192 1070 24

gams03 >1000% 1 >1000% 1 50960 55042 3360 22

gancns ∞ 187 19 165 ∞ 43 142 37 18 23 665 150

gasnet 148% 61 13 23 75.2% 19 30 3 3 240 11

gasnet al1 0.73% 256 10 35 0.59% 45 24 75 73 13 848 71 2

gasnet al2 1.2% 256 10 35 0.55% 45 24 75 73 13 848 71 9

gasnet al3 2% 256 10 35 0.36% 45 24 75 73 13 848 71 1

gasnet al4 0.4% 256 10 35 1.4% 45 24 75 73 13 848 71 3

gasnet al5 0.77% 256 10 35 2.3% 45 24 75 73 13 848 71 0

gasoil100 ∞ 2001 ∞ 401 1600 1 4604

gasoil200 ∞ 4001 ∞ 801 3200 1 9004

gasoil400 ∞ 8001 ∞ 1601 6400 1 17804

gasoil50 ∞ 1001 ∞ 201 800 1 2404

gasprod sarawak01 2.6s 34 0.6s 17 34 123 3

gasprod sarawak16 0.95% 544 0.39% 272 544 1968 55

gasprod sarawak81 0.41% 2754 0.93% 1377 2754 9963 61

gastrans 0.1s 23 11 0.1s 111 1

gastrans040 40.4s 183 39 51 0.3s 72 119 13 38 38 50 456

gastrans135 ∞ 749 144 239 40.7s 316 582 21 164 164 239 2088

gastrans582 cold13 ∞ 1012 186 288 56.4s 227 290 116 93 93 123 1729 50

gastrans582 cold13 95 3.0s 1012 185 288 30.9s 209 267 129 85 85 113 1667 52 0

gastrans582 cold17 fail 1072 205 288 7.6s 247 305 111 109 109 126 1784 56

gastrans582 cold17 95 ∞ 1072 205 288 15.1s 246 305 111 109 109 126 1784 56

gastrans582 cool12 ∞ 1048 204 288 8.7s 235 303 120 106 106 126 1779 55

gastrans582 cool12 95 ∞ 1048 201 288 11.3s 236 303 120 106 106 126 1779 55

gastrans582 cool14 ∞ 1050 201 288 9.8s 235 299 119 104 104 125 1771 53

gastrans582 cool14 95 ∞ 1050 201 288 ∞ 207 252 132 90 90 103 1651 61

gastrans582 freezing27 54.4s 1094 205 261 8.5s 241 298 115 111 111 121 1790 47

gastrans582 freezing27 95 56.1s 1098 209 262 6.9s 187 194 128 95 95 74 1542 50 0

gastrans582 freezing30 ∞ 1100 209 262 81.6s 175 184 128 91 91 66 1520 47

gastrans582 freezing30 95 ∞ 1100 210 288 25.6s 200 230 128 95 95 89 1626 47 1

gastrans582 mild10 fail 1023 186 288 8.9s 226 297 118 95 95 126 1744 50

gastrans582 mild10 95 fail 1023 187 288 ∞ 226 297 118 95 95 126 1744 50

gastrans582 mild11 18.9s 1011 185 280 7.6s 228 290 122 98 98 122 1730 53

99

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

gastrans582 mild11 95 ∞ 1011 184 280 21.8s 198 243 135 91 90 101 1606 55

gastrans582 warm15 ∞ 1010 183 288 298.9s 229 296 114 92 92 126 1746 47

gastrans582 warm15 95 ∞ 1010 183 288 7.4s 229 296 114 92 92 126 1746 47

gastrans582 warm31 ∞ 1004 181 288 12.0s 188 242 130 83 83 100 1610 50

gastrans582 warm31 95 ∞ 1004 181 288 8.0s 231 303 117 91 91 130 1760 42

gastransnlp 0.0s 22 0.0s 88

gbd 0.0s 1 0.0s 4

gear 0.1s 4 16.2s 14

gear2 0.1s 4 18.0s 14

gear3 0.1s 4 15.8s 14

gear4 fail 3 0.7s 1 11

genpooling lee1 7.4s 20 2.8s 20 24 84

genpooling lee2 98.8s 30 5.5s 30 36 110

genpooling meyer04 121% 15 42.9% 15 66 144

genpooling meyer10 105% 33 62.4% 33 435 675

genpooling meyer15 102% 48 52.8% 48 990 1420

ghg 1veh 13.2s 47 3 11 17.1s 9 18 6 4 2 104 17

ghg 2veh 5.9% 119 6 23 5% 34 38 1 12 10 3 261 11 6

ghg 3veh 53.0% 210 9 36 29.1% 39 58 22 16 5 453 5852 3

gilbert 0.1s 2 1.0s 2003

gkocis 0.0s 2 0.0s 2 2 10 2

glider100 ∞ 1501 200 400 ∞ 600 706 99 200 101 4 4516

glider200 ∞ 3001 400 800 ∞ 1200 1406 199 400 201 4 9016

glider400 ∞ 6000 801 1600 ∞ 2400 2806 399 800 401 4 18016

glider50 ∞ 751 100 200 ∞ 300 356 49 100 51 4 2266

graphpart 2g-0044-1601 0.1s 0.1s

graphpart 2g-0055-0062 0.3s 1.2s

graphpart 2g-0066-0066 0.9s 5.8s

graphpart 2g-0077-0077 1.3s 5.2s

graphpart 2g-0088-0088 1.7s 3.2s

graphpart 2g-0099-9211 4.4s 11.1s

graphpart 2g-1010-0824 1.7s 10.3s

graphpart 2pm-0044-0044 0.2s 0.1s

graphpart 2pm-0055-0055 0.3s 1.4s

graphpart 2pm-0066-0066 0.8s 1.3s

graphpart 2pm-0077-0777 1.9s 2.5s

graphpart 2pm-0088-0888 1.4s 4.7s

graphpart 2pm-0099-0999 4.0s 8.2s

graphpart 3g-0234-0234 0.6s 3.1s

graphpart 3g-0244-0244 0.8s 1.6s

graphpart 3g-0333-0333 0.9s 1.5s

graphpart 3g-0334-0334 2.8s 3.0s

graphpart 3g-0344-0344 2.3s 4.3s

graphpart 3g-0444-0444 12.7s 18.1s

graphpart 3pm-0234-0234 0.7s 3.3s

graphpart 3pm-0244-0244 1.2s 1.7s

graphpart 3pm-0333-0333 1.2s 1.0s

graphpart 3pm-0334-0334 3.5s 2.8s

graphpart 3pm-0344-0344 12.1s 14.9s

graphpart 3pm-0444-0444 51.6s 97.0s

graphpart clique-20 2.4s 4.4s

graphpart clique-30 16.5s 15.8s

graphpart clique-40 126.5s 113.3s

graphpart clique-50 1294.6s 673.3s

graphpart clique-60 87.2% 3503.6s

graphpart clique-70 149% 76.1%

gsg 0001 93.9s 1 20 38.4s 1 20 94

gtm 0.0s 1 0.0s 6 41

hadamard 4 0.2s 1.6s

hadamard 5 36.4s 22.4s

hadamard 6 478% 476%

hadamard 7 >1000% >1000%

hadamard 8 ∞ ∞
hadamard 9 fail ∞
harker 0.2s 1 0.0s 1 42

haverly 0.6s 3 0.1s 3 2 12

hda 213% 155 3 62 10.7% 17 135 78 75 8 783 15 0

heatexch gen1 0% 56 12 88.4% 40 60 24 24 40 256

heatexch gen2 0.76% 54 17 18.6% 37 77 32 48 52 335 8 0

heatexch gen3 228.3s 290 61 141% 160 470 120 180 220 1657 26 0

heatexch spec1 18.8% 29 12 80.4s 5 11 18 2 7 94 6

heatexch spec2 46.5% 42 17 20.1s 17 16 26 20 15 164 12

heatexch spec3 >1000% 170 61 0.91% 10 60 110 55 50 659 35

heatexch trigen 712.9s 60 24 1.5% 9 18 27 21 20 182

hhfair fail fail

himmel11 0.0s 4 0.0s 3 7 22

himmel16 4.6s 19 5.3s 10 7 10 37 2621

hmittelman 0.0s 0.0s

house 0.5s 3 0.3s 1 3 1 12

hs62 0.01% 4 1 0.01% 3 9 4 2 7 26 521

hvb11 53.5s 17 27.7s 16 82

hybriddynamic fixed 0.0s 0.0s

hybriddynamic fixedcc fail 1 fail 1 18 69

hybriddynamic var 1.2s 15 8 2.3s 3 9 49 1

hybriddynamic varcc fail 39 2 fail 1 58 169

hydro fail 0.0s 6 38

hydroenergy1 0.03% 46 0.04% 46 69 253

100

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

hydroenergy2 1.2% 92 1.5% 92 161 529

hydroenergy3 2.2% 161 2.1% 161 299 943

ibs2 1.1% 10 35.5s 3000 9010 1500

immun 0.0s 1 0.1s 12

infeas1 53.1% 1319 135 46.9% 104 40 4059

ising2 5-300 5555 17.0% 21.5%

jbearing100 ∞ 1 fail

jbearing25 ∞ 1 ∞ 1 1 1251

jbearing50 ∞ 1 fail

jbearing75 ∞ 1 fail

jit1 0.5s 1 0.1s 26

johnall 900.4s 3991 10.5s 776

junkturn fail ∞ 299985 699970

kall circles c6a 533.9s 22 450.9s 21 43 96 1131

kall circles c6b 408.4s 22 236.6s 21 43 96 743

kall circles c6c 213% 29 355% 28 57 121 81

kall circles c7a 691.9s 29 256.2s 28 57 121 661

kall circles c8a 43.7% 37 3304.2s 36 73 149 580

kall circlespolygons c1p11 0.0s 21 0.0s 19 80

kall circlespolygons c1p12 ∞ 21 253.2s 19 80

kall circlespolygons c1p13 ∞ 21 62.2s 19 80

kall circlespolygons c1p5a 788% 106 ∞ 101 360

kall circlespolygons c1p5b ∞ 631 ∞ 611 2022

kall circlespolygons c1p6a ∞ 904 ∞ 877 2878

kall circlesrectangles c1r11 0.0s 23 0.0s 21 88

kall circlesrectangles c1r12 ∞ 23 60.6s 21 88 182

kall circlesrectangles c1r13 237.4s 23 7.6s 21 88 69

kall circlesrectangles c6r1 61.6% 133 305% 15 141 455 52924

kall circlesrectangles c6r29 135% 283 ∞ 15 283 939 6831

kall circlesrectangles c6r39 144% 466 ∞ 15 457 1526 14677

kall congruentcircles c31 0.4s 4 0.3s 3 7 26 0

kall congruentcircles c32 0.3s 4 0.3s 3 7 26 0

kall congruentcircles c41 0.1s 6 0.1s 6 6 20 0

kall congruentcircles c42 0.3s 7 0.4s 6 13 39 0

kall congruentcircles c51 7.5s 11 5.8s 10 21 55 147

kall congruentcircles c52 1.9s 11 1.7s 10 21 55 44

kall congruentcircles c61 106.6s 16 45.8s 15 31 74 567

kall congruentcircles c62 14.9s 16 1.9s 15 31 74 30

kall congruentcircles c63 5.6s 16 4.0s 15 31 74 38

kall congruentcircles c71 744.1s 22 477.6s 21 43 96 1873

kall congruentcircles c72 105.6s 22 27.7s 21 43 96 197

kall diffcircles 10 151% 45 2003.5s 45 81 164 123771 45

kall diffcircles 5a 37.6s 11 2.2s 10 21 55

kall diffcircles 5b 102.0s 11 6.6s 10 21 55

kall diffcircles 6 4.8s 16 6.1s 15 31 74

kall diffcircles 7 621.5s 22 28.8s 21 43 96 37

kall diffcircles 8 123.2s 28 89.2s 28 49 107 6391 1

kall diffcircles 9 122.5s 36 536.2s 36 64 134 17711 324

kall ellipsoids tc02b 44.3% 102 1 1 44.0% 3 48 6 232 15132

kall ellipsoids tc03c 116% 209 1 3 92.3% 9 108 9 398 42873

kall ellipsoids tc05a ∞ 1227 45 ∞ 20 540 15 2396 18160

kissing2 ∞ 10001 >1000% 4950 36884 1 44244 1300

knp3-12 257% 78 146% 66 198 349 198594 1114

knp4-24 690% 300 319% 276 1104 1597 291309 3110

knp5-40 >1000% 820 316% 780 3900 5121 12435 134

knp5-41 >1000% 861 325% 820 4100 5372 8739 29

knp5-42 >1000% 903 330% 861 4305 5629 22458 224

knp5-43 >1000% 946 342% 903 4515 5892 8298 15

knp5-44 >1000% 990 337% 946 4730 6161 15500 110

korcns 2221.7s 29 1 20 781.9s 4 33 10 5 8 163 1

kport20 422.6s 57 1 820.1s 158

kport40 20.6% 125 1 21.7% 355

kriging peaks-full010 3.3s 30 20 2.9s 10 20 30 30 144

kriging peaks-full020 30.0s 60 40 0.01% 20 40 60 60 284

kriging peaks-full030 58.5s 90 60 0.01% 30 60 90 90 424

kriging peaks-full050 195.8s 150 100 0.01% 50 100 150 150 704

kriging peaks-full100 2425.7s 300 200 0.01% 100 200 300 300 1404

kriging peaks-full200 74.9% 600 400 0.01% 200 400 600 600 2804

kriging peaks-full500 784% 1500 1000 271% 500 1000 1500 1500 7004

kriging peaks-red010 39.4s 11 20 0.01% 13 50 10 38 52 206

kriging peaks-red020 0.01% 21 40 0.01% 24 100 20 84 96 406

kriging peaks-red030 0.01% 31 60 0.01% 47 150 30 166 104 606

kriging peaks-red050 34.9% 51 100 0.01% 66 250 50 230 220 1006

kriging peaks-red100 318% 101 200 0.02% 134 500 100 488 412 2006

kriging peaks-red200 >1000% 201 400 0.09% 259 1000 200 924 876 4006

kriging peaks-red500 >1000% 501 1000 419% 650 2500 500 2348 2152 10006

lakes fail ∞ 1 12 6 6 200

launch 22.3s 25 6 25 0.1s 3 15 105

least 3220.2s 7 6 ∞ 1 12 18 12 61

like ∞ 360 121 fail

linear 2.1s 1 0.0s 42

lip 0.1s 1 0.9s 50

lop97ic 85.7% 40 3.1% 39 2896

lop97icx 55.8% 40 20.5s 39 348

lukvle10 ∞ 3998 1001 ∞ 1998 1000 1000 6998

m3 0.3s 6 0.2s 18

m6 2.0s 12 2.4s 36

101

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

m7 4.4s 14 3.3s 42

m7 ar25 1 1.7s 14 3.4s 42

m7 ar2 1 16.4s 14 12.7s 42

m7 ar3 1 12.9s 14 11.0s 42

m7 ar4 1 3.5s 14 2.1s 42

m7 ar5 1 8.7s 14 13.7s 42

mathopt1 0.0s 2 0.1s 2 2 10 10 0

mathopt2 0.0s 1 1 0.0s

mathopt5 4 0.0s 1 1 1 2.0s 1 10

mathopt5 7 0.2s 1 0.2s 1 7

mathopt5 8 0.2s 1 0.1s 1 6

maxcsp-ehi-85-297-12 ∞ ∞
maxcsp-ehi-85-297-36 ∞ ∞
maxcsp-ehi-85-297-71 ∞ ∞
maxcsp-ehi-90-315-70 ∞ ∞
maxcsp-geo50-20-d4-75-36 160.6s 61.7s

maxcsp-langford-3-11 ∞ ∞
maxmin 81.0% 78 78 40.6% 66 132 78 349 51364 2080

maxmineig2 fail 90 fail 294 574

mbtd 220% 133%

meanvar 0.0s 1 0.0s 1 1 8

meanvar-orl400 05 e 7 4.3% 1 400 0.7% 1 400 1 2401

meanvar-orl400 05 e 8 87.5s 1 246.7s 1 1 250 83

meanvarx 0.0s 1 0.1s 1 1 8

meanvarxsc 0.1s 1 0.1s 1 1 8

methanol100 ∞ 4501 ∞ 601 2400 1 7098

methanol200 ∞ 9001 ∞ 1201 4800 1 13998

methanol400 ∞ 18001 ∞ 2401 9600 1 27798

methanol50 ∞ 2251 ∞ 301 1200 1 3636

mhw4d ∞ 4 2 1 20.1s 1 1 3 18

milinfract 33.7s 1 270% 1 500 1000 2004

minlphi fail 0.7s 3 4 4 4 24

minlphix fail fail

minsurf100 ∞ 10300 1 fail 10100 102 9998 200 15702

minsurf25 155% 2650 1 fail 2600 102 2498 50 4002

minsurf50 ∞ 5200 1 fail 5100 102 4998 100 7902

minsurf75 ∞ 7750 1 352% 7600 102 7498 150 11802

multiplants mtg1a 856.0s 32 3 13.1% 25 34 175

multiplants mtg1b 194% 32 3 503% 22 33 168

multiplants mtg1c 582% 32 3 828% 25 34 202

multiplants mtg2 11.2% 42 4 2.1% 33 45 231

multiplants mtg5 13.2% 53 3 20.6% 43 51 207

multiplants mtg6 15.4% 70 4 31.9% 61 69 379

multiplants stg1 ∞ 67 30 ∞ 1 67 347

multiplants stg1a ∞ 49 21 >1000% 1 49 313

multiplants stg1b ∞ 55 24 >1000% 1 55 364

multiplants stg1c fail >1000% 1 43 338

multiplants stg5 ∞ 49 21 ∞ 1 49 302

multiplants stg6 ∞ 65 28 ∞ 1 65 481

nd netgen-2000-2-5-a-a-ns 7 0% 1999 128% 1999 11994

nd netgen-2000-3-4-b-a-ns 7 219.1s 1988 59.4s 1988 11928

nd netgen-3000-1-1-b-b-ns 7 612.9s 3000 43.1s 3000 18000

ndcc12 ∞ 46 ∞ 44 528 1144 3

ndcc12persp ∞ 46 ∞ 44 43 1 294

ndcc13 27.4% 42 ∞ 42 481 5 1106 8

ndcc13persp fail 44.7% 42 28 14 224

ndcc14 ∞ 54 81.7% 54 756 1620 2

ndcc14persp 81.2% 54 ∞ 54 52 2 365

ndcc15 29.4% 40 ∞ 36 540 1152 6

ndcc15persp ∞ 40 ∞ 36 31 5 227

ndcc16 ∞ 60 85.4% 60 960 2040

ndcc16persp ∞ 60 ∞ 60 60 420

nemhaus 0.0s 0.0s

netmod dol1 13.3% 1 85.4%

netmod dol2 40.9s 1 41.2s 14

netmod kar1 15.0s 1 6.1s 10

netmod kar2 5.6s 1 6.0s 10

ngone >1000% 4951 >1000% 4852 195 4852 690 60898

no7 ar25 1 55.1s 14 69.3s 42

no7 ar2 1 115.6s 14 26.1s 42

no7 ar3 1 165.7s 14 226.9s 42

no7 ar4 1 434.5s 14 325.0s 42

no7 ar5 1 130.1s 14 167.4s 42

nous1 16.8% 29 12.2s 8 50 124 12

nous2 2.1s 29 0.5s 8 50 124 12

nuclear104 ∞ 3221 ∞ 1976 3130 37236

nuclear10a ∞ 3130 ∞ 1976 3130 29046 12

nuclear10b >1000% 3026 ∞ 1976 3130 7206

nuclear14 ∞ 602 ∞ 360 584 2844

nuclear14a >1000% 584 998% 360 584 2544 19

nuclear14b 77.4% 560 105% 360 584 1344

nuclear25 ∞ 628 ∞ 375 608 3089

nuclear25a ∞ 608 >1000% 375 608 2699 48

nuclear25b 635% 583 103% 375 608 1399

nuclear49 ∞ 1374 ∞ 833 1332 9715

nuclear49a >1000% 1332 ∞ 833 1332 7965 43

nuclear49b ∞ 1283 143% 833 1332 3065

102

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

nuclearva ∞ 267 ∞ 163 258 1002

nuclearvb fail ∞ 163 258 1002

nuclearvc ∞ 267 fail

nuclearvd ∞ 267 ∞ 163 258 1002

nuclearve ∞ 267 ∞ 163 258 1002

nuclearvf ∞ 267 ∞ 163 258 1002

nvs01 0.1s 5 1 2 0.1s 1 2 1 3 1 15

nvs02 0.0s 4 0.0s 3 7 21

nvs03 0.0s 1 1 0.0s 7

nvs04 0.0s 1 1 0.1s 1 2 10 15

nvs05 3.3s 15 3 7 3.6s 3 4 6 1 2 44 63

nvs06 0.1s 3 2 3 0.0s 1 2 13

nvs07 0.0s 2 1 0.0s 1 9

nvs08 0.1s 1 1 2 0.1s 13

nvs09 28.5% 9 21 0.1s 20 74

nvs10 0.0s 3 0.0s 2 2 6

nvs11 0.1s 4 0.1s 4 4 4

nvs12 0.1s 0.1s

nvs13 0.1s 6 0.3s 6 10 3 24 90

nvs14 0.0s 4 0.0s 3 7 21

nvs15 0.1s 0.0s 1 1 9 2 1

nvs16 0.0s 4 2 0.1s 1 8 17 0

nvs17 0.3s 8 2.5s 8 21 4 40 510

nvs18 0.2s 7 0.8s 7 15 4 31 150

nvs19 0.4s 9 3.6s 9 28 5 49 664

nvs20 0.7s 1 16 1.0s 1 120 186 114

nvs21 0.1s 5 3 0.0s 2 12

nvs22 fail 15 3 7 0.1s 4 6 7 1 2 53 2

nvs23 0.6s 10 7.6s 10 36 4 61 1250

nvs24 0.9s 11 14.5s 11 45 7 70 2154

o7 13.8% 14 16.9% 42

o7 2 2219.0s 14 1468.6s 42

o7 ar25 1 750.1s 14 649.2s 42

o7 ar2 1 266.2s 14 202.6s 42

o7 ar3 1 1051.6s 14 1513.8s 42

o7 ar4 1 2404.8s 14 2381.0s 42

o7 ar5 1 3305.3s 14 1162.3s 42

o8 ar4 1 21.2% 16 19.0% 48

o9 ar4 1 33.0% 18 28.8% 54

oaer 0.1s 1 0.0s 2 2 10 1

oil 53.8% 427 6 598 17.0% 71 217 32 32 13 1319 78 1

oil2 30.0s 278 4 536 12.7s 12 153 27 27 14 816 4

optcdeg2 76.3% 1 49999 ∞ 49999 299996

optmass 305% 5002 305% 25015

ortez 0.1s 26 6 0.1s 1 13 68 2

orth d3m6 ∞ 238 5 247% 30 177 8838

orth d3m6 pl >1000% 177 1 197% 175 302 39621 711

orth d4m6 pl 138% 171 1 118% 105 222 5646 406

otpop 0.0s 13 17 0.6s 1 16 1 1 115

p ball 10b 5p 2d h 17.4s 300 40.8s 50 200 50 50 100 850 100

p ball 10b 5p 2d m 1.6s 50 1.8s 50 116

p ball 10b 5p 3d h 47.1s 400 102.4s 50 300 50 50 150 1150 150

p ball 10b 5p 3d m 4.6s 50 5.1s 50 130

p ball 10b 5p 4d h 91.5s 500 193.6s 50 400 50 50 200 1450 200

p ball 10b 5p 4d m 8.4s 50 6.1s 50 132

p ball 10b 7p 3d h 552.9s 560 1657.0s 70 420 70 70 210 1610 210

p ball 10b 7p 3d m 27.4s 70 28.6s 70 172

p ball 15b 5p 2d h 72.5s 450 152.3s 75 300 75 75 150 1275 150

p ball 15b 5p 2d m 3.6s 75 5.5s 70 160

p ball 20b 5p 2d h 99.7s 600 242.0s 100 400 100 100 200 1700 200

p ball 20b 5p 2d m 4.5s 100 6.5s 100 220

p ball 20b 5p 3d h 351.6s 800 1009.0s 100 600 100 100 300 2300 300

p ball 20b 5p 3d m 21.6s 100 26.9s 100 230

p ball 30b 10p 2d h ∞ 1800 ∞ 300 1200 300 300 600 5100 600

p ball 30b 10p 2d m 175% 300 ∞ 300 640

p ball 30b 5p 2d h 462.9s 900 758.0s 150 600 150 150 300 2550 300

p ball 30b 5p 2d m 7.2s 150 7.5s 150 320

p ball 30b 5p 3d h 610.1s 1200 1880.8s 150 900 150 150 450 3450 450

p ball 30b 5p 3d m 22.0s 150 40.4s 150 330

p ball 30b 7p 2d h 214% 1260 ∞ 210 840 210 210 420 3570 420

p ball 30b 7p 2d m 140.5s 210 386.5s 210 448

p ball 40b 5p 3d h 1705.1s 1600 86.9% 200 1200 200 200 600 4600 600

p ball 40b 5p 3d m 47.2s 200 78.8s 200 430

p ball 40b 5p 4d h 36.1% 2000 ∞ 200 1600 200 200 800 5800 800

p ball 40b 5p 4d m 200.0s 200 242.8s 200 440

parabol5 2 1 ∞ 1 3435.9s 804

parabol5 2 2 40.4% 1 200 19.5% 201 1800

parabol5 2 3 44.3% 1 200 ∞ 201 1800

parabol5 2 4 >1000% 40001 >1000% 40001 119600 200602 1339

parabol p fail 193 ∞ 193 24386

parallel fail 109 8.3s 5 101 109 230

pb302035 319% 275%

pb302055 301% 275%

pb302075 368% 286%

pb302095 211% 153%

pb351535 250% 205%

pb351555 209% 183%

103

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

pb351575 269% 281%

pb351595 311% 295%

pedigree ex1058 234.3s 772.9s

pedigree ex485 27.4s 103.5s

pedigree ex485 2 10.7s 37.4s

pedigree sim2000 34.4% 1.4%

pedigree sim400 2.8% 2.6%

pedigree sp top4 250 149.0s 256.0s

pedigree sp top4 300 30.6s 63.4s

pedigree sp top4 350tr 26.1s 41.5s

pedigree sp top5 200 204.5s 2921.6s

pedigree sp top5 250 82.2s 1019.2s

pindyck 28.4% 32 32 37.6% 16 47 33 30 15 252

pinene100 ∞ 1501 ∞ 601 2700 1 6766

pinene200 ∞ 3001 ∞ 1201 5400 1 13366

pinene50 ∞ 751 fail

pointpack02 0.0s 1 0.0s 1 2 12 0 0

pointpack04 0.1s 6 0.2s 6 12 35 4 0

pointpack06 4.8s 15 3.4s 15 30 70 2589 104

pointpack08 68.0s 28 81.4s 28 56 117 16362 1227

pointpack10 15.2% 45 13.1% 45 90 176 37684 9120

pointpack12 43.3% 66 32.9% 66 132 247 59064 11990

pointpack14 28.2% 91 31.8% 91 182 330 490522 8572

pollut 0.0s 1 0.0s 20 102

pooling adhya1pq 2.5s 20 0.6s 4 20 72 0

pooling adhya1stp 9.2s 40 2.5s 4 40 125 19

pooling adhya1tp 2.6s 20 0.8s 20 73 1

pooling adhya2pq 1.5s 20 0.7s 4 20 72 0

pooling adhya2stp 2.9s 40 2.5s 4 40 125 17

pooling adhya2tp 0.8s 20 0.6s 20 73 0

pooling adhya3pq 2.0s 32 1.2s 4 32 115 5

pooling adhya3stp 9.2s 64 2.5s 4 64 199 13

pooling adhya3tp 1.5s 32 1.6s 32 116 17

pooling adhya4pq 0.5s 32 1.2s 40 122 11

pooling adhya4stp 3.0s 64 2.2s 80 212 8

pooling adhya4tp 2.6s 32 1.7s 40 122 23

pooling bental4pq 0.1s 6 0.1s 6 23 0

pooling bental4stp 0.1s 12 0.1s 3 12 39 0

pooling bental4tp 0.0s 6 0.1s 3 6 22

pooling bental5pq 0.3s 60 1.1s 60 207 0

pooling bental5stp 4.2s 120 8.6s 120 354 37

pooling bental5tp 0.1s 60 0.2s 60 207

pooling digabel16 0.85% 81 18.8s 81 144 396

pooling digabel18 7.1% 390 0.02% 390 360 958

pooling digabel19 0.19% 128 0.04% 128 212 552

pooling epa1 fail 58 6 16 23.6s 38 45 2 24 8 220 2 2

pooling epa2 ∞ 98 9 24 1.8% 68 114 36 12 442 9 5

pooling epa3 ∞ 294 30 80 2.9% 201 420 120 40 1484 30 5

pooling foulds2pq 0.1s 16 0.0s 8 16 58

pooling foulds2stp 0.3s 32 0.5s 8 32 102 0

pooling foulds2tp 0.1s 16 0.1s 16 60

pooling foulds3pq 0.1s 512 0.7s 512 1696

pooling foulds3stp ∞ 1024 32.6s 1024 2880 2

pooling foulds3tp 0.1s 512 0.3s 512 1696

pooling foulds4pq 0.3s 512 0.6s 512 1696

pooling foulds4stp 2982.4s 1024 22.1s 1024 2880 1

pooling foulds4tp 0.1s 512 0.3s 512 1696

pooling foulds5pq 0.1s 512 0.6s 512 1632

pooling foulds5stp 4.5% 1024 120.0s 1024 2752 9

pooling foulds5tp 0.1s 512 0.3s 512 1632

pooling haverly1pq 0.0s 4 0.0s 2 4 15

pooling haverly1stp 0.1s 8 0.1s 4 8 26

pooling haverly1tp 0.0s 4 0.0s 2 4 15

pooling haverly2pq 0.1s 4 0.1s 2 4 15

pooling haverly2stp 0.2s 8 0.1s 4 8 26

pooling haverly2tp 0.1s 4 0.0s 2 4 15

pooling haverly3pq 0.0s 4 0.0s 2 4 15

pooling haverly3stp 0.1s 8 0.1s 4 8 26

pooling haverly3tp 0.1s 4 0.1s 2 4 15

pooling rt2pq 0.7s 18 0.5s 18 66 0

pooling rt2stp 0.8s 36 1.1s 36 114 0

pooling rt2tp 0.3s 18 0.4s 18 66 0

pooling sppa0pq 1.7% 329 1.2% 329 1103 6122

pooling sppa0stp ∞ 658 283% 658 1877 2998

pooling sppa0tp 1.6% 329 0.67% 329 1103 11943

pooling sppa5pq 2.5% 968 1.8% 968 3100 1836

pooling sppa5stp ∞ 1936 396% 1936 5232 94

pooling sppa5tp 3.3% 968 4.1% 968 3100 669

pooling sppa9pq 0.08% 1828 0.07% 1828 5760 361

pooling sppa9stp ∞ 3656 275% 3820 9866 64

pooling sppa9tp 46.0% 1828 1.2% 1992 5934 7

pooling sppb0pq ∞ 1153 7.1% 1153 3748 5268

pooling sppb0stp ∞ 2306 >1000% 2306 6343 374

pooling sppb0tp ∞ 1153 7.4% 1153 3748 1397

pooling sppb2pq ∞ 3093 9.6% 3093 9748 829

pooling sppb2stp ∞ 6186 267% 6186 16403 124

pooling sppb2tp 6% 3093 12.0% 3093 9748

104

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

pooling sppb5pq ∞ 7947 ∞ 7947 24603 648

pooling sppb5stp ∞ 15894 101% 15894 41259 25

pooling sppb5tp 1.6% 7947 66.2% 7947 24603

pooling sppc0pq 13.3% 2826 15.2% 2826 9074 1407

pooling sppc0stp ∞ 5652 >1000% 5652 15322 132

pooling sppc0tp ∞ 2826 ∞ 2826 9074 255

pooling sppc1pq ∞ 4770 ∞ 4770 15083 961

pooling sppc1stp ∞ 9540 985% 9540 25396 109

pooling sppc1tp ∞ 4770 ∞ 4770 15083

pooling sppc3pq ∞ 9116 ∞ 9116 28416 104

pooling sppc3stp ∞ 18232 355% 18232 47716 0

pooling sppc3tp ∞ 9116 ∞ 9116 28416

popdynm100 ∞ 1601 ∞ 1401 4400 1 9560

popdynm200 ∞ 3201 ∞ 2801 8800 1 18760

popdynm25 ∞ 401 ∞ 351 1100 1 2780

popdynm50 ∞ 801 ∞ 701 2200 1 5040

portfol buyin 0.4s 1 2 0.5s 1 1 11

portfol card 0.5s 1 2 0.3s 1 1 11

portfol classical050 1 147.2s 1 6.8s 101

portfol classical200 2 16.0% 1 8.2% 401

portfol robust050 34 5.7s 1 50 7.2s 1 204

portfol robust100 09 21.8s 1 100 22.7s 1 404

portfol robust200 03 3.5% 1 200 0.8% 1 804

portfol roundlot fail 1 2 0.05% 1 1 12

portfol shortfall050 68 17.2s 100 7.6s 2 206

portfol shortfall100 04 1900.9s 200 976.1s 2 406

portfol shortfall200 05 1.3% 400 1.3% 2 806

powerflow0009r 88.4% 73 10.2s 33 34 215 1782

powerflow0014r ∞ 149 0.02% 70 76 333 21498

powerflow0030r ∞ 305 0.54% 160 160 902 87468

powerflow0039r >1000% 355 0.23% 186 182 1058 176622

powerflow0057r ∞ 582 96.4s 280 304 1287 31898

powerflow0118r ∞ 1310 3.1% 701 704 3088 160886

powerflow0300r ∞ 3012 ∞ 1514 1630 7572 150525

powerflow2383wpr ∞ 21621 ∞ 12092 11528 63380 22000

powerflow2736spr ∞ 26135 39.2% 14908 13966 74272 22000

primary >1000% 56 7 12 >1000% 14 962 13 7 9 1188 586 23249 39

prob02 0.0s 5 0.1s 5 11 1

prob03 0.0s 1 0.0s 1 3

prob06 0.0s 2 0.0s 2 6

prob07 357.4s 27 1 12.7s 5 17 17 64

prob09 0.0s 2 2.2s 1 1 8

process 0.4s 7 1 0.8s 3 5 1 1 2 25

procsel 0.0s 2 0.0s 1 1 9 2

procsyn ∞ 9 10 0.1s 69

procurement1large 371% 69 68 373% 1 68 68 342

procurement1mot 534% 13 12 444% 1 12 12 62

procurement2mot 1.7s 10 1.8s 40

product 30.2s 82 16.6s 30 1 470 26

product2 2.7s 128 4.5s 4 575

prolog ∞ 3 0.1s 1 4 16

qap >1000% 465%

qapw 50.8% 1 379%

qp2 0.0s 1 1.0s 1 1 51

qp3 58.3s 1 ∞ 50 152

qp4 0.0s 1 0.0s 60

qspp 0 10 0 1 10 1 312.4s 140.9s

qspp 0 11 0 1 10 1 1083.8s 484.6s

qspp 0 12 0 1 10 1 23.4% 1702.0s

qspp 0 13 0 1 10 1 67.3% 50.1%

qspp 0 14 0 1 10 1 99.3% 99.5%

qspp 0 15 0 1 10 1 135% 155%

radar-2000-10-a-6 lat 7 383.8s 2000 101.1s 2000 12000

radar-3000-10-a-8 lat 7 908.3s 3000 356.1s 3000 18000

ramsey 0.1s 10 0.0s 3 1 59

ravempb 2.9s 2 2.4s 16 63

rbrock 0.0s 2 3.8s 1 1 8

ringpack 10 1 16.0% 330 42.9% 185 90 40 325 211424 30

ringpack 10 2 8.2% 420 16.0% 230 90 40 379 84248 16

ringpack 20 1 44.4% 2337 218% 1246 380 155 1726 394294 532

ringpack 20 2 34.2% 2717 300% 1436 380 155 1935 353417 246

ringpack 20 3 94.6% 3055 88.3% 1604 380 153 2121 315832

ringpack 30 1 275% 7433 436% 3888 870 343 4908 152290 30

ringpack 30 2 219% 8303 900% 4323 870 343 5372 135887 440

risk2bpb 0.1s 1 0.1s 8

rocket100 ∞ 697 100 200 1.9% 299 403 100 100 2202

rocket200 ∞ 1397 200 400 12.6% 599 803 200 200 4402

rocket400 ∞ 2797 400 800 >1000% 1199 1603 400 400 8802

rocket50 ∞ 347 50 100 0.64% 149 203 50 50 1102

routingdelay bigm 25.8s 1760 fail 127 1394 28

routingdelay proj ∞ 3604 ∞ 382 6 1797 6297

rsyn0805h 0.2s 9 3 1.9s 3 6 6 4 6 35

rsyn0805hfsg 0.3s 3 2 3.9s 3 6 6 4 6 35

rsyn0805m 2.3s 3 9.5s 3 17 2

rsyn0805m02h 1.0s 6 4 14.0s 6 12 10 6 12 65

rsyn0805m02hfsg 1.1s 4 4.9s 4 20

rsyn0805m02m 16.6s 6 31.4s 6 33 4

105

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

rsyn0805m03h 2.2s 6 14.7s 9 18 14 8 18 95

rsyn0805m03hfsg 1.2s 6 6 6.8s 9 18 14 8 18 95

rsyn0805m03m 7.8s 9 40.9s 9 49 6

rsyn0805m04h 1.6s 36 12 7.7s 12 24 18 10 24 125

rsyn0805m04hfsg 2.3s 36 12 5.0s 12 24 18 10 24 125

rsyn0805m04m 16.1s 12 39.9s 12 65 8

rsyn0810h 0.2s 18 6 6.0s 6 11 11 6 11 66

rsyn0810hfsg 0.2s 18 6 1.3s 4 7 8 3 7 48

rsyn0810m 3.0s 6 0.9s 6 33 5

rsyn0810m02h 2.7s 3 10 164.2s 12 22 20 10 22 127

rsyn0810m02hfsg 3.0s 3 10 12.7s 12 22 20 10 22 127

rsyn0810m02m 12.0s 12 15.6s 12 65 10

rsyn0810m03h 12.8s 9 15 48.3% 18 33 29 14 33 188

rsyn0810m03hfsg 8.5s 9 15 83.3s 18 33 29 14 33 188

rsyn0810m03m 13.9s 18 42.1s 18 97 15

rsyn0810m04h 3.1s 72 24 126.9s 24 44 38 18 44 249

rsyn0810m04hfsg 3.8s 12 20 6.2s 24 44 38 18 44 249

rsyn0810m04m 16.8s 24 37.9s 24 129 20

rsyn0815h 1.2s 33 11 19.5s 12 21 19 9 21 117

rsyn0815hfsg 1.1s 33 11 4.3s 12 21 19 9 21 117

rsyn0815m 1.1s 11 1.7s 11 61 10

rsyn0815m02h 2.0s 66 22 205.2s 24 42 36 16 42 229

rsyn0815m02hfsg 2.0s 51 19 10.8s 24 42 36 16 42 229

rsyn0815m02m 12.2s 22 10.8s 22 121 20

rsyn0815m03h 5.3s 99 33 1481.0s 36 63 53 23 63 341

rsyn0815m03hfsg 5.6s 96 33 72.1s 36 63 53 23 63 341

rsyn0815m03m 34.3s 33 55.7s 33 181 30

rsyn0815m04h 4.1s 60 28 17.5% 48 84 70 30 84 453

rsyn0815m04hfsg 7.0s 120 44 226.4s 48 84 70 30 84 453

rsyn0815m04m 77.5s 44 41.5s 44 241 40

rsyn0820h 1.6s 8 21.9s 15 29 25 12 29 156

rsyn0820hfsg 1.2s 42 14 3.7s 15 29 25 12 29 156

rsyn0820m 2.3s 14 2.6s 14 76 13

rsyn0820m02h 2.4s 57 25 0.67% 30 58 48 22 58 307

rsyn0820m02hfsg 2.4s 54 26 38.9s 30 58 48 22 58 307

rsyn0820m02m 16.9s 28 60.9s 28 151 26

rsyn0820m03h 7.7s 126 42 111% 45 87 71 32 87 458

rsyn0820m03hfsg 9.7s 78 38 11.1% 45 87 71 32 87 458

rsyn0820m03m 14.4s 42 26.5s 42 226 39

rsyn0820m04h 5.4s 129 52 128% 60 116 94 42 116 609

rsyn0820m04hfsg 10.5s 162 56 14.8% 60 116 94 42 116 609

rsyn0820m04m 65.0s 56 74.4s 56 301 52

rsyn0830h 3.9s 15 10 679.9s 21 41 36 17 41 224

rsyn0830hfsg 4.0s 18 11 5.6s 19 34 34 15 34 204

rsyn0830m 1.6s 20 2.1s 20 109 19

rsyn0830m02h 6.0s 51 27 156% 42 82 70 32 82 443

rsyn0830m02hfsg 4.9s 75 34 384.1s 40 75 68 32 75 425

rsyn0830m02m 11.8s 40 15.6s 40 217 38

rsyn0830m03h 8.8s 180 60 95.8% 63 123 104 47 123 662

rsyn0830m03hfsg 9.6s 144 57 2459.9s 59 109 100 45 109 624

rsyn0830m03m 36.2s 60 27.4s 60 325 57

rsyn0830m04h 10.6s 240 80 120% 84 163 1 137 62 163 876

rsyn0830m04hfsg 12.0s 240 80 10.0% 80 149 1 133 58 149 836

rsyn0830m04m 185.4s 80 129.8s 80 433 76

rsyn0840h 1.1s 6 7 241.8s 29 58 50 23 58 313

rsyn0840hfsg 1.9s 69 25 12.3s 29 58 50 23 58 313

rsyn0840m 1.8s 28 2.9s 28 151 27

rsyn0840m02h 6.7s 90 44 246% 58 116 98 44 116 621

rsyn0840m02hfsg 6.7s 132 50 6.6% 58 116 98 44 116 621

rsyn0840m02m 12.8s 56 13.3s 56 301 54

rsyn0840m03h 12.0s 105 55 52.6% 87 174 146 65 174 929

rsyn0840m03hfsg 10.8s 252 84 8.2% 87 174 146 65 174 929

rsyn0840m03m 20.9s 84 12.0s 84 451 81

rsyn0840m04h 18.2s 279 112 154% 116 231 1 193 86 231 1232

rsyn0840m04hfsg 10.2s 336 112 24.9% 116 231 1 193 86 231 1232

rsyn0840m04m 180.5s 112 121.5s 112 601 108

saa 2 ∞ 23770 14 ∞ 2021 3610 221 13681 0 3

sambal 0.1s 1 0.0s 28

sample 0.0s 2 0.0s 10

sep1 0.2s 6 0.1s 6 23

sepasequ complex 11.6% 321 10 8 22.7% 50 413 100 100 280 1014

sepasequ convent fail 205 18 fail 81 144 52 52 52 618 45

sfacloc1 2 80 64.0% 60 58.8% 195

sfacloc1 2 90 22.6% 60 27.6% 202

sfacloc1 2 95 9.3% 39 23.3% 7 28 188

sfacloc1 3 80 462% 60 >1000% 270

sfacloc1 3 90 350% 60 446% 277

sfacloc1 3 95 158% 39 142% 7 42 270

sfacloc1 4 80 ∞ 75 >1000% 345

sfacloc1 4 90 >1000% 75 >1000% 352

sfacloc1 4 95 >1000% 47 802% 7 56 345

sfacloc2 2 80 7.9s 60 6.3s 12 198

sfacloc2 2 90 2.2s 60 1.9s 12 202

sfacloc2 2 95 1.3s 46 1.4s 20 195

sfacloc2 3 80 29.2s 90 48.9s 18 294

sfacloc2 3 90 10.5s 90 11.3s 18 298

sfacloc2 3 95 15.9s 69 12.3s 30 295

106

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

sfacloc2 4 80 80.7s 120 127.7s 24 384

sfacloc2 4 90 10.1s 120 24.5s 24 388

sfacloc2 4 95 26.0s 92 10.8s 40 385

shiporig ∞ 12 1 1 ∞ 3 1 1 38

sjup2 3.8%15120 1098.1s 43200 60128

slay04h 1.4s 1 0.9s 18

slay04m 1.3s 1 0.3s 18

slay05h 3.9s 1 2.6s 22

slay05m 0.9s 1 0.7s 22

slay06h 3.8s 1 3.1s 26

slay06m 1.7s 1 1.4s 26

slay07h 9.3s 1 2.7s 30

slay07m 2.2s 1 2.2s 30

slay08h 19.0s 1 10.9s 34

slay08m 2.5s 1 3.6s 34

slay09h 38.0s 1 12.0s 38

slay09m 4.3s 1 4.0s 38

slay10h 493.4s 1 176.9s 42

slay10m 15.5s 1 18.4s 42

smallinvDAXr1b010-011 0.3s 1 1.8s 1 28 55 9

smallinvDAXr1b020-022 0.3s 1 4.2s 1 21 45 10

smallinvDAXr1b050-055 0.5s 1 0.6s 1 1 8

smallinvDAXr1b100-110 0.6s 1 0.7s 1 1 8

smallinvDAXr1b150-165 1.4s 1 797.3s 1 28 55 14

smallinvDAXr1b200-220 0.9s 1 87.9s 1 21 45 11

smallinvDAXr2b010-011 0.3s 1 2.0s 1 28 55 10

smallinvDAXr2b020-022 0.3s 1 2.6s 1 21 45 11

smallinvDAXr2b050-055 0.5s 1 0.6s 1 1 8

smallinvDAXr2b100-110 0.5s 1 0.8s 1 1 8

smallinvDAXr2b150-165 1.4s 1 413.3s 1 28 55 13

smallinvDAXr2b200-220 0.9s 1 260.2s 1 21 45 11

smallinvDAXr3b010-011 0.3s 1 1.4s 1 28 55 10

smallinvDAXr3b020-022 0.3s 1 3.6s 1 21 45 10

smallinvDAXr3b050-055 0.5s 1 0.6s 1 1 8

smallinvDAXr3b100-110 0.5s 1 0.8s 1 1 8

smallinvDAXr3b150-165 1.3s 1 291.1s 1 28 55 12

smallinvDAXr3b200-220 0.8s 1 201.2s 1 21 45 10

smallinvDAXr4b010-011 0.3s 1 1.5s 1 28 55 11

smallinvDAXr4b020-022 0.3s 1 7.0s 1 21 45 10

smallinvDAXr4b050-055 0.8s 1 0.6s 1 1 8

smallinvDAXr4b100-110 0.5s 1 2.0s 1 1 8

smallinvDAXr4b150-165 1.2s 1 189.2s 1 21 45 10

smallinvDAXr4b200-220 0.9s 1 0.5s 1 1 9

smallinvDAXr5b010-011 0.3s 1 5.2s 1 28 55 12

smallinvDAXr5b020-022 0.3s 1 3.3s 1 21 45 11

smallinvDAXr5b050-055 0.8s 1 1.6s 1 1 8

smallinvDAXr5b100-110 0.5s 1 0.8s 1 1 8

smallinvDAXr5b150-165 1.1s 1 1.3s 1 1 8

smallinvDAXr5b200-220 0.7s 1 2.6s 1 1 9

smallinvSNPr1b010-011 6.1s 1 12.9s 1 4950 5152 275 14

smallinvSNPr1b020-022 95.8s 1 44.8s 1 4950 5152 1287 12

smallinvSNPr1b050-055 ∞ 1 166.4s 1 4950 5152 3521 16

smallinvSNPr1b100-110 ∞ 1 52.8s 1 4950 5152 3756 19

smallinvSNPr1b150-165 ∞ 1 89.8s 1 4950 5152 10404 21

smallinvSNPr1b200-220 234% 1 6.4% 1 4950 5152 54763 15

smallinvSNPr2b010-011 6.6s 1 12.0s 1 4950 5152 261 16

smallinvSNPr2b020-022 30.8s 1 29.9s 1 4950 5152 1130 14

smallinvSNPr2b050-055 3290.8s 1 40.0s 1 4950 5152 2493 15

smallinvSNPr2b100-110 ∞ 1 78.0s 1 4950 5152 7034 27

smallinvSNPr2b150-165 ∞ 1 1645.2s 1 4950 5152 45322 19

smallinvSNPr2b200-220 ∞ 1 9.5% 1 4950 5152 76375 14

smallinvSNPr3b010-011 4.3s 1 11.0s 1 4560 4949 189 30

smallinvSNPr3b020-022 20.9s 1 80.5s 1 4950 5152 1172 12

smallinvSNPr3b050-055 104.1s 1 96.8s 1 4950 5152 8025 12

smallinvSNPr3b100-110 1268.4s 1 185.2s 1 4950 5152 11081 16

smallinvSNPr3b150-165 2900.5s 1 781.5s 1 4950 5152 31943 19

smallinvSNPr3b200-220 211% 1 634.5s 1 4950 5152 26307 17

smallinvSNPr4b010-011 4.0s 1 16.7s 1 4950 5152 262 13

smallinvSNPr4b020-022 12.4s 1 20.8s 1 4950 5152 775 9

smallinvSNPr4b050-055 35.6s 1 29.4s 1 4950 5152 1181 18

smallinvSNPr4b100-110 201.2s 1 127.0s 1 4950 5152 6516 17

smallinvSNPr4b150-165 59.2% 1 874.9s 1 4950 5152 27915 17

smallinvSNPr4b200-220 2135.6s 1 242.3s 1 4950 5152 16514 16

smallinvSNPr5b010-011 3.2s 1 12.0s 1 4465 4948 113 34

smallinvSNPr5b020-022 4.6s 1 15.9s 1 4950 5152 471 11

smallinvSNPr5b050-055 42.1s 1 23.6s 1 4950 5152 1118 14

smallinvSNPr5b100-110 69.7s 1 81.5s 1 4950 5152 5503 16

smallinvSNPr5b150-165 138.5s 1 51.7s 1 4950 5152 4752 25

smallinvSNPr5b200-220 427.0s 1 1046.2s 1 4950 5152 26806 61

sonet17v4 924.7s 1090.8s

sonet18v6 950.0s 1367.4s

sonet19v5 12.1% 15.7%

sonet20v6 2000.0s 1001.0s

sonet21v6 6% 7.3%

sonet22v4 11.6% 8.6%

sonet22v5 108% 125%

sonet23v4 48.1% 44.0%

107

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

sonet23v6 24.6% 20.9%

sonet24v2 191.8s 320.1s

sonet24v5 91.9% 137%

sonet25v5 12.4% 12.9%

sonet25v6 188% 249%

sonetgr17 49.6s 982.9s

space25 ∞ 25 ∞ 25 76 152

space25a ∞ 25 ∞ 25 86 179

space960 ∞ 960 ∞ 952 3740 7357

spectra2 2.1s 8 10.2s 8 26 8 68 13 186

sporttournament06 0.0s 0.0s

sporttournament08 0.1s 0.3s

sporttournament10 0.3s 0.3s

sporttournament12 0.2s 0.2s

sporttournament14 9% 1 0.6s

sporttournament16 0.5s 1.2s

sporttournament18 5.3s 5.7s

sporttournament20 19.7s 34.1s

sporttournament22 66.1s 39.9s

sporttournament24 77.5s 164.8s

sporttournament26 995.2s 677.1s

sporttournament28 207.6s 356.5s

sporttournament30 1.6% 1.2%

sporttournament32 1.6% 1.6%

sporttournament34 1.8% 2%

sporttournament36 1.9% 2.3%

sporttournament38 3.7% 3.9%

sporttournament40 10.0% 6.9%

sporttournament42 7.4% 5.4%

sporttournament44 8.8% 6.3%

sporttournament46 7.1% 7.7%

sporttournament48 13.1% 7.6%

sporttournament50 9.3% 8.4%

spring 0.2s 9 2 2 0.3s 2 3 1 1 2 26

squfl010-025 1278.0s 1 3.1s 502 250

squfl010-025persp 1.4s 250 0.5s 250 1260

squfl010-040 43.7% 1 2.5s 802 400

squfl010-040persp 3.5s 400 0.6s 400 2010

squfl010-080 132% 1 35.2s 1602 800

squfl010-080persp 98.0s 800 7.8s 560 3767

squfl015-060 112% 1 8.1s 1802 900

squfl015-060persp 78.7s 900 5.2s 720 4332

squfl015-080 117% 1 114.9s 2402 1200

squfl015-080persp 575.1s 1200 10.2s 800 5610

squfl020-040 80.2% 1 6.7s 1602 800

squfl020-040persp 21.2s 800 2.6s 800 4020

squfl020-050 118% 1 56.6s 2002 1000

squfl020-050persp 300.9s 1000 6.5s 700 4714

squfl020-150 470% 1 1605.7s 6002 3000

squfl020-150persp 2247.7s 3000 62.7s 1950 13963

squfl025-025 57.8% 1 4.7s 1252 625

squfl025-025persp 28.6s 600 5.7s 500 2820

squfl025-030 53.0% 1 33.2s 1502 750

squfl025-030persp 65.4s 720 14.8s 570 3229

squfl025-040 166% 1 48.4s 2002 1000

squfl025-040persp 0% 1000 63.2s 800 4820

squfl030-100 266% 1 878.8s 6002 3000

squfl030-100persp 0.01% 3000 0.01% 1800 12218

squfl030-150 577% 1 112.5s 9002 4500

squfl030-150persp 0.23% 4500 0.01% 3150 21171

squfl040-080 291% 1 31.0s 6402 3200

squfl040-080persp 0.01% 3200 0.01% 2480 15311

srcpm 0.0s 1 0.1s 12

sssd08-04 15.1s 4 1.3s 4 12

sssd08-04persp 72.6s 12 17.8s 12 12 76 3

sssd12-05 6.1% 5 1.4s 5 19

sssd12-05persp 7% 15 7% 15 15 95 3

sssd15-04 14.0% 4 1.1s 4 12

sssd15-04persp 35.5% 12 11.8% 12 12 76 1

sssd15-06 20.3% 6 14.1s 6 34

sssd15-06persp 71.5% 18 25.7% 18 18 114 5

sssd15-08 17.8% 8 21.1s 8 24

sssd15-08persp 75.6% 24 19.5% 24 24 152 4

sssd16-07 17.6% 7 57.9s 8 29

sssd16-07persp 68.8% 21 18.6% 21 21 133 5

sssd18-06 16.5% 6 7.1s 6 36

sssd18-06persp 67.9% 18 18.7% 18 18 114 4

sssd18-08 28.9% 8 84.1s 8 56

sssd18-08persp 101% 24 34.2% 24 24 152 7

sssd20-04 18.4% 4 1.5s 4 12

sssd20-04persp 59.0% 12 20.1% 12 12 76 4

sssd20-08 16.1% 8 203.9s 8 56

sssd20-08persp 68.2% 24 19.7% 24 24 152 6

sssd22-08 17.8% 8 110.5s 8 56

sssd22-08persp 74.7% 24 20.5% 24 24 152 6

sssd25-04 23.8% 4 2.1s 4 28

sssd25-04persp 77.8% 12 23.7% 12 12 76 4

108

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

sssd25-08 14.7% 8 114.2s 9 38

sssd25-08persp 65.3% 24 16.0% 24 24 152 4

st bpaf1a 0.0s 1 0.0s 5 17

st bpaf1b 0.0s 1 0.0s 5 17

st bpk1 0.0s 1 0.0s 1 4 10 0

st bpv1 0.0s 0.0s

st bpv2 0.0s 1 0.0s

st bsj2 0.1s 1 0.1s 8

st bsj3 0.0s 1 0.0s 10

st bsj4 0.1s 1 0.1s 14

st cqpf 0.0s 1 0.0s 10

st cqpjk1 0.0s 1 0.0s 10

st cqpjk2 0.0s 1 0.0s 8

st e01 0.0s 1 0.0s 1 3

st e02 0.0s 3 0.0s 3 1 1 9

st e03 29.8s 7 2 0.07% 3 4 22

st e04 0.6s 1 3 0.2s 1 3 2 16

st e05 0.1s 2 0.1s 2 2 1 8

st e06 0.0s 1 0.0s 1 4

st e07 0.1s 3 0.0s 1 2 14

st e08 0.0s 2 0.0s 1 7 0

st e09 0.1s 2 0.0s 1 2 7

st e11 0.1s 1 1 0.1s 1 1 8

st e12 0.0s 1 0.0s 6

st e13 0.0s 1 0.0s 4

st e14 0.1s 1 2 1 0.1s 1 1 18

st e15 0.0s 2 0.0s 8 2

st e16 0.1s 6 1 0.1s 4 8 4 29

st e17 0.0s 1 0.0s 1 1 6

st e18 0.0s 2 0.0s 5

st e19 0.2s 1 1 0.1s 2 8

st e21 0.1s 1 0.1s 8

st e22 0.0s 1 0.0s 6

st e23 0.1s 1 0.0s 1 5

st e24 0.0s 1 0.0s 6

st e25 0.1s 1 0.2s 1 6 16 32 0

st e26 0.0s 1 0.0s 6

st e27 0.0s 1 0.0s 6 2

st e28 0.0s 4 0.0s 3 7 22

st e29 0.1s 2 3 0.0s 3 2 23

st e30 0.3s 5 0.3s 6 24

st e31 2.4s 5 1.5s 6 24

st e32 3.5s 25 5 6 6.4s 6 165 9 4 8 264 130 1

st e33 0.1s 3 0.0s 1 4 16

st e34 0.0s 4 0.0s 2 5 13

st e35 10.4s 19 6 8 108% 12 19 7 5 82 6 166933 0

st e36 0.8s 9 2 1 0.3s 7 1 5 17 10

st e37 0.6s 1 20 1.2s 30 20 104

st e38 0.1s 3 2 0.1s 1 3 13

st e40 0.1s 16 0.2s 1 3 32

st e41 0.1s 7 3 1 1.5s 4 4 36 2

st e42 0.0s 1 0.0s 1 1 8

st fp7a 0.2s 1 0.3s 42

st fp7b 0.3s 1 0.5s 42

st fp7c 0.2s 1 0.3s 42

st fp7d 0.2s 1 0.3s 42

st fp7e 0.3s 1 1.6s 42

st fp8 0.1s 1 0.1s 50

st glmp fp1 0.0s 1 0.0s 1 6

st glmp fp2 0.0s 1 0.0s 1 6

st glmp fp3 0.0s 1 0.0s 6

st glmp kk90 0.0s 1 0.0s 1 6

st glmp kk92 0.0s 1 0.0s 6

st glmp kky 0.0s 1 0.0s 1 6

st glmp ss1 0.1s 1 0.1s 1 6

st glmp ss2 0.0s 1 0.0s 1 1 7 0

st ht 0.0s 1 0.1s 6

st iqpbk1 0.2s 1 0.2s 1 28 46 56 0

st iqpbk2 0.3s 1 0.2s 1 28 46 107 0

st jcbpaf2 0.1s 1 0.1s 5 17

st m1 0.2s 1 0.3s 42

st m2 0.2s 1 0.5s 62

st miqp1 0.0s 0.0s

st miqp2 0.0s 1 0.0s 6 2

st miqp3 0.0s 1 0.0s 4

st miqp4 0.0s 1 0.0s 8 2

st miqp5 0.0s 1 0.0s 6

st pan1 0.1s 1 0.1s 8

st ph1 0.0s 1 0.0s 14

st ph10 0.0s 1 0.0s 1 4

st ph11 0.0s 1 0.1s 8

st ph12 0.0s 1 0.1s 8

st ph13 0.0s 1 0.1s 8

st ph14 0.0s 1 0.0s 8

st ph15 0.0s 1 0.1s 10

st ph2 0.0s 1 0.0s 14

st ph20 0.0s 1 0.1s 6

109

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

st ph3 0.0s 1 0.0s 10

st phex 0.0s 1 0.0s 6

st qpc-m0 0.0s 1 0.0s 6

st qpc-m1 0.1s 1 0.1s 1 10 22 17 0

st qpc-m3a 0.2s 1 0.3s 1 45 67 29 0

st qpc-m3b 0.1s 1 0.2s 1 45 67 60 0

st qpc-m3c 0.0s 1 0.0s 1 45 67

st qpc-m4 0.0s 1 0.0s 1 44 66

st qpk1 0.0s 1 0.1s 1 1 7 0 0

st qpk2 0.1s 1 0.1s 1 5 19

st qpk3 0.2s 1 0.2s 1 10 34 0

st robot 0.0s 7 0.0s 3 2 23 15

st rv1 0.1s 1 0.2s 22

st rv2 0.2s 1 0.2s 42

st rv3 0.3s 1 0.6s 42

st rv7 0.3s 1 1.4s 62

st rv8 0.5s 1 1.5s 82

st rv9 1.3s 1 3.4s 102

st test1 0.0s 0.0s

st test2 0.0s 0.0s

st test3 0.0s 0.0s

st test4 0.0s 1 0.0s 6

st test5 0.0s 0.0s

st test6 0.0s 0.0s

st test8 0.0s 1 0.0s 50

st testgr1 0.1s 1 0.1s 12

st testgr3 0.1s 1 0.2s 14

st testph4 0.0s 1 0.0s 6

st z 0.1s 1 0.1s 8

steenbrf ∞ 108 37 30.4s 1 36 36 434

stockcycle 87.1s 1 0.7s 13 49

super1 fail 378 44 236 334% 274 841 4 46 46 125 2174 18 53857 2

super2 fail 381 44 236 348% 277 840 6 46 46 125 2176 18 17482 2

super3 fail 385 44 236 391% 285 847 6 46 46 125 2202 19 33706 3

super3t 49.1% 237 32 163 53.4% 189 724 2 19 19 125 1592 14 8635 7

supplychain 0.3s 6 0.4s 36

supplychainp1 020306 0.2s 1 0.1s 7 23

supplychainp1 022020 1099.3s 1 1184.5s 20 502

supplychainp1 030510 1.7s 1 4.8s 10 92 5

supplychainp1 053050 43.0% 1 50.1% 50 1712

supplychainr1 020306 0.3s 1 0.1s 7 23

supplychainr1 022020 0.24% 1 32.5s 30 92 4

supplychainr1 030510 0.1s 1 0.2s 13 41 2

supplychainr1 053050 16.2% 1 1.5% 80 242

syn05h 0.1s 9 3 0.1s 2 4 5 3 4 28

syn05hfsg 0.1s 9 3 0.2s 1 2 2 1 2 12

syn05m 0.2s 2 0.0s 1 6 1

syn05m02h 0.1s 18 6 0.3s 6 12 10 6 12 65

syn05m02hfsg 0.1s 18 6 0.2s 5 10 9 6 10 59

syn05m02m 0.1s 4 0.1s 6 33 4

syn05m03h 0.1s 27 9 0.4s 8 16 13 7 16 88

syn05m03hfsg 0.1s 27 9 0.5s 7 14 12 6 14 81

syn05m03m 0.2s 9 0.2s 9 49 6

syn05m04h 0.1s 36 12 0.3s 11 22 17 9 22 118

syn05m04hfsg 0.1s 36 12 0.2s 8 40

syn05m04m 0.3s 12 0.2s 12 65 8

syn10h 0.1s 12 5 0.4s 6 11 11 6 11 66

syn10hfsg 0.1s 18 6 0.3s 6 11 11 6 11 66

syn10m 0.1s 6 0.0s 6 33 5

syn10m02h 0.3s 36 12 1.2s 12 22 20 10 22 127

syn10m02hfsg 0.2s 36 12 1.1s 12 22 20 10 22 127

syn10m02m 0.7s 12 0.4s 10 49 10

syn10m03h 0.5s 54 18 4.6s 18 33 29 14 33 188

syn10m03hfsg 0.3s 54 18 1.9s 18 33 29 14 33 188

syn10m03m 1.0s 12 0.6s 15 81 15

syn10m04h 0.6s 72 24 17.2s 24 44 38 18 44 249

syn10m04hfsg 0.4s 72 24 2.1s 22 41 37 17 41 239

syn10m04m 1.6s 24 0.7s 24 129 20

syn15h 0.1s 33 11 0.6s 11 20 19 9 20 116

syn15hfsg 0.1s 33 11 0.8s 11 20 19 9 20 116

syn15m 0.1s 11 0.2s 11 60 10

syn15m02h 0.3s 66 22 4.2s 22 40 36 16 40 227

syn15m02hfsg 0.2s 66 22 2.1s 22 40 36 16 40 227

syn15m02m 0.3s 22 0.3s 22 117 20

syn15m03h 0.4s 99 33 9.2s 33 60 53 23 60 338

syn15m03hfsg 0.4s 99 33 4.9s 32 58 52 22 58 331

syn15m03m 0.5s 33 0.6s 33 175 30

syn15m04h 0.5s 132 44 24.8s 44 80 70 30 80 449

syn15m04hfsg 0.7s 132 44 6.3s 44 80 70 30 80 449

syn15m04m 1.2s 44 1.3s 44 232 40

syn20h 0.3s 33 13 3.1s 14 28 25 12 28 155

syn20hfsg 0.3s 33 13 1.5s 14 28 25 12 28 155

syn20m 0.5s 14 0.5s 11 56 11

syn20m02h 0.8s 84 28 43.7s 28 56 48 22 56 305

syn20m02hfsg 0.6s 84 28 7.0s 28 56 48 22 56 305

syn20m02m 0.9s 26 1.1s 28 149 26

syn20m03h 0.8s 126 42 490.3s 42 84 71 32 84 455

110

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

syn20m03hfsg 0.6s 126 42 17.5s 42 84 71 32 84 455

syn20m03m 1.6s 27 1.5s 42 223 39

syn20m04h 1.1s 168 56 2476.9s 56 112 94 42 112 605

syn20m04hfsg 1.1s 168 56 89.1s 56 112 94 42 112 605

syn20m04m 2.4s 52 2.7s 56 297 52

syn30h 0.8s 54 20 51.1s 21 41 36 17 41 224

syn30hfsg fail 60 20 1.9s 19 34 34 15 34 204

syn30m 0.8s 20 0.7s 20 108 19

syn30m02h 1.8s 120 40 78.3% 40 80 70 32 80 441

syn30m02hfsg fail 120 40 7.0s 38 73 68 32 73 423

syn30m02m 2.5s 22 1.6s 40 210 38

syn30m03h 3.6s 180 60 136% 60 120 104 47 120 659

syn30m03hfsg 1.8s 180 60 462.4s 56 106 100 45 106 621

syn30m03m 2.5s 60 2.7s 60 317 57

syn30m04h 3.1s 240 80 196% 80 159 1 137 62 159 872

syn30m04hfsg 3.8s 240 80 10.5% 75 141 1 132 58 141 822

syn30m04m 6.0s 80 3.6s 80 421 76

syn40h 0.8s 84 28 237.5s 28 57 50 23 57 312

syn40hfsg fail 84 28 2.2s 28 57 50 23 57 312

syn40m 0.9s 28 1.2s 28 149 27

syn40m02h 3.3s 168 56 228% 56 114 98 44 114 619

syn40m02hfsg fail 168 56 277.9s 53 103 95 42 103 589

syn40m02m 4.6s 56 2.7s 56 292 54

syn40m03h 3.4s 252 84 382% 84 171 146 65 171 926

syn40m03hfsg 3.1s 252 84 34.1% 84 171 146 65 171 926

syn40m03m 3.4s 84 4.6s 84 443 81

syn40m04h 7.2s 336 112 369% 112 227 1 193 86 227 1228

syn40m04hfsg 6.8s 336 112 50.8% 109 216 1 190 83 216 1197

syn40m04m 5.8s 112 5.7s 112 581 108

synheat 21.1% 29 12 0.4% 5 11 18 2 7 94 6

synthes1 0.1s 3 0.0s 2 11 1

synthes2 0.0s 4 0.0s 2 14 1

synthes3 0.4s 5 0.1s 4 22 2

tanksize 3.2s 12 1 3.4s 6 11 59 5

telecomsp metro 24.9% 48.3%

telecomsp njlata 7.6% 12.0%

telecomsp nor sun ∞ ∞
telecomsp pacbell 3285.4s 1.8%

tln12 974% 12 8.4% 132 312 14

tln2 0.0s 2 0.0s 4 12 0

tln4 1.6s 4 1.1s 16 40 4

tln5 89.5s 5 0.7s 25 60 5

tln6 79.1% 6 3.6s 36 84 8

tln7 403% 7 465.3s 49 112 8

tloss 0.0s 6 0.7s 36 84 24 5

tls12 ∞ 144 12 ∞ 144 144 897 15

tls2 0.2s 4 2 0.7s 4 4 25

tls4 21.3s 15 4 55.3s 16 16 165 14

tls5 64.4% 21 5 49.3% 25 25 261 12

tls6 196% 32 6 67.2% 36 36 327 10

tls7 >1000% 49 7 >1000% 49 49 509 8

tltr 0.1s 3 0.3s 9 44 9

topopt-cantilever 60x40 50 ∞ 31200 >1000% 2399 67198

topopt-mbb 60x40 50 ∞ 31200 ∞ 2399 67198

topopt-zhou-rozvany 75 3.5% 1300 2.6% 98 2796

toroidal2g20 5555 5.4s 5.2s

toroidal3g7 6666 93.8s 114.5s

torsion100 27.6s 2 ∞ 2 9850 2 19854 35545

torsion25 0.9s 2 6.2% 2 2425 2 4929 16058

torsion50 4.1s 2 ∞ 2 4900 2 9904 41426

torsion75 12.4s 2 56.8% 2 7375 2 14879 28097

trainf ∞ 10000 2 ∞ 10001 10000 60003

transswitch0009r 346% 97 4.2% 34 10 232 11886

transswitch0014r ∞ 229 ∞ 66 405 1

transswitch0030r ∞ 457 ∞ 162 12 1031 1 39801

transswitch0039r ∞ 531 55.0% 192 8 1198 6 1159

transswitch0057r ∞ 890 ∞ 272 4 1608 190

transswitch0118r ∞ 2018 ∞ 691 8 3879 3 1127

transswitch0300r ∞ 4488 ∞ 1524 156 9127 27 2829

transswitch2383wpr ∞ 31565 ∞ 12478 1612 71643 5130

transswitch2736spr 39.2% 39151 ∞ 15325 972 85370 2557

tricp ∞ 190 3250.6s 190 462 3 869 23560

tspn05 332.1s 25 10 10.3% 15 10 57

tspn08 8.2% 64 28 23.6% 36 28 126

tspn10 5.8% 100 45 137% 55 45 187

tspn12 48.7% 144 66 168% 78 66 260

tspn15 32.8% 225 105 104% 120 105 392

turkey 0.3s 1 0.6% 1 1 111

unitcommit1 4.8s 1 2.7s 372 111

unitcommit2 4.3% 1 166 14.8s 1 873 158 271

unitcommit 200 0 5 mod 7 7.6% 4646 0.39% 103 4374 26920 45

unitcommit 200 100 1 mod 8 0.13% 1 0.05% 1 9239 4341

unitcommit 200 100 2 mod 7 0.25% 4639 0.05% 114 4400 26900 38

unitcommit 200 100 2 mod 8 0.05% 1 0.02% 1 9166 4324

unitcommit 50 20 2 mod 8 0.02% 1 58.3s 1 1934 498

uselinear fail ∞ 721 4924 68 1144 1144 18178

util 0.2s 4 0.2s 4 5 36 1

111

classic new

instance time/gap quad soc abspownonlin time/gap quad bilin soc convex concave quot def persp minor rlt

wager 0.5s 63 2 2.5s 33 1 1 6 6 277

wall ∞ 8 fail 2 14

wallfix 0.1s 6 2 0.1s 2 14

waste 85.2% 314 826.1s 36 1230 2526 20

wastepaper3 9.8s 16 6 8.9s 6 128 7

wastepaper4 196.0s 20 8 296.3s 8 192 9

wastepaper5 fail 24 10 ∞ 10 268 6

wastepaper6 fail 28 12 ∞ 12 356 6

wastewater02m1 0.2s 3 0.1s 2 8 28 0

wastewater02m2 0.2s 12 0.2s 12 46 0

wastewater04m1 0.3s 6 0.3s 4 16 41 0

wastewater04m2 0.3s 18 0.4s 18 66 0

wastewater05m1 fail 9.1s 9 45 94 9

wastewater05m2 55.1s 48 14.6s 48 168 0

wastewater11m1 24.5% 8 106.9s 7 63 182 12

wastewater11m2 fail 1.5% 112 406 0

wastewater12m1 28.6% 11 138.0s 10 120 317 6

wastewater12m2 9.8% 220 14.4% 220 790 0

wastewater13m1 fail 11.1% 15 255 638 11

wastewater13m2 18.5% 480 26.7% 480 1710 0

wastewater14m1 fail 0.46% 10 70 146 2

wastewater14m2 0.29% 90 1.3% 90 315 0

wastewater15m1 549.4s 12 23.4s 9 45 94 18

wastewater15m2 69.1s 48 79.2s 48 168 0

water 542% 29 29 229% 1 29 1 1 128

water3 154% 29 290% 1 2 126 14

water4 fail 29 fail 1 2 126 14

watercontamination0202 167.4s 1 12.3s 1 1 878 273

watercontamination0202r ∞ 1 ∞ 1 1 95

watercontamination0303 2999.3s 1 29.1s 1 1 1882 627

watercontamination0303r ∞ 1 ∞ 1 1 186

waterful2 372% 57 56 ∞ 1 58 350 112

waternd1 9.3s 12 1 9.8s 28 20 111 16 31

waternd2 5.3% 30 1 1.2% 168 70 435 64 17

waternd blacksburg 6.1% 23 48 6% 23 44 193

waternd fossiron ∞ 58 116 69.8% 58 115 441

waternd fosspoly0 11.6% 58 116 ∞ 58 115 441

waternd fosspoly1 12.8% 58 116 10.4% 58 115 439

waternd hanoi 258.9s 34 59 271.9s 32 61 8 8 241

waternd modena ∞ 317 615 ∞ 317 630 2445

waternd pescara ∞ 98 191 ∞ 98 192 741

waternd shamir 25.4s 8 16 7.0s 8 15 59

waterno1 01 0.9s 8 13 0.9s 6 10 1 1 141 17

waterno1 02 1.8s 48 31 5.5s 12 20 1 1 288 36

waterno1 03 16.6s 68 47 26.5s 17 32 1 1 447 56

waterno1 04 27.9s 90 63 1411.7s 23 43 1 1 594 75

waterno1 06 209.5s 144 95 576.6s 36 72 1 1 960 124

waterno1 09 754.8s 216 143 2263.0s 54 108 1 1 1440 187

waterno1 12 2.8% 288 191 7.7% 72 144 1 1 1920 250

waterno1 18 16.7% 432 287 18.3% 108 216 1 1 2880 376

waterno1 24 23.6% 576 382 19.9% 144 288 1 1 3838 501

waterno2 01 0.4s 27 23 0.9s 1 21 169 26 6 0

waterno2 02 1.9s 64 54 fail 1 45 369 79 16 4

waterno2 03 9.1% 108 87 fail 1 81 652 139 20 5

waterno2 04 1235.3s 144 116 fail 1 108 876 185 18 5

waterno2 06 326% 216 174 128% 1 162 1312 277 36 13

waterno2 09 >1000% 324 261 321% 1 243 1944 415 168 8

waterno2 12 >1000% 432 348 571% 1 324 2624 553 182

waterno2 18 >1000% 648 522 638% 1 486 3924 829 321 1

waterno2 24 >1000% 864 696 750% 1 648 5236 1105 505

waters 341% 29 247% 1 2 126

watersbp 116% 29 412% 1 2 126 14

watersym1 124% 29 28 134% 1 30 182 56

watersym2 91.3% 27 26 48.9% 2 29 167 48

watertreatnd conc 1983.6s 24 5 3.9s 20 140 264 5 67

watertreatnd flow 35.2s 150 5 37.9s 150 520 5 7

waterund01 0.21% 14 1658.0s 6 36 6 81 2080

waterund08 fail 37 13.8s 16 100 15 200 0

waterund11 0.12% 28 291.4s 12 72 4 159 107

waterund14 1% 66 0.11% 24 216 24 397 2322

waterund17 0.49% 27 0.12% 12 84 11 179 19572

waterund18 0.29% 28 0.1% 12 69 12 151 10265

waterund22 2.5% 66 0.01% 24 208 9 408 364

waterund25 3.3% 36 1.5% 15 135 6 283 2199

waterund27 6.9% 96 4.9% 32 576 18 1080 1875

waterund28 7.8% 240 3% 120 2640 105 3620 329

waterund32 126% 160 29.8% 80 1760 35 2560 522

waterund36 9.3% 110 3.8% 45 657 25 1072 5124

waterx 18.0% 29 15 9.8% 15 30 156 16

waterz >1000% 29 233% 1 2 126

weapons 1.1% 27 65 0.0s 20 107

Usage count (#instances: 1678): 1200 43 205 546 918 920 129 529 324 256 1435 250 162 266

112

B Detailed Computational Results to Section 10.2 on Strong Branching in GCG

The following table gives the time in seconds needed to solve each problem instance with original variable branching.

Entries that perform better than pseudocost are italic, the best entry in each row is in bold face.
pseudo-

cost
random most-

frac
SBw/oCG SBw/CG hierar-

chical
hybrid reli-

able

rel.

hier.

hybrid

hier.

12Cap10 237.7 3433.9 841.7 2071.0 1245.0 223.7 635.1 3197.4 126.9 174.8

14Cap10 100.9 60.5 176.4 452.1 401.3 59.3 213.9 60.2 135.7 93.2

20Cap10 171.2 613.6 402.4 1569.5 1043.5 117.0 458.3 625.8 129.5 87.7

NU 1 0010 05 3 40.9 41.2 41.7 44.5 48.5 47.2 47.5 46.7 41.4 45.1

NU 1 0010 05 7 23.5 49.4 23.7 36.7 30.4 181.5 27.1 27.6 40.4 32.4

NU 3 0010 05 1 8.8 29.7 9.2 17.6 11.7 7.8 13.2 30.1 12.8 12.5

NU 3 0010 05 3 20.5 63.3 19.6 60.2 26.1 23.8 29.7 63.9 21.5 13.6

NU 3 0010 05 5 17.3 28.9 18.7 27.4 4.9 12.0 8.5 6.5 9.7 13.1

NU 3 0010 05 7 19.0 19.3 19.6 19.7 25.9 30.1 27.8 19.6 20.5 23.1

NU 3 0010 05 9 10.2 26.5 16.3 19.1 11.0 13.9 14.0 26.2 15.2 8.0

U 1 0050 05 0 5.3 5.7 5.4 5.6 5.5 5.4 5.9 5.7 5.7 5.7

U 1 0050 05 2 150.1 210.8 67.0 486.4 147.4 128.1 95.6 212.1 19.0 297.1

U 1 0050 25 7 >3600.0 135.9 >3600.0 >3600.0 707.9 1019.8 140.5 137.1 >3600.0 48.1

U 1 0100 05 1 372.1 277.5 563.9 279.4 278.1 206.8 136.3 281.1 186.5 11.6

U 1 0100 05 3 2653.9 2618.3 2658.0 2667.3 2608.4 2602.4 2653.4 2611.4 2640.6 2632.0

U 2 0050 05 4 305.7 48.2 158.6 251.2 164.8 198.4 1344.1 102.6 164.0 74.9

U 2 0100 05 2 >3600.0 847.0 >3600.0 846.4 >3600.0 >3600.0 >3600.0 844.2 >3600.0 >3600.0

U 2 0100 05 5 623.7 382.0 >3600.0 455.2 378.1 1582.8 2917.6 1865.2 1275.8 221.3

U 3 0010 05 2 12.2 386.1 20.3 52.1 5.7 13.9 5.9 6.4 18.3 13.3

U 3 0010 05 5 11.0 72.3 24.7 35.6 21.9 25.3 27.9 18.1 12.4 12.8

d25 03 alternative 336.7 746.8 510.2 839.4 1675.3 1080.2 1095.6 1192.2 2099.9 837.5

d25 06 36.3 449.8 645.0 17.4 76.4 64.3 68.5 69.8 84.8 30.5

d25 06 alternative 121.6 237.9 174.5 50.3 184.9 144.7 144.7 239.2 137.8 125.9

d25 08 89.6 37.4 159.4 34.5 219.5 132.1 64.6 37.3 109.6 42.5

gapd 3.min 1838.8 2353.7 209.9 >3600.0 3450.6 1138.6 >3600.0 1425.9 2545.6 664.3

p10100-11-115.gq 85.5 442.5 119.0 893.7 1828.2 271.1 808.8 669.5 164.0 133.3

p10100-13-105.gq 552.7 >3600.0 414.1 1742.9 >3600.0 995.4 1555.4 724.2 952.5 269.1

p10100-18-115.gq 363.3 230.8 539.2 1299.9 >3600.0 568.0 978.7 710.3 308.0 383.9

p1250-10.eq 54.3 277.4 162.4 95.3 139.6 30.7 78.0 269.8 54.5 37.8

p1250-10.gq 200.5 617.2 250.1 187.0 169.2 41.2 94.9 73.3 199.6 46.9

p1250-6.gq 23.5 24.9 13.3 50.1 46.4 34.2 36.7 15.9 23.9 12.8

p1250-7.gq 57.7 >3600.0 225.9 113.9 140.0 80.1 66.2 108.1 80.9 77.2

p1650-10.gq 79.1 163.1 238.8 125.6 157.1 55.5 60.3 164.4 80.6 42.5

p2050-10.gq >3600.0 484.7 86.8 31.9 33.8 23.2 40.5 484.2 18.1 14.3

p2050-8.eq 59.2 115.3 27.1 53.8 36.5 20.4 45.8 113.6 24.2 21.6

p2050-8.gq 17.3 70.4 19.4 50.6 45.2 19.9 53.9 74.8 26.0 30.6

p23-6.eq 42.2 32.4 45.7 45.6 20.2 20.5 20.5 13.0 41.1 7.9

p23-6.gq 25.4 26.4 21.6 18.6 20.0 14.8 16.8 26.2 14.6 10.5

p25100-11.gq 353.4 3105.8 315.3 536.1 503.8 519.8 286.4 685.5 160.6 175.0

p25100-12.gq 73.6 83.0 138.2 252.5 106.4 69.5 66.5 56.4 216.9 60.5

p25100-15.gq 51.9 217.3 30.9 250.1 202.9 98.8 140.3 97.1 65.0 78.6

p33100-11.eq 40.0 25.9 43.7 219.8 168.3 69.2 148.6 26.3 43.1 32.2

p33100-11.gq 38.8 28.1 39.6 152.4 93.3 47.2 101.6 44.2 36.1 43.2

p33100-20.gq 87.3 52.9 133.0 190.3 446.2 122.7 246.2 181.7 88.0 139.5

p40100-11-110.eq 67.2 782.5 63.6 175.2 158.5 80.9 132.2 775.8 101.0 87.0

p40100-11.eq >3600.0 >3600.0 >3600.0 323.2 103.3 75.2 132.0 185.9 95.6 2585.3

p40100-12-110.eq 18.5 771.4 15.0 220.5 411.8 71.8 287.5 773.2 19.3 60.1

p40100-14-115.gq >3600.0 >3600.0 >3600.0 123.7 174.6 64.7 141.6 70.1 >3600.0 537.6

p40100-15.gq 1413.5 661.5 185.1 252.7 128.5 65.6 119.2 677.6 60.8 36.5

p40100-19.eq 60.6 807.8 63.1 719.7 516.5 312.5 509.0 815.1 123.0 84.1

p40100-20.eq 68.4 93.6 71.2 144.7 132.3 78.2 134.6 94.0 69.2 44.7

p550-8.gq 732.6 >3600.0 489.2 877.4 2703.3 525.2 465.6 >3600.0 377.7 754.5

prob1 050 040 060 005 015 02 219.4 218.1 227.0 220.1 220.2 298.9 262.5 220.3 253.5 251.8

prob1 050 040 060 005 015 04 398.6 462.7 464.9 379.1 581.9 564.5 558.4 465.7 585.9 560.0

prob1 050 040 060 025 035 10 370.2 364.6 370.8 412.2 1346.1 521.9 512.5 522.0 623.5 372.2

prob1 050 090 110 005 015 03 214.5 256.4 414.8 856.4 818.1 324.1 321.4 391.5 319.0 321.1

prob1 050 090 110 015 025 01 311.5 300.4 334.2 793.3 2554.7 844.5 565.9 302.6 742.0 741.9

prob1 050 090 110 025 035 07 228.8 226.4 225.8 652.8 >3600.0 2761.8 2725.3 226.7 2787.7 2792.9

prob1 050 090 110 035 045 07 302.4 274.9 270.2 326.7 1627.8 476.9 1033.0 406.1 429.9 289.5

prob2 050 040 060 015 025 07 225.2 248.4 246.2 374.9 >3600.0 1363.9 1096.5 1566.2 2239.7 206.4

prob2 050 040 060 015 025 10 368.0 232.3 233.4 497.4 >3600.0 1753.2 >3600.0 232.4 1729.8 273.1

prob2 050 040 060 035 045 03 253.2 426.2 428.1 435.2 >3600.0 1130.1 >3600.0 2002.1 1263.0 251.5

prob2 050 040 060 035 045 06 438.2 1009.8 1002.4 644.6 >3600.0 2022.9 3403.9 991.3 702.4 514.8

prob2 050 090 110 035 045 06 277.6 452.7 638.3 782.5 >3600.0 1137.5 >3600.0 459.9 335.4 412.0

prob3 050 040 060 005 015 01 260.8 465.4 458.3 1922.2 >3600.0 3569.5 1293.0 460.8 3342.2 433.6

prob3 050 040 060 015 025 03 322.5 436.7 435.6 813.7 >3600.0 1780.2 2268.6 >3600.0 1703.5 236.7

prob3 050 040 060 015 025 09 421.5 500.7 493.1 1160.7 >3600.0 1382.3 >3600.0 496.0 277.2 269.7

prob3 050 040 060 035 045 10 233.7 236.9 236.6 531.4 >3600.0 877.1 2152.4 239.2 879.9 212.1

prob3 050 090 110 005 015 05 239.1 244.4 243.2 1164.9 >3600.0 1195.9 597.3 1882.2 145.7 203.7

prob3 050 090 110 015 025 01 281.9 166.8 166.8 540.3 >3600.0 822.1 1195.6 3538.1 272.0 299.1

prob3 050 090 110 025 035 10 309.6 475.2 329.3 1072.2 >3600.0 1201.2 1057.8 >3600.0 252.4 254.3

prob3 050 090 110 035 045 01 153.9 194.0 155.2 669.6 1749.5 82.5 472.9 177.4 81.8 143.7

prob3 050 090 110 035 045 06 445.1 596.1 610.3 1975.9 >3600.0 2200.2 >3600.0 >3600.0 375.3 484.1

best 14 8 8 4 1 8 1 4 6 22

timeouts 5 5 5 2 17 1 7 4 3 1

geom. mean 149.9 245.1 167.3 248.9 343.0 184.6 246.7 224.5 162.1 108.4

arithm. mean 493.8 658.6 500.0 587.8 1251.5 593.8 844.7 685.8 595.1 335.0

total (73) 36 049 48 080 36 502 42 912 91 357 43 347 61 660 50 062 43 439 24 452

113

The following table gives the number of nodes needed to solve each problem instance with original variable branching.

The best entry in each row except full strong entries is in bold face.
pseudo-

cost
random most-

frac
SBw/oCG SBw/CG hierar-

chical
hybrid reli-

able

rel.

hier.

hybrid

hier.

12Cap10 1 009 7 083 2 234 351 137 186 143 7 083 137 280

14Cap10 643 422 1 056 102 52 68 47 422 643 128

20Cap10 795 2 575 1 569 318 112 116 95 2 575 795 135

NU 1 0010 05 3 4 672 4 439 4 672 4 352 4 397 4 397 4 397 4 397 4 439 4 284

NU 1 0010 05 7 2 495 4 576 2 495 3 713 2 643 12 338 2 652 2 643 3 730 3 278

NU 3 0010 05 1 1 368 4 229 1 490 1 958 415 566 800 4 229 920 2 253

NU 3 0010 05 3 3 135 9 291 3 261 7 696 1 293 3 437 3 082 9 291 3 061 2 581

NU 3 0010 05 5 2 607 4 055 2 488 2 477 132 897 288 174 837 1 441

NU 3 0010 05 7 1 207 2 591 1 479 979 376 859 711 2 591 1 375 1 389

NU 3 0010 05 9 1 993 3 444 2 669 2 432 544 1 862 1657 3 444 2 234 1 473

U 1 0050 05 0 325 325 325 325 325 325 325 325 325 325

U 1 0050 05 2 8 838 17 396 4 441 36 523 10 365 9 005 6 931 17 396 1 085 19 868

U 1 0050 25 7 >258 966 4 897 >264 048 >14 046 1 062 2 268 4 367 4 897 >194 963 402

U 1 0100 05 1 19 639 12 568 26 890 12 563 12 563 9 957 6 617 12 563 9 126 661

U 1 0100 05 3 129 326 129 326 129 326 129 326 129 326 129 326 129 326 129 326 129 326 129 326

U 2 0050 05 4 32 297 4 384 17 003 14 893 5 907 12 635 110 850 3 518 10 202 7 620

U 2 0100 05 2 >109 482 25 367 >116 151 24 166 >90 663 >103 350 >113 381 25 367 >141 143 >109 421

U 2 0100 05 5 49 779 28 075 >176 504 15 139 9 910 66 956 117 682 5 1078 48 038 15 838

U 3 0010 05 2 2 537 84 845 4 749 8 435 225 2 675 358 244 3 925 2 941

U 3 0010 05 5 1 876 8 944 3 961 4 882 1 256 3 853 3 832 1 100 1 996 2 961

d25 03 alternative 21 260 46 586 31 697 19 854 12 852 9 287 26 475 10 834 18 637 49 201

d25 06 795 9 663 11 073 194 168 156 169 206 192 618

d25 06 alternative 4 451 8 289 6 529 1 409 1 419 1 352 1 557 8 289 5 075 4 982

d25 08 1 891 824 4 016 222 248 234 737 824 208 862

gapd 3.min 10 461 9 512 1 629 >484 440 595 >580 798 927 2 886

p10100-11-115.gq 855 2 566 1 088 196 151 138 175 522 1 664 519

p10100-13-105.gq 1 635 >6 212 2 020 168 >67 271 108 318 253 1 112

p10100-18-115.gq 1 194 984 1 440 299 >158 271 389 266 195 1 205

p1250-10.eq 2 012 4 720 2 844 331 211 195 287 4 720 2 012 1 083

p1250-10.gq 3 919 5 686 2 412 331 171 174 271 373 3 919 783

p1250-6.gq 1 067 1 359 659 171 95 143 209 151 1 067 336

p1250-7.gq 1 749 >15 329 2 620 480 332 424 1 277 799 465 1 426

p1650-10.gq 2 907 4 648 3 138 539 420 304 411 4 648 2 907 1 636

p2050-10.gq >10 266 4 988 1 983 136 69 97 86 4 988 87 160

p2050-8.eq 1 376 2 840 950 299 139 144 154 2 840 180 584

p2050-8.gq 826 2 658 960 269 135 112 161 2 658 146 817

p23-6.eq 1 195 1 345 1 279 348 123 187 259 147 1 313 264

p23-6.gq 1 266 1 321 1 079 173 129 161 175 1 321 131 307

p25100-11.gq 19 308 145 400 18 307 988 506 1 125 1 685 2 329 448 7 212

p25100-12.gq 4 680 5 131 8 632 543 121 174 146 206 11 938 1 376

p25100-15.gq 867 2 219 438 299 122 183 162 284 140 575

p33100-11.eq 2 046 1 146 1 939 314 143 103 159 1 146 2 171 339

p33100-11.gq 1 811 1 282 1 973 252 73 106 118 117 1 785 492

p33100-20.gq 1 483 1 116 1 022 326 151 140 518 527 1 483 2 490

p40100-11-110.eq 2 365 7 009 2 259 171 132 165 98 7 009 181 1 459

p40100-11.eq >18 707 >18 357 >16 927 399 80 107 128 613 154 7 240

p40100-12-110.eq 641 6 192 463 154 133 90 119 6 192 659 263

p40100-14-115.gq >6 929 >8 678 >6 994 144 112 121 152 221 >6 950 2 790

p40100-15.gq 3 117 3 923 1 641 275 73 129 141 3 923 87 262

p40100-19.eq 3 049 38 708 3 184 603 265 333 5 858 38 708 191 1 597

p40100-20.eq 1 538 1 804 1 244 158 101 122 105 1 804 1 538 270

p550-8.gq 2 183 >6 661 1 985 507 439 449 549 >6 648 485 2 706

prob1 050 040 060 005 015 02 1 049 1 049 1 049 1 049 1 049 1 154 1 154 1 049 1 154 1 154

prob1 050 040 060 005 015 04 1 804 2 204 2 204 1 793 1 823 2 337 2337 2 204 2 337 2 337

prob1 050 040 060 025 035 10 1 716 1 712 1 712 1 712 1 728 1 853 1 780 1 687 1 870 1 726

prob1 050 090 110 005 015 03 1 047 1 183 2 150 2 240 1 616 1 400 1 400 1 610 1 400 1 400

prob1 050 090 110 015 025 01 1 626 1 928 1 928 1 928 >432 1 310 684 1 928 1 266 1 638

prob1 050 090 110 025 035 07 1 668 1 668 1 668 1 116 >584 2 594 2 646 1 668 2 594 2 594

prob1 050 090 110 035 045 07 1 265 1 247 1 247 1 249 1 253 1 483 1 420 1 230 1 474 1 255

prob2 050 040 060 015 025 07 1 276 1 517 1 517 1 516 >603 3 418 935 1 510 6 275 1 117

prob2 050 040 060 015 025 10 1 657 1 066 1 066 1 479 >168 1 846 >375 1 066 1 755 1 162

prob2 050 040 060 035 045 03 1 171 1 809 1 809 1 429 >181 1 298 >721 1 031 1 233 1 120

prob2 050 040 060 035 045 06 2 018 4 957 4 933 2 294 >352 2 976 751 4 957 2 520 2 245

prob2 050 090 110 035 045 06 1 145 2 021 2 711 1 466 >161 1 163 >382 2 021 1 116 1 602

prob3 050 040 060 005 015 01 2 151 4 027 3 948 3 817 >694 4 348 496 4 027 3 980 3 636

prob3 050 040 060 015 025 03 2 199 3 606 3 606 3 628 >544 2 864 869 >2 887 2 655 1 626

prob3 050 040 060 015 025 09 2 794 3 931 3 931 3 918 >311 1 963 >594 3 931 1 890 1 923

prob3 050 040 060 035 045 10 1 240 1 280 1 423 1 280 1 320 1 543 1 087 1 280 1 549 1 543

prob3 050 090 110 005 015 05 1 387 1 789 1 789 1 789 >162 1 539 90 1 627 997 1 435

prob3 050 090 110 015 025 01 1 730 993 993 1 035 >102 842 171 995 1 641 1 834

prob3 050 090 110 025 035 10 2 053 3 729 2 563 2 561 >264 1 723 180 >2 823 1 855 1 865

prob3 050 090 110 035 045 01 1 119 1 691 1 198 1 116 129 95 72 129 93 1 087

prob3 050 090 110 035 045 06 2 996 4 413 4 413 4 412 >169 2 873 >613 >2 637 2 499 3 293

best (w/o SBw/CG) 5 4 5 7 - 25 18 11 14 11

geom. mean 2 689.8 4 020.1 3 010.5 1 089.2 418.7 799.3 674.2 1 801.1 1 413.3 1 507.0

arithm. mean 11 010.5 10 645.8 13 111.1 4 904.5 4 173.8 5 792.3 7 804.3 6 019.0 9 151.2 6 018.4

total (73) 803 766 777 147 957 108 358 032 304 687 422 841 569 716 439 389 668 041 439 343

114

	Introduction
	Overall Performance Improvements for MILP and MINLP
	Experimental Setup
	MILP Performance
	MINLP Performance

	SCIP
	A New MINLP Framework
	Improvements in Symmetry Handling
	Previously Existing Symmetry Handling Methods in SCIP
	Symmetry Detection Extended to Nonlinear Constraints
	New Symmetry Handling Methods
	Algorithmic Enhancements
	Further Features

	Mixing Cuts
	Primal Decomposition Heuristics
	Improvement of Penalty Alternating Direction Method
	Dynamic Partition Search

	Benders' Decomposition
	Cut Selectors
	Technical Improvements

	SCIP's New MINLP Framework
	New Expressions Framework
	New Handler for Nonlinear Constraints
	Motivation
	Extended Formulations
	Variable and Expression Locks
	Nonlinear Handler
	Constructing Extended Formulations
	Nonlinear Handler ``Default''
	Presolve
	Domain Propagation
	Initialization of Solve and Relaxations
	Separation
	Enforcement
	Branching

	Nonlinear Handler for Quadratic Expressions
	Detection of Quadratic Expressions
	Propagation of Quadratic Expressions
	Intersection Cuts for Quadratic Constraints

	Nonlinear Handler for Second-Order Cones
	Detection
	Separation

	Nonlinear Handler for Bilinear Expressions
	Nonlinear Handler for Convex and Concave Expressions
	Detection
	Underestimators for Convex Expressions
	Underestimators for Concave Expressions

	Nonlinear Handler for Quotients
	Univariate Quotients (y1=y2)
	Bivariate Quotients

	Nonlinear Handler for Perspective Reformulation
	Detection of Semi-continuous Variables
	Separation

	Separator for Cuts from the Reformulation-Linearization Technique
	Implicit Product Detection
	Separation

	Separator for Principal Minors of Xxx
	Separator for Intersection Cuts on Rank-1 Constraint for X
	Revised Primal Heuristic that Solves NLP Subproblem
	NLP Relaxation and Interfaces to NLP Solvers and Automatic Differentiation
	NLP Relaxation
	Interfaces to NLP Solvers
	Interface to Algorithmic Differentiation

	Performance Impact of Updates for Nonlinear Constraints

	SoPlex
	Integration of PaPILO in SoPlex
	Technical Improvements

	PaPILO
	Postsolving Dual LP Solutions and Basis Information
	Further Improvements

	Interfaces
	AMPL
	Julia
	C Wrapper for SoPlex
	Matlab

	ZIMPL
	The UG Framework
	Join ParaSolver Threads of FiberSCIP
	Time Limit Feature Implementation of FiberSCIP
	SelfSplit Ramp-up
	Memory usage estimation

	The GCG Decomposition Solver
	Detection Loop Refactoring
	Strong Branching in Branch-and-Price
	Branching Candidate Selection Heuristics Background
	Parameters for Strong Branching
	Performance Evaluation

	Python Interface
	Visualization Suite
	Website Documentation

	SCIP-SDP
	SCIP-Jack: Solving Steiner Tree and Related Problems
	Final Remarks
	Detailed Computational Results to Section 4.14 (Performance Impact of Updates for Nonlinear Constraints)
	Detailed Computational Results to Section ?? on Strong Branching in GCG

